1
|
Parveen K, Hussain MA, Anwar S, Elagib HM, Kausar MA. Comprehensive review on diabetic foot ulcers and neuropathy: Treatment, prevention and management. World J Diabetes 2025; 16:100329. [DOI: 10.4239/wjd.v16.i3.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
Diabetic foot (DF) is a major public health concern. As evident from numerous previous studies, supervision of DF ulcer (DFU) is crucial, and a specific quality check-up is needed. Patients should be educated about glycaemic management, DFUs, foot lesions, proper care for injuries, diet, and surgery. Certain reasonably priced treatments, such as hyperbaric oxygen and vacuum-assisted closure therapy, are also available for DFUs, along with modern wound care products and techniques. Nonetheless, DF care (cleaning, applying antimicrobial cream when wounded, and foot reflexology), blood glucose monitoring to control diabetes, and monthly or quarterly examinations in individuals with diabetes are effective in managing DFUs. Between 50% and 80% of DF infections are preventable. Regardless of the intensity of the lesion, it needs to be treated carefully and checked daily during infection. Tissue regeneration can be aided by cleaning, dressing, and application of topical medicines. The choice of shoes is also important because it affects blood circulation and nerve impulses. In general, regular check-ups, monitoring of the patient’s condition, measuring blood glucose levels, and providing frequent guidance regarding DFU care are crucial. Finally, this important clinical problem requires involvement of multiple professionals to properly manage it.
Collapse
Affiliation(s)
- Kehkashan Parveen
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Malik Asif Hussain
- Department of Pathology, College of Medicine, University of Ha’il, Ha'il 53962, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha'il 53962, Saudi Arabia
| | | | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha'il 53962, Saudi Arabia
| |
Collapse
|
2
|
Li J, Guo C, Yang X, Xie W, Mi W, Hua C, Tang C, Wang H. Effects of natural products on macrophage immunometabolism: A new frontier in the treatment of metabolic diseases. Pharmacol Res 2025; 213:107634. [PMID: 39889866 DOI: 10.1016/j.phrs.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Immunometabolic variations in macrophages critically influence their differentiation into pro-inflammatory or anti-inflammatory phenotypes, thereby contributing to immune homeostasis, defense against infection, and tissue repair. Dysregulation of macrophage immunometabolism has been closely implicated in several metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), hypertension, atherosclerosis, and gout, which positions macrophages as potential therapeutic targets. Recently, several natural products that target macrophage metabolic pathways have shown significant efficacy in managing metabolic diseases; however, a systematic review of these findings has yet to be conducted. This study consolidates natural products with immunoregulatory properties, including flavonoids, phenols, terpenoids, and naphthoquinones, which can alleviate chronic inflammation associated with metabolic disorders by modulating macrophage metabolic pathways, such as aerobic glycolysis, oxidative phosphorylation (OXPHOS), and fatty acid oxidation (FAO). This review aims to elucidate the metabolic regulation of the immune system, analyze metabolic alterations in macrophage associated with metabolic diseases, and summarize the beneficial roles of natural products in immunometabolism, providing novel insights for the prevention and therapeutic management of metabolic diseases.
Collapse
Affiliation(s)
- Jiani Li
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chen Guo
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Mi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chenglong Hua
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Tang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Makrantonaki E, Kostaras S, Zouboulis CC. [Bacterial cutaneous infections in diabetes mellitus and treatment]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2025; 76:9-14. [PMID: 39643744 DOI: 10.1007/s00105-024-05441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Diabetes mellitus (DM) is a debilitating, life-limiting disease. According to recent estimates, 415 million adults currently suffer from the disease. This number is expected to rise to 642 million by 2040. Skin disorders can often predict the onset of this metabolic disorder. Uncontrolled hyperglycemia impairs the overall immunity of patients with DM, involving various mechanistic pathways, resulting in the diabetic skin being immunocompromised and prone to bacterial infections. Among others, diabetic foot infections are very common. In this article, we have focused on the association of DM with different types of bacterial skin infections and resistance patterns to antimicrobial agents commonly used in the treatment of diabetes-associated infections.
Collapse
Affiliation(s)
- Evgenia Makrantonaki
- Abteilungen für Dermatologie, Venerologie, Allergologie und Immunologie, Dessau Medical Center, Brandenburg Medizinische Hochschule Theodor Fontane, Auenweg 38, 06847, Dessau, Deutschland.
- Derma Zentrum Wildeshausen, Westerstr. 46-48, 27793, Wildeshausen, Deutschland.
- Abteilung für Dermatologie und Allergologie, Universität Ulm, James Franck Ring/Meyerhoffstr. 11c, 89081, Ulm, Deutschland.
| | - Spyridon Kostaras
- Derma Zentrum Wildeshausen, Westerstr. 46-48, 27793, Wildeshausen, Deutschland
| | - Christos C Zouboulis
- Abteilungen für Dermatologie, Venerologie, Allergologie und Immunologie, Dessau Medical Center, Brandenburg Medizinische Hochschule Theodor Fontane, Auenweg 38, 06847, Dessau, Deutschland
- Europäische Hidradenitis Suppurativa Stiftung e. V., Auenweg 38, 06847, Dessau, Deutschland
| |
Collapse
|
4
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Xie Z, Zhou S, Tang S, Zhang Q, Liu L. High glucose combined with lipopolysaccharide stimulation inhibits cell proliferation and migration of human HaCaT keratinocytes by impacting redox homeostasis and activating the polyol pathway. Mol Biol Rep 2024; 51:1098. [PMID: 39460853 DOI: 10.1007/s11033-024-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND High glucose level and chronic inflammation are characteristic features of diabetic cutaneous wounds. Keratinocytes make up the epidermis and play an important role in skin repair. However, metabolomic changes of keratinocytes in chronic diabetic ulcers have not been fully studied. METHODS AND RESULTS This study used high levels of glucose combined with lipopolysaccharide to treat human HaCaT keratinocytes. Untargeted metabolomic combined with colorimetric assays were used to explore the changes of keratinocyte metabolites and related metabolic pathways caused by high glucose and lipopolysaccharide. Results demonstrated that high glucose combined with lipopolysaccharide treatment increased intracellular reactive oxygen species and impaired proliferation and migration of keratinocytes. Untargeted metabolomics analysis identified a total of 273 differential metabolites. Redox metabolism associated metabolites were largely altered. Reduced nicotinamide adenine dinucleotide, gamma-glutamylcysteine, superoxide dismutase activity and SOD2 gene expression were significantly upregulated while nicotinamide adenine dinucleotide, glutathione, glutathione peroxidase, several types of lysophosphatidylcholine, lysophosphatidylinositol, and GPR55 gene expression were downregulated. Alterations of glutathione and nicotinamide adenine dinucleotide were verified by colorimetric assays. For the first time, high glucose and LPS were observed to boost the levels of fructose, aldose reductase and sorbitol dehydrogenase of the polyol pathway in HaCaT cells. Further treatment of HaCaT with fructose leading to inhibition of cell proliferation and migration. CONCLUSIONS Our data suggest high glucose combined with lipopolysaccharide significantly altered redox homeostasis associated metabolites and activate the polyol pathway in keratinocytes to impact cell proliferation and migration, providing new strategies for the treatment of chronic diabetic ulcers.
Collapse
Affiliation(s)
- Zhenhui Xie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Shufan Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, 230022, Anhui Province, People's Republic of China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, 230022, Anhui Province, People's Republic of China.
| |
Collapse
|
6
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
7
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
8
|
Zhen Z, Wei S, Yunfei W, Jie X, Jienan X, Yiting S, Wen X, Shuyu G, Yue L, Xuanyu W, Yumei Z, Huafa Q. Astragalus polysaccharide improves diabetic ulcers by promoting M2-polarization of macrophages to reduce excessive inflammation via the β-catenin/ NF-κB axis at the late phase of wound-healing. Heliyon 2024; 10:e24644. [PMID: 38390059 PMCID: PMC10881534 DOI: 10.1016/j.heliyon.2024.e24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Ethnopharmacological relevance Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of β-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3β, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the β-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.
Collapse
Affiliation(s)
- Zhang Zhen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shan Wei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Yunfei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jie
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xu Jienan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shen Yiting
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiao Wen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guo Shuyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Yue
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Xuanyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhong Yumei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Que Huafa
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
9
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
10
|
Liu Y, Deng Z, Zhang J, Wu Y, Wu N, Geng L, Yue Y, Zhang Q, Wang J. Preparation of a Dual-Functional Sulfated Galactofucan Polysaccharide/Poly(vinyl alcohol) Hydrogel to Promote Macrophage Recruitment and Angiogenic Potential in Diabetic Wound Healing. Biomacromolecules 2023; 24:4831-4842. [PMID: 37677087 DOI: 10.1021/acs.biomac.3c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A diabetic foot ulcer is a common high-risk complication in diabetic patients, but there is still no universal dressing for clinical treatment. In this study, a novel dual-functional sulfated galactofucan polysaccharide/poly(vinyl alcohol) hydrogel (DPH20) is developed during freeze-thaw cycles. Experimental results indicated that DPH20 had a high specific surface area, a dense porous structure, and a good swelling property, which could effectively adsorb the exudates and keep the wound moist. Furthermore, DPH20 exhibited remarkably recruited macrophage capability and accelerated the inflammation stage by improving the expression of the mRNA of CCL2, CCR2, and CCL22 in macrophages. DPH20 could promote cell migration and growth factor release to accelerate tube formation under hyperglycemic conditions in cell models of L929s and HUEVCs, respectively. Significantly, DPH20 accelerates the reconstruction of the full-thickness skin wound by accelerating the recruitment of macrophages, promoting angiogenesis, and releasing the growth factor in the diabetic mouse model. Collectively, DPH20 is a promising multifunctional dressing to reshape the damaged tissue environment and accelerate wound healing. This study provides an efficient strategy to repair and regenerate diabetic skin ulcers.
Collapse
Affiliation(s)
- Yang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266003, China
| | - Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Jingjing Zhang
- Qingdao Eighth People's Hospital, 84 Fengshan Road, Qingdao 266121, China
| | - Yumeng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
11
|
Chen J, Ma H, Meng Y, Liu Q, Wang Y, Lin Y, Yang D, Yao W, Wang Y, He X, Li P. Analysis of the mechanism underlying diabetic wound healing acceleration by Calycosin-7-glycoside using network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154773. [PMID: 36990011 DOI: 10.1016/j.phymed.2023.154773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Diabetic wounds represent a severe clinical challenge in which impaired M2 macrophage polarization and continuous macrophage glycolysis play crucial roles. Calycosin-7-glucoside (CG) is an isoflavone component in Astragali Radix (AR), which has become a research focus for treating diabetic wounds following reports indicating that it has anti-inflammatory effects. However, the mechanism through which CG can treat diabetic wounds is yet to be deciphered. PURPOSE This study aimed to evaluate the therapeutic effect of CG on diabetic wounds and its underlying mechanism. METHODS The potential mechanism underlying the treatment of diabetic wounds by CG was screened using bioinformatics. The therapeutic effects of CG were then investigated using a db/db diabetic wound model. Moreover, an LPS- and IFN-γ-induced RAW264.7 cell inflammation model was used to elucidate the mechanism underlying the therapeutic effects of CG against diabetic wounds. RESULTS Network pharmacology predicted that the AMPK pathway could be the main target through which CG treats diabetic wounds. In db/db diabetic mice, CG could accelerate wound healing and promote granulation tissue regeneration. Protein chip technology revealed that CG increased the production of M-CSF, G-CSF, GM-CSF, IL-10, IL-13, and IL-4 but not that of MCP-1, IL-1β, IL-1α, TNF-α, and TNF-RII. Moreover, CG elevated the proportion of Ly6CLo/- anti-inflammatory monocytes in peripheral blood and M2 macrophages in the wound. The ELISA and flow cytometry analyses revealed that CG enhanced the levels of IL-10, VEGF, CD206, and Arg-1 expression whereas it considerably reduced the levels of IL-1, IL-6, IL-12, TNF-α, CD86, and iNOS expression. Meanwhile, CG increased the macrophage mitochondrial membrane potential and decreased the mitochondrial ADP/ATP ratio and glycolysis rate of M1 macrophages through the ROS/AMPK/STAT6 pathway. CONCLUSIONS The network pharmacology and molecular dockin identified the AMPK pathway as a critical pathway for treating diabetic wounds using topical CG application. CG was found to promote anti-inflammatory monocyte recruitment and decrease the mitochondrial glycolysis rate to induce M2 macrophage polarization via the ROS/AMPK/STAT6 pathway. These results suggest that CG might be a promising therapeutic agent for diabetic wounds.
Collapse
Affiliation(s)
- Jia Chen
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Qingwu Liu
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Wentao Yao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| |
Collapse
|
12
|
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, Wang S, Ma Z, Li G. Mechanisms of diabetic foot ulceration: A review. J Diabetes 2023; 15:299-312. [PMID: 36891783 PMCID: PMC10101842 DOI: 10.1111/1753-0407.13372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are associated with complex pathogenic factors and are considered a serious complication of diabetes. The potential mechanisms underlying DFUs have been increasingly investigated. Previous studies have focused on the three aspects of diabetic peripheral vascular disease, neuropathy, and wound infections. With advances in technology, researchers have been gradually conducting studies using immune cells, endothelial cells, keratinocytes, and fibroblasts, as they are involved in wound healing. It has been reported that the upregulation or downregulation of molecular signaling pathways is essential for the healing of DFUs. With a recent increase in the awareness of epigenetics, its regulatory role in wound healing has become a much sought-after trend in the treatment of DFUs. This review focuses on four aspects involved in the pathogenesis of DFUs: physiological and pathological mechanisms, cellular mechanisms, molecular signaling pathway mechanisms, and epigenetics. Given the challenge in the treatment of DFUs, we are hopeful that our review will provide new ideas for peers.
Collapse
Affiliation(s)
- Haibo Deng
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Binghui Li
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qian Shen
- School of Foreign StudiesZhongnan University of Economics and LawWuhanHubeiChina
| | - Chenchen Zhang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liwen Kuang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ran Chen
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - SiYuan Wang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - ZhiQiang Ma
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
13
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Liu Z, Yang S, Li X, Wang S, Zhang T, Huo N, Duan R, Shi Q, Zhang J, Xu J. Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways. NANOSCALE ADVANCES 2023; 5:916-926. [PMID: 36756513 PMCID: PMC9890890 DOI: 10.1039/d2na00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
With the increasing number of diabetic patients, chronic wound healing remains a great challenge in clinical medicine. As one of the main components secreted by stem cells, the exosome is considered to be a promising candidate for promoting chronic wound healing. Here, gingival mesenchymal stem cell (GMSC)-derived exosomes (GMSC-Exo) were isolated and demonstrated to promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) by regulating the Wnt/β-catenin signaling pathway in a diabetic-mimicking high glucose environment. In order to deliver GMSCs-Exo to the target site and prolong their local retention, porous microspheres consisting of poly-lactic-co-glycolic acid (PLGA), amphiphilic block copolymer (PLLA-PEG-PLLA), nano-hydroxyapatite (nHAP), and poly-ε-l-lysine (EPL) coating were fabricated through a double emulsion method and following surface treatment, hereafter referred to as PHE microspheres. PHE microspheres loaded with GMSCs-Exo were implanted into the full-thickness skin wound of a diabetic mouse model, resulting in significant vascularized wound healing when compared to a control group only injected with GMSCs-Exo suspension or filled with PHE microspheres. These findings indicated that the GMSCs-Exo-loaded porous microspheres could efficiently treat diabetic wounds and have promising potential for future clinical translations.
Collapse
Affiliation(s)
- Ziwei Liu
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Xiaoming Li
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Situo Wang
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Tong Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Ruixin Duan
- Department of Stomatology, The People's Hospital of Anyang City Henan 455000 China
| | - Quan Shi
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| |
Collapse
|
15
|
Worsley AL, Lui DH, Ntow-Boahene W, Song W, Good L, Tsui J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J 2022. [PMID: 36564054 DOI: 10.1111/iwj.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.
Collapse
Affiliation(s)
- Anna L Worsley
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Dennis H Lui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Winnie Ntow-Boahene
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Liam Good
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK
| | - Janice Tsui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
16
|
Chen C, Lin Z, Liu W, Hu Q, Wang J, Zhuang X, Guan S, Wu X, Hu T, Quan S, Jin X, Shen J. Emodin accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization. Eur J Pharmacol 2022; 936:175329. [DOI: 10.1016/j.ejphar.2022.175329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
17
|
Wang Z, Li W, Gou L, Zhou Y, Peng G, Zhang J, Liu J, Li R, Ni H, Zhang W, Cao T, Cao Q, Su H, Han YP, Tong N, Fu X, Ilegems E, Lu Y, Berggren PO, Zheng X, Wang C. Biodegradable and Antioxidant DNA Hydrogel as a Cytokine Delivery System for Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2200782. [PMID: 36101484 DOI: 10.1002/adhm.202200782] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Impaired diabetic wound healing is associated with the persistence of chronic inflammation and excessive oxidative stress, which has become one of the most serious clinical challenges. Wound dressings with anti-inflammatory and reactive oxygen species (ROS)-scavenging properties are desirable for diabetic wound treatment. In this study, a shape-adaptable, biodegradable, biocompatible, antioxidant, and immunomodulatory interleukin-33 (IL-33)-cytogel is developed by encapsulating IL-33 into physically cross-linked DNA hydrogels and used as wound dressings to promote diabetic wound healing. The porous microstructures and biodegradable properties of the IL-33-cytogel ensure the local sustained-release of IL-33 in the wound area, where the sustained-release of IL-33 is maintained for at least 7 days. IL-33-cytogel can induce local accumulation of group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs), as well as M1-to-M2 transition at the wound sites. Additionally, the antioxidant and biocompatible characteristics of DNA hydrogels promote the scavenging of intracellular ROS without affecting cell viability. As a result, local inflammation in the diabetic wound area is resolved upon IL-33-cytogel treatment, which is accompanied by improved granulation tissue regeneration and accelerated wound closure. This study demonstrates a promising strategy in tissue engineering and regenerative medicine by incorporating DNA hydrogels and cytokine immunotherapy for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaye Liu
- Department of thyroid and parathyroid surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Hengfan Ni
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanli Zhang
- Core facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Hong Su
- Department of Dermatology, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Liu FS, Li Y, Guo XS, Liu RC, Zhang HY, Li Z. Advances in traditional Chinese medicine as adjuvant therapy for diabetic foot. World J Diabetes 2022; 13:851-860. [PMID: 36312004 PMCID: PMC9606791 DOI: 10.4239/wjd.v13.i10.851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a complex disease that often causes multiple systemic complications that have become a major international public health problem. Diabetic foot (DF) is one of the severe and frequent chronic complications of DM due to vascular lesions and neuropathy. DF ulcers (DFU) affect approximately 15% of people with DM and are the leading cause of death and disability. The prevalence and recurrence of DF are worrisome, and morbidity and mortality are also on the rise, which poses a substantial socioeconomic burden. Treating DF is difficult for clinicians and requires multidisciplinary cooperation, combining local and systemic therapy to reduce amputation and case-fatality rates. Traditional Chinese Medicine (TCM) has received extensive attention due to noticeable therapeutic effects and few adverse reactions. In recent years, research on DF treatment by TCM has been increasing, and further progress has been made. TCM includes oral medication, injectable preparations, and adjuvant therapy. This article reviews the relevant research on TCM-related adjuvant therapy for DF. We describe current progress in TCM in terms of external application, acupuncture, massage, acupoint injection, foot bath, fumigation, and moxibustion, as well as the mechanisms involved.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Yue Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Rui-Chen Liu
- Binhai College, Nankai University, Tianjin 300450, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
19
|
Dardenne C, Salon M, Authier H, Meunier E, AlaEddine M, Bernad J, Bouschbacher M, Lefèvre L, Pipy B, Coste A. Topical Aspirin Administration Improves Cutaneous Wound Healing in Diabetic Mice Through a Phenotypic Switch of Wound Macrophages Toward an Anti-inflammatory and Proresolutive Profile Characterized by LXA4 Release. Diabetes 2022; 71:2181-2196. [PMID: 35796692 DOI: 10.2337/db20-1245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
Patients with diabetes present a persistent inflammatory process, leading to impaired wound healing. Since nonhealing diabetic wound management shows limited results, the introduction of advanced therapies targeting and correcting the inflammatory status of macrophages in chronic wounds could be an effective therapeutic strategy to stop the sustained inflammation and to return to a healing state. In an excisional skin injury in a diet-induced diabetic murine model, we demonstrate that topical administration of low-dose aspirin (36 μg/wound/day) improves cutaneous wound healing by increasing wound closure through the promotion of the inflammation resolution program of macrophages. This treatment increased efferocytosis of wound macrophages from aspirin-treated diabetic mice compared with untreated diabetic mice. We also show that aspirin treatment of high-fat-fed mice oriented the phenotype of wound macrophages toward an anti-inflammatory and proresolutive profile characterized by a decrease of LTB4 production. The use of diabetic mice deficient for 5-LOX or 12/15-LOX demonstrated that these two enzymes of acid arachidonic metabolism are essential for the beneficial effect of aspirin on wound healing. Thus, aspirin treatment modified the balance between pro- and anti-inflammatory eicosanoids by promoting the synthesis of proresolving LXA4 through 5-LOX, LTA4, 12/15-LOX signaling. In conclusion, the restoration of an anti-inflammatory and proresolutive phenotype of wound macrophages by the topical administration of low-dose aspirin represents a promising therapeutic approach in chronic wounds.
Collapse
Affiliation(s)
- Christophe Dardenne
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - Marie Salon
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Hélène Authier
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Etienne Meunier
- UMR 5089, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Mohamad AlaEddine
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - José Bernad
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | | | - Lise Lefèvre
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Bernard Pipy
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - Agnès Coste
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
20
|
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther 2022; 30:2891-2908. [PMID: 35918892 PMCID: PMC9482022 DOI: 10.1016/j.ymthe.2022.07.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Raghavan JV, Dorai VK, Sagar SK, Sivaraman A, R KS, Jhunjhunwala S. Immunomodulatory Bandage for Accelerated Healing of Diabetic Wounds. ACS BIO & MED CHEM AU 2022; 2:409-418. [PMID: 35996477 PMCID: PMC9389529 DOI: 10.1021/acsbiomedchemau.1c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Diabetic foot ulcers
are challenging to treat. Current strategies
to treat these wounds focus on preventing infection and promoting
tissue regrowth but are ineffective in many individuals. Low-grade
chronic inflammation is present in individuals with diabetes, and
altering the inflammatory responses at the wound site could be an
alternate approach to promote healing. We hypothesized that immunomodulation
of the wound microenvironment would result in accelerated healing.
To test this hypothesis, we began by characterizing the changes in
the myeloid cell phenotype in a mouse model [leptin receptor knockout
(KO) mouse] that closely mimics the type 2 diabetes condition observed
in humans. We observed increased numbers of monocytes and neutrophils
in the circulation of the KO mice compared to that in wild-type control
mice. We also observed several phenotypic changes in neutrophils from
the KO diabetic mice, suggesting low-grade systemic inflammation.
Hence, we developed a rapamycin-loaded chitosan scaffold that may
be used to modulate immune responses. The use of these immunomodulatory
scaffolds at a wound site resulted in accelerated healing compared
to the healing using blank scaffolds. In summary, our data suggest
that immunomodulation may be a viable strategy to promote the healing
of wounds in individuals with diabetes.
Collapse
Affiliation(s)
- Jayashree Vijaya Raghavan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vinod Kumar Dorai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shruthi Ksheera Sagar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Archana Sivaraman
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Kalpana S R
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka 560069, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
22
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Preparation of ROS-responsive drug-loaded hydrogels applied in wound dressings using supercritical solvent impregnation. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Zhang JJ, Zhou R, Deng LJ, Cao GZ, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomed Pharmacother 2022; 150:112948. [PMID: 35430394 DOI: 10.1016/j.biopha.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Juan Deng
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing-Yi Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shang Ju
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Centre, China Academy of Chinese Medical Science, 100007, China.
| |
Collapse
|
25
|
Benito-Martínez S, Pérez-Köhler B, Rodríguez M, Izco JM, Recalde JI, Pascual G. Wound Healing Modulation through the Local Application of Powder Collagen-Derived Treatments in an Excisional Cutaneous Murine Model. Biomedicines 2022; 10:960. [PMID: 35625698 PMCID: PMC9138686 DOI: 10.3390/biomedicines10050960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Wound healing includes dynamic processes grouped into three overlapping phases: inflammatory, proliferative, and maturation/remodeling. Collagen is a critical component of a healing wound and, due to its properties, is of great interest in regenerative medicine. This preclinical study was designed to compare the effects of a new collagen-based hydrolysate powder on wound repair to a commercial non-hydrolysate product, in a murine model of cutaneous healing. Circular excisional defects were created on the dorsal skin of Wistar rats (n = 36). Three study groups were established according to the treatment administered. Animals were euthanized after 7 and 18 days. Morphometric and morphological studies were performed to evaluate the healing process. The new collagen treatment led to the smallest open wound area throughout most of the study. After seven days, wound morphometry, contraction, and epithelialization were similar in all groups. Treated animals showed reduced granulation tissue formation and fewer inflammatory cells, and induction of vasculature with respect to untreated animals. After 18 days, animals treated with the new collagen treatment showed accelerated wound closure, significantly increased epithelialization, and more organized repair tissue. Our findings suggest that the new collagen treatment, compared to the untreated control group, produces significantly faster wound closure and, at the same time, promotes a slight progression of the reparative process compared with the rest of the groups.
Collapse
Affiliation(s)
- Selma Benito-Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bárbara Pérez-Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Marta Rodríguez
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | | | | | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
26
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
27
|
Zhang H, Zhang M, Wang X, Zhang M, Wang X, Li Y, Cui Z, Chen X, Han Y, Zhao W. Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug Deliv 2022; 29:174-185. [PMID: 34978237 PMCID: PMC8725929 DOI: 10.1080/10717544.2021.2021319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With the worldwide prevalence of diabetes and considering the complicated microenvironment of diabetic wounds, the design and development of innovative multifunctional wound dressing materials are much wanted for the treatment of hard-to-heal wounds in diabetic patients. In the present study, anti-inflammatory ingredients loaded with nanofibrous wound dressing materials were manufactured by a promising blend-electrospinning strategy, and their capability for treating the diabetic wound was also systematically explored. A polymer blend consisting of Chitosan (CS) and polyvinyl alcohol (PVA) was electrospun into CS-PVA nanofibrous mats as control groups. In the meanwhile, a bioactive ingredient of Chinese medicine Pulsatilla, anemoside B4(ANE), with different contents were loaded into the electrospinning solution to construct CS-PVA-ANE nanofibrous mats. The developed CS-PVA-ANE wound dressing materials exhibited multifunctional properties including prominent water absorption, biomimetic elastic mechanical properties, and sustained ANE releasing behavior, as well as outstanding hemostatic properties. The in vitro studies showed that the CS-PVA-ANE nanofiber mats could significantly suppress lipopolysaccharide (LPS)-stimulated differentiation of pro-inflammatory (M1) macrophage subsets, and notably reduce the reactive oxygen species (ROS) generation, as well as obviously decrease inflammatory cytokine release. The in vivo animal studies showed that the CS-PVA-ANE nanofiber mats promoted the healing of diabetic wounds by significantly enhancing wound closure rates, accelerating excellent angiogenesis, promoting re-epithelization and collagen matrix deposition throughout all stages of wound healing. The present study demonstrated that CS-PVA-ANE nanofiber mats could effectively shorten the wound-healing time by inhibiting inflammatory activity, which makes them promising candidates for the treatment of hard-to-heal wounds caused by diabetes.
Collapse
Affiliation(s)
- Hao Zhang
- Qingdao University Medical College, Qingdao, China
| | | | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mi Zhang
- Qingdao University Medical College, Qingdao, China
| | - Xuelian Wang
- Qingdao University Medical College, Qingdao, China
| | - Yiyang Li
- Qingdao University Medical College, Qingdao, China
| | - Zhuoer Cui
- Qingdao University Medical College, Qingdao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yantao Han
- Qingdao University Medical College, Qingdao, China
| | - Wenwen Zhao
- Qingdao University Medical College, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
28
|
Jia Y, Zhang X, Yang W, Lin C, Tao B, Deng Z, Gao P, Yang Y, Cai K. A pH-responsiveness injectable hyaluronic acid hydrogel towards regulation of inflammation and remodeling of extracellular matrix for diabetic wound. J Mater Chem B 2022; 10:2875-2888. [DOI: 10.1039/d2tb00064d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes is a universal disease in the world. A critical mediator of proper wound healing is the production, assembly, and remodeling of the ECM by fibroblasts, but in the wound...
Collapse
|
29
|
Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett 2021; 50:128311. [PMID: 34438011 DOI: 10.1016/j.bmcl.2021.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Poor wound healing is a common complication in diabetic patients. It often leads to intractable infections and lower limb amputations and is associated with cardiovascular morbidity and mortality. NcRNAs, which can regulate gene expression, have emerged as important regulators of various physiological processes. Herein, we summarize the diverse roles of ncRNAs in the key stages of diabetic wound healing, including inflammation, angiogenesis, re-epithelialization, and extracellular matrix remodeling. Meanwhile, the potential use of ncRNAs as novel therapeutic targets for wound healing in diabetic patients is also discussed. In addition, we summarize the role of RNA-binding proteins (RBPs) in the regulation of gene expression and signaling pathways during skin repair, which may provide opportunities for therapeutic intervention for this potentially devastating disease. However, so far, research on the modulated drug based on ncRNAs that lead to significantly altered gene expression in diabetic patients is scarce. We have compiled some drugs that may be able to modulate ncRNAs, which significantly regulate the gene expression in diabetic patients.
Collapse
Affiliation(s)
- Xue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, People's Republic of China.
| |
Collapse
|
30
|
Shao PL, Liao JD, Wu SC, Chen YH, Wong TW. Microplasma Treatment versus Negative Pressure Therapy for Promoting Wound Healing in Diabetic Mice. Int J Mol Sci 2021; 22:10266. [PMID: 34638608 PMCID: PMC8508803 DOI: 10.3390/ijms221910266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
The delayed healing response of diabetic wounds is a major challenge for treatment. Negative pressure wound therapy (NPWT) has been widely used to treat chronic wounds. However, it usually requires a long treatment time and results in directional growth of wound healing skin tissue. We investigated whether nonthermal microplasma (MP) treatment can promote the healing of skin wounds in diabetic mice. Splint excision wounds were created on diabetic mice, and various wound healing parameters were compared among MP treatment, NPWT, and control groups. Quantitative analysis of the re-epithelialization percentage by detecting Ki67 and DSG1 expression in the extending epidermal tongue (EET) of the wound area and the epidermal proliferation index (EPI) was subsequently performed. Both treatments promoted wound healing by enhancing wound closure kinetics and wound bed blood flow; this was confirmed through histological analysis and optical coherence tomography. Both treatments also increased Ki67 and DSG1 expression in the EET of the wound area and the EPI to enhance re-epithelialization. Increased Smad2/3/4 mRNA expression was observed in the epidermis layer of wounds, particularly after MP treatment. The results suggest that the Smad-dependent transforming growth factor β signaling contributes to the enhancement of re-epithelialization after MP treatment with an appropriate exposure time. Overall, a short-term MP treatment (applied for 30 s twice a day) demonstrated comparable or better efficacy to conventional NPWT (applied for 4 h once a day) in promoting wound healing in diabetic mice. Thus, MP treatment exhibits promise for treating diabetic wounds clinically.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan;
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Yu-Hsing Chen
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan;
| |
Collapse
|
31
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
32
|
Mouritzen MV, Petkovic M, Qvist K, Poulsen SS, Alarico S, Leal EC, Dalgaard LT, Empadinhas N, Carvalho E, Jenssen H. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Mol Ther Methods Clin Dev 2021; 20:726-739. [PMID: 33738327 PMCID: PMC7940703 DOI: 10.1016/j.omtm.2021.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.
Collapse
Affiliation(s)
| | - Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Katrine Qvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Steen S. Poulsen
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
33
|
Xiang G, Liu K, Wang T, Hu X, Wang J, Gao Z, Lei W, Feng Y, Tao TH. In Situ Regulation of Macrophage Polarization to Enhance Osseointegration Under Diabetic Conditions Using Injectable Silk/Sitagliptin Gel Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002328. [PMID: 33552858 PMCID: PMC7856907 DOI: 10.1002/advs.202002328] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/13/2020] [Indexed: 05/03/2023]
Abstract
As a chronic inflammatory disease, diabetes mellitus creates a proinflammatory microenvironment around implants, resulting in a high rate of implant loosening or failure in osteological therapies. In this study, macroporous silk gel scaffolds are injected at the bone-implant interface for in situ release of sitagliptin that can regulate macrophage response to create a prohealing microenvironment in diabetes mellitus disease. Notably, it is discovered that sitagliptin induces macrophage polarization to the M2 phenotype and alleviates the impaired behaviors of osteoblasts on titanium (Ti) implants under diabetic conditions in a dose-dependent manner. The silk gel scaffolds loaded with sitagliptin elicite a stronger recruitment of M2 macrophages to the sites of Ti implants and a significant promotion of osteointegration, as compared to oral sitagliptin administration. The results suggest that injectable silk/sitagliptin gel scaffolds can be utilized to modulate the immune responses at the bone-implant interface, thus enhancing bone regeneration required for successful implantation of orthopedic and dental devices in diabetic patients.
Collapse
Affiliation(s)
- Geng Xiang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Keyin Liu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Tianji Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaofan Hu
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Jing Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Zhiheng Gao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Wei Lei
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Yafei Feng
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute of Brain‐Intelligence TechnologyZhangjiang LaboratoryShanghai200031China
- Shanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai200031China
| |
Collapse
|
34
|
Diabetes Induces a Transcriptional Signature in Bone Marrow-Derived CD34 + Hematopoietic Stem Cells Predictive of Their Progeny Dysfunction. Int J Mol Sci 2021; 22:ijms22031423. [PMID: 33572602 PMCID: PMC7866997 DOI: 10.3390/ijms22031423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) homeostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an important role in the development of CV disease, and increased susceptibility to infections. Here, we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of patients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes, and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the same biological processes, a consistent number of inflammatory genes coding for chemokines and cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in HSPCs, which are potentially responsible of progeny dysfunction.
Collapse
|
35
|
Ejiugwo M, Rochev Y, Gethin G, O'Connor G. Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing. Tissue Eng Part C Methods 2021; 27:77-88. [PMID: 33406980 DOI: 10.1089/ten.tec.2020.0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bioengineering of skin has been significantly explored, ranging from the use of traditional cell culture systems to the most recent organ-on-a-chip (OoC) technology that permits skin modeling on physiological scales among other benefits. This article presents key considerations for developing physiologically relevant immunocompetent diabetic foot ulcer (DFU) models. Diabetic foot ulceration affects hundreds of millions of individuals globally, especially the elderly, and constitutes a major socioeconomic burden. When DFUs are not treated and managed in a timely manner, 15-50% of patients tend to undergo partial or complete amputation of the affected limb. Consequently, at least 40% of such patients die within 5 years postamputation. Currently, therapeutic strategies are actively sought and developed. However, present-day preclinical platforms (animals and in vitro models) are not robust enough to provide reliable data for clinical trials. Insights from published works on immunocompetent skin-on-a-chip models and bioengineering considerations, presented in this article, can inform researchers on how to develop robust OoC models for testing topical therapies such as growth factor-based therapies for DFUs. We propose that immunocompetent DFU-on-a-chip models should be bioengineered using diseased cells derived from individuals; in particular, the pathophysiological contribution of macrophages in diabetic wound healing, along with the typical fibroblasts and keratinocytes, needs to be recapitulated. The ideal model should consist of the following components: diseased cells embedded in reproducible scaffolds, which permit endogenous "diseased" extracellular matrix deposition, and the integration of the derived immunocompetent DFU model onto a microfluidic platform. The proposed DFU platforms will eventually facilitate reliable and robust drug testing of wound healing therapeutics, coupled with reduced clinical trial failure rates. Impact statement Current animal and cell-based systems are not physiologically relevant enough to retrieve reliable results for clinical translation of diabetic foot ulcer (DFU) therapies. Organ-on-a-chip (OoC) technology offers desirable features that could finally enable the vision of modeling DFU for pathophysiological studies and drug testing at a microscale. This article brings together the significant recent findings relevant to developing a minimally functional immunocompetent DFU-on-a-chip model, as wound healing cannot occur without a proper functioning immune response. It looks feasible in the future to recapitulate the stagnant inflammation in DFU (thought to impede wound healing) using OoC, diseased cells, and an endogenously produced extracellular matrix.
Collapse
Affiliation(s)
- Mirella Ejiugwo
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| | - Yury Rochev
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| | - Georgina Gethin
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Nursing and Midwifery, National University of Ireland Galway, Galway City, Ireland
| | - Gerard O'Connor
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| |
Collapse
|
36
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
37
|
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells 2020; 10:E51. [PMID: 33396359 PMCID: PMC7824389 DOI: 10.3390/cells10010051] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a pivotal role in the initiation, development and resolution of inflammation following insult or damage to organs. The heart is a vital organ which supplies nutrients and oxygen to all parts of the body. Heart failure (HF) has been conventionally described as a disease associated with cardiac tissue damage caused by systemic inflammation, arrhythmia and conduction defects. Cardiac inflammation and subsequent tissue damage is orchestrated by the infiltration and activation of various immune cells including neutrophils, monocytes, macrophages, eosinophils, mast cells, natural killer cells, and T and B cells into the myocardium. After tissue injury, monocytes and tissue-resident macrophages undergo marked phenotypic and functional changes, and function as key regulators of tissue repair, regeneration and fibrosis. Disturbance in resident macrophage functions such as uncontrolled production of inflammatory cytokines, growth factors and inefficient generation of an anti-inflammatory response or unsuccessful communication between macrophages and epithelial and endothelial cells and fibroblasts can lead to aberrant repair, persistent injury, and HF. Therefore, in this review, we discuss the role of cardiac macrophages on cardiac inflammation, tissue repair, regeneration and fibrosis.
Collapse
Affiliation(s)
- William P. Lafuse
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
| |
Collapse
|
38
|
Corduas F, Mancuso E, Lamprou DA. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
40
|
Hu J, Zhang L, Liechty C, Zgheib C, Hodges MM, Liechty KW, Xu J. Long Noncoding RNA GAS5 Regulates Macrophage Polarization and Diabetic Wound Healing. J Invest Dermatol 2020; 140:1629-1638. [PMID: 32004569 PMCID: PMC7384923 DOI: 10.1016/j.jid.2019.12.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
A central feature of diabetic (Db) wounds is the persistence of chronic inflammation, which is partly due to the prolonged presence of proinflammatory (M1) macrophages. Using in vivo and in vitro analyses, we have tested the hypothesis that long noncoding RNA GAS5 is dysregulated in Db wounds. We have assessed the contribution of GAS5 to the M1 macrophage phenotype, as well as the functional consequences of knocking down its expression. We found that expression of GAS5 is increased significantly in Db wounds and in cells isolated from Db wounds. Hyperglycemia induced GAS5 expression in macrophages in vitro. Overexpression of GAS5 in vitro promoted macrophage polarization toward an M1 phenotype by upregulating signal transducer and activator of transcription 1. Of most significance in our judgment, GAS5 loss-of-function enhanced Db wound healing. These data indicate that the relative level of long noncoding RNA GAS5 in wounds plays a key role in the wound healing response. Reductions in the levels of GAS5 in wounds appeared to enhance healing by promoting transition of M1 macrophages to M2 macrophages. Thus, our results suggest that targeting long noncoding RNA GAS5 may provide a therapeutic intervention for correcting impaired Db wound healing.
Collapse
Affiliation(s)
- Junyi Hu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Liping Zhang
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Cole Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Maggie M Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado.
| |
Collapse
|
41
|
Cifuentes A, Gómez-Gil V, Ortega MA, Asúnsolo Á, Coca S, Román JS, Álvarez-Mon M, Buján J, García-Honduvilla N. Chitosan hydrogels functionalized with either unfractionated heparin or bemiparin improve diabetic wound healing. Biomed Pharmacother 2020; 129:110498. [PMID: 32768973 DOI: 10.1016/j.biopha.2020.110498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus causes severe impairment in the cutaneous wound healing process, which has led to extensive research striving to establish new treatments. In this work, we describe the effects of chitosan hydrogels functionalized with either unfractionated heparin or bemiparin (a low molecular weight heparin, LMWH) as topical treatments in an experimental diabetic wound healing model. Although wound morphometry showed similar values at the end of the study, microscopic analyses revealed impaired healing in diabetic animals in terms of inflammation and tissue formation. However, both types of loaded hydrogels accelerated inflammation resolution and improved the epithelialization process, while showing a neodermal thickness similar to that of nondiabetic animals. Immunohistochemistry analyses revealed an intermediate response in macrophage evolution between diabetic and nondiabetic controls in the treated groups, as well as enhanced collagenization and myofibroblast progression patterns. However, these changes were not accompanied by differences among groups in collagen I, III and TGF-β1 gene expression. Functionalized hydrogels improved diabetes-associated impaired wound healing, thus promoting the progression of the process and inducing the formation of high-quality cicatricial tissue. Although the beneficial healing effect observed after topical treatment with chitosan hydrogels loaded with bemiparin or unfractionated heparin was similar, the chitosan hydrogel loaded with bemiparin is the preferred choice as it exhibited high-quality tissue in the neoformed dermal tissue.
Collapse
Affiliation(s)
- Alberto Cifuentes
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Verónica Gómez-Gil
- Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.
| | - Ángel Asúnsolo
- Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain; Immune System Diseases-Rheumatology, Oncology and Internal Medicine Service, CIBEREHD, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Madrid, Spain; Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
42
|
Novel fibrin-fibronectin matrix accelerates mice skin wound healing. Bioact Mater 2020; 5:949-962. [PMID: 32671290 PMCID: PMC7334397 DOI: 10.1016/j.bioactmat.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023] Open
Abstract
Plasma fibrinogen (F1) and fibronectin (pFN) polymerize to form a fibrin clot that is both a hemostatic and provisional matrix for wound healing. About 90% of plasma F1 has a homodimeric pair of γ chains (γγF1), and 10% has a heterodimeric pair of γ and more acidic γ' chains (γγ'F1). We have synthesized a novel fibrin matrix exclusively from a 1:1 (molar ratio) complex of γγ'F1 and pFN in the presence of highly active thrombin and recombinant Factor XIII (rFXIIIa). In this matrix, the fibrin nanofibers were decorated with pFN nanoclusters (termed γγ'F1:pFN fibrin). In contrast, fibrin made from 1:1 mixture of γγF1 and pFN formed a sporadic distribution of "pFN droplets" (termed γγF1+pFN fibrin). The γγ'F1:pFN fibrin enhanced the adhesion of primary human umbilical vein endothelium cells (HUVECs) relative to the γγF1+FN fibrin. Three dimensional (3D) culturing showed that the γγ'F1:pFN complex fibrin matrix enhanced the proliferation of both HUVECs and primary human fibroblasts. HUVECs in the 3D γγ'F1:pFN fibrin exhibited a starkly enhanced vascular morphogenesis while an apoptotic growth profile was observed in the γγF1+pFN fibrin. Relative to γγF1+pFN fibrin, mouse dermal wounds that were sealed by γγ'F1:pFN fibrin exhibited accelerated and enhanced healing. This study suggests that a 3D pFN presentation on a fibrin matrix promotes wound healing.
Collapse
|
43
|
Joshi N, Pohlmeier L, Ben-Yehuda Greenwald M, Haertel E, Hiebert P, Kopf M, Werner S. Comprehensive characterization of myeloid cells during wound healing in healthy and healing-impaired diabetic mice. Eur J Immunol 2020; 50:1335-1349. [PMID: 32306381 PMCID: PMC7496577 DOI: 10.1002/eji.201948438] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023]
Abstract
Wound healing involves the concerted action of various lymphoid and in particular myeloid cell populations. To characterize and quantitate different types of myeloid cells and to obtain information on their kinetics during wound healing, we performed multiparametric flow cytometry analysis. In healthy mice, neutrophil numbers increased early after injury and returned to near basal levels after completion of healing. Macrophages, monocyte‐derived dendritic cells (DCs), and eosinophils were abundant throughout the healing phase, in particular in early wounds, and Langerhans cells increased after wounding and remained elevated after epithelial closure. Major differences in healing‐impaired diabetic mice were a much higher percentage of immune cells in late wounds, mainly as a result of neutrophil, macrophage, and monocyte persistence; reduced numbers and percentages of macrophages and monocyte‐derived DCs in early wounds; and of Langerhans cells, conventional DCs, and eosinophils throughout the healing process. Finally, unbiased cluster analysis (PhenoGraph) identified a large number of different clusters of myeloid cells in skin wounds. These results provide insight into myeloid cell diversity and dynamics during wound repair and highlight the abnormal inflammatory response associated with impaired healing.
Collapse
Affiliation(s)
- Natasha Joshi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Eric Haertel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Role of microRNA-21 and Its Underlying Mechanisms in Inflammatory Responses in Diabetic Wounds. Int J Mol Sci 2020; 21:ijms21093328. [PMID: 32397166 PMCID: PMC7247578 DOI: 10.3390/ijms21093328] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
A central feature of diabetic wounds is the persistence of chronic inflammation, which is partly due to the prolonged presence of pro-inflammatory (M1) macrophages in diabetic wounds. Persistence of the M1 macrophage phenotype and failure to transition to the regenerative or pro-remodeling (M2) macrophage phenotype plays an indispensable role in diabetic wound impairment; however, the mechanism underlying this relationship remains unclear. Recently, microRNAs have been shown to provide an additional layer of regulation of gene expression. In particular, microRNA-21 (miR-21) is essential for an inflammatory immune response. We hypothesize that miR-21 plays a role in regulating inflammation by promoting M1 macrophage polarization and the production of reactive oxygen species (ROS). To test our hypothesis, we employed an in vivo mouse skin wound model in conjunction with an in vitro mouse model to assess miR-21 expression and macrophage polarization. First, we found that miR-21 exhibits a distinct expression pattern in each phase of healing in diabetic wounds. MiR-21 abundance was higher during early and late phases of wound repair in diabetic wounds, while it was significantly lower in the middle phase of wounding (at days 3 and 7 following wounding). In macrophage cells, M1 polarized macrophages exhibited an upregulation of miR-21, as well as the M1 and pro-inflammatory markers IL-1b, TNFa, iNos, IL-6, and IL-8. Overexpression of miR-21 in macrophage cells resulted in an upregulation of miR-21 and also increased expression of the M1 markers IL-1b, TNFa, iNos, and IL-6. Furthermore, hyperglycemia induced NOX2 expression and ROS production through the HG/miR-21/PI3K/NOX2/ROS signaling cascade. These findings provide evidence that miR-21 is involved in the regulation of inflammation. Dysregulation of miR-21 may explain the abnormal inflammation and persistent M1 macrophage polarization seen in diabetic wounds.
Collapse
|
45
|
Hoyer FF, Zhang X, Coppin E, Vasamsetti SB, Modugu G, Schloss MJ, Rohde D, McAlpine CS, Iwamoto Y, Libby P, Naxerova K, Swirski FK, Dutta P, Nahrendorf M. Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation 2020; 142:244-258. [PMID: 32316750 DOI: 10.1161/circulationaha.120.046038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5Cre Egfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5Cre Egfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5Cre Egfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5Cre Egfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.
Collapse
Affiliation(s)
- Friedrich Felix Hoyer
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.).,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (X.Z.)
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Ganesh Modugu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Maximilian J Schloss
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - David Rohde
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Cameron S McAlpine
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (P.L.)
| | - Kamila Naxerova
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Würzburg, Germany (M.N.)
| |
Collapse
|
46
|
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res 2020; 126:789-806. [PMID: 32163341 PMCID: PMC7255054 DOI: 10.1161/circresaha.119.312321] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Michael E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Department of Medicine, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| |
Collapse
|
47
|
Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization. J Surg Res 2020; 246:213-223. [DOI: 10.1016/j.jss.2019.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
48
|
Liarte S, Bernabé-García Á, Nicolás FJ. Human Skin Keratinocytes on Sustained TGF-β Stimulation Reveal Partial EMT Features and Weaken Growth Arrest Responses. Cells 2020; 9:cells9010255. [PMID: 31968599 PMCID: PMC7017124 DOI: 10.3390/cells9010255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Defects in wound closure can be related to the failure of keratinocytes to re-epithelize. Potential mechanisms driving this impairment comprise unbalanced cytokine signaling, including Transforming Growth Factor-β (TFG-β). Although the etiologies of chronic wound development are known, the relevant molecular events are poorly understood. This lack of insight is a consequence of ethical issues, which limit the available evidence to humans. In this work, we have used an in vitro model validated for the study of epidermal physiology and function, the HaCaT cells to provide a description of the impact of sustained exposure to TGF-β. Long term TGF-β1 treatment led to evident changes, HaCaT cells became spindle-shaped and increased in size. This phenotype change involved conformational re-arrangements for actin filaments and E-Cadherin cell-adhesion structures. Surprisingly, the signs of consolidated epithelial-to-mesenchymal transition were absent. At the molecular level, modified gene expression and altered protein contents were found. Non-canonical TGF-β pathway elements did not show relevant changes. However, R-Smads experienced alterations best characterized by decreased Smad3 levels. Functionally, HaCaT cells exposed to TGF-β1 for long periods showed cell-cycle arrest. Yet, the strength of this restraint weakens the longer the treatment, as revealed when challenged by pro-mitogenic factors. The proposed setting might offer a useful framework for future research on the mechanisms driving wound chronification.
Collapse
|
49
|
Soto M, Gaffney KJ, Rodgers KE. Improving the Innate Immune Response in Diabetes by Modifying the Renin Angiotensin System. Front Immunol 2019; 10:2885. [PMID: 31921148 PMCID: PMC6914815 DOI: 10.3389/fimmu.2019.02885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Patients with Type 2 Diabetes Mellitus (T2DM) suffer from a higher incidence and severity of pulmonary infections. This is likely due to immune impairment and structural abnormalities caused by T2DM-induced oxidative stress (OS) and chronic inflammation. Modulation of the Renin Angiotensin System (RAS) through blockade of the actions of angiotensin II (AII), or inducing the protective pathway, has the potential to reduce these pathological pathways. The effects of Angiotensin 1–7 [A(1-7)] and NorLeu3-A(1-7) [NorLeu], ligands of the protective RAS, on the innate immune response were evaluated in the db/db mouse model of T2DM. Only NorLeu treatment reduced the structural pathologies in the lung caused by T2DM. A decreased in bactericidal activity and phagocytosis in diabetic animals was also observed; both A(1-7) and NorLeu treatment restored these functions. Myeloid progenitor CFUs were reduced and neutrophil/progenitor OS was increased in saline-treated db/db mice, and was reversed by A(1-7) and NorLeu treatment. These results demonstrate the adverse effects of diabetes on factors that contribute to pulmonary infections and the therapeutic potential of protective RAS peptides. Overall, RAS-modification may be a viable therapeutic target to treat diabetic complications that are not addressed by glucose lowering drugs.
Collapse
Affiliation(s)
- Maira Soto
- Pharmacology Department, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Kevin J Gaffney
- Pharmacology Department, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Kathleen E Rodgers
- Pharmacology Department, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
50
|
Blockade of receptor for advanced glycation end products improved essential response of inflammation in diabetic wound healing. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|