1
|
Parente DB, de Melo Malta FCM, de Souza Cravo R, Luiz RR, Rotman V, Perez RM, Rodrigues RS. Multiparametric magnetic resonance imaging of the liver and spleen in Gaucher disease. Abdom Radiol (NY) 2024; 49:3069-3077. [PMID: 38642092 DOI: 10.1007/s00261-024-04293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE To assess liver and spleen characteristics of a population with Gaucher disease (GD) using multiparametric MRI and MR elastography (MRE) for evaluation of diffuse liver and spleen disease, which includes liver fat fraction, liver and spleen volume and iron deposition, and liver and spleen stiffness correlated with DS3 Severity Scoring System for Gaucher disease (GD-DS3). METHODS We prospectively evaluated 41 patients with type 1 Gaucher disease using a 3.0 T MRI and MRE between January 2019 and February 2020. Clinical, laboratory, and imaging data was collected. Mann-Whitney, Kruskal-Wallis, and Spearman's correlation were applied to evaluate liver and spleen MRI and MRE, clinical and laboratory variables, and GD-DS3. ERT and SRT treatment groups were compared. RESULTS Hepatomegaly was seen in 15% and splenomegaly in 42% of the population. Moderate and strong and correlations were found between liver and spleen iron overload (rho = 0.537; p = 0.002); between liver and spleen volume (rho = 0.692, p < 0.001) and between liver and spleen stiffness (rho = 0.453, p = 0.006). Moderate correlations were found between liver stiffness and GD-DS3 (rho = 0.559; p < 0.001) and between splenic volume and GD-DS3 (rho = 0.524; p = 0.001). CONCLUSION The prevalence of hepatosplenomegaly, liver fibrosis, and liver iron overload in treated patients with GD is low, which may be related to the beneficial effect of treatment. Liver MRE and splenic volume correlate with severity score and may be biomarkers of disease severity.
Collapse
Affiliation(s)
- Daniella Braz Parente
- D'Or Institute for Research and Education, Rua Diniz Cordeiro, 30, 3º Andar. Botafogo., Rio de Janeiro, RJ, CEP 22281-100, Brazil.
- Federal University of Rio de Janeiro, Cidade Universitária, Av. Professor Rodolpho Paulo Rocco 255. Ilha Do Fundão., Rio de Janeiro, RJ, CEP 21941-913, Brazil.
| | | | - Renata de Souza Cravo
- Arthur de Siqueira Cavalcanti State Institute of Hematology: Hospital Hemorio, R. Frei Caneca, 8. Centro., Rio de Janeiro, RJ, CEP 20211-030, Brazil
| | - Ronir Raggio Luiz
- Instituto de Estudos Em Saúde Coletiva, Federal University of Rio de Janeiro, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, CEP 21941-592, Brazil
| | - Vivian Rotman
- Federal University of Rio de Janeiro, Cidade Universitária, Av. Professor Rodolpho Paulo Rocco 255. Ilha Do Fundão., Rio de Janeiro, RJ, CEP 21941-913, Brazil
| | - Renata Mello Perez
- D'Or Institute for Research and Education, Rua Diniz Cordeiro, 30, 3º Andar. Botafogo., Rio de Janeiro, RJ, CEP 22281-100, Brazil
- Federal University of Rio de Janeiro, Cidade Universitária, Av. Professor Rodolpho Paulo Rocco 255. Ilha Do Fundão., Rio de Janeiro, RJ, CEP 21941-913, Brazil
| | - Rosana Souza Rodrigues
- D'Or Institute for Research and Education, Rua Diniz Cordeiro, 30, 3º Andar. Botafogo., Rio de Janeiro, RJ, CEP 22281-100, Brazil
- Federal University of Rio de Janeiro, Cidade Universitária, Av. Professor Rodolpho Paulo Rocco 255. Ilha Do Fundão., Rio de Janeiro, RJ, CEP 21941-913, Brazil
| |
Collapse
|
2
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
3
|
Laffer B, Lenders M, Ehlers-Jeske E, Heidenreich K, Brand E, Köhl J. Complement activation and cellular inflammation in Fabry disease patients despite enzyme replacement therapy. Front Immunol 2024; 15:1307558. [PMID: 38304433 PMCID: PMC10830671 DOI: 10.3389/fimmu.2024.1307558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Defective α-galactosidase A (AGAL/GLA) due to missense or nonsense mutations in the GLA gene results in accumulation of the glycosphingolipids globotriaosylceramide (Gb3) and its deacylated derivate globotriaosylsphingosine (lyso-Gb3) in cells and body fluids. The aberrant glycosphingolipid metabolism leads to a progressive lysosomal storage disorder, i. e. Fabry disease (FD), characterized by chronic inflammation leading to multiorgan damage. Enzyme replacement therapy (ERT) with agalsidase-alfa or -beta is one of the main treatment options facilitating cellular Gb3 clearance. Proteome studies have shown changes in complement proteins during ERT. However, the direct activation of the complement system during FD has not been explored. Here, we demonstrate strong activation of the complement system in 17 classical male FD patients with either missense or nonsense mutations before and after ERT as evidenced by high C3a and C5a serum levels. In contrast to the strong reduction of lyso-Gb3 under ERT, C3a and C5a markedly increased in FD patients with nonsense mutations, most of whom developed anti-drug antibodies (ADA), whereas FD patients with missense mutations, which were ADA-negative, showed heterogenous C3a and C5a serum levels under treatment. In addition to the complement activation, we found increased IL-6, IL-10 and TGF-ß1 serum levels in FD patients. This increase was most prominent in patients with missense mutations under ERT, most of whom developed mild nephropathy with decreased estimated glomerular filtration rate. Together, our findings demonstrate strong complement activation in FD independent of ERT therapy, especially in males with nonsense mutations and the development of ADAs. In addition, our data suggest kidney cell-associated production of cytokines, which have a strong potential to drive renal damage. Thus, chronic inflammation as a driver of organ damage in FD seems to proceed despite ERT and may prove useful as a target to cope with progressive organ damage.
Collapse
Affiliation(s)
- Björn Laffer
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Malte Lenders
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Eva Brand
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Zhou S, Wang Z, Gao L, Chen M, Duan Y, Zhou P, Liu Z, Wu C, Zhang J, Zhu Q. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int Immunopharmacol 2023; 125:111112. [PMID: 37948857 DOI: 10.1016/j.intimp.2023.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
5
|
Jodele S, Mizuno K, Sabulski A, Vinks AA. Adopting Model-Informed Precision-Dosing for Eculizumab in Transplant Associated-Thrombotic Microangiopathy to Gene Therapies. Clin Pharmacol Ther 2023; 114:511-514. [PMID: 37387481 DOI: 10.1002/cpt.2966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kana Mizuno
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anthony Sabulski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Pandey MK. Uncovering the Lipid Web: Discovering the Multifaceted Roles of Lipids in Human Diseases and Therapeutic Opportunities. Int J Mol Sci 2023; 24:13223. [PMID: 37686028 PMCID: PMC10487860 DOI: 10.3390/ijms241713223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Lipids, characterized by their hydrophobic nature, encompass a wide range of molecules with distinct properties and functions [...].
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC-7016, Suit R1.019A, Cincinnati, OH 45229, USA; or ; Tel.: +1-513-803-1694; Fax: +1-513-636-1321
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
8
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
9
|
Hemostatic Abnormalities in Gaucher Disease: Mechanisms and Clinical Implications. J Clin Med 2022; 11:jcm11236920. [PMID: 36498496 PMCID: PMC9735904 DOI: 10.3390/jcm11236920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Gaucher disease (GD) is a rare inherited lysosomal metabolism disorder, characterized by an accumulation into lysosomes of reticuloendothelial cells, especially in the bone marrow, spleen, and liver of β-glucosylceramide and glucosyl sphingosine, which is its deacylated product. Impaired storage is responsible for a chronic inflammatory state at the sites of accumulation and together represents the pathophysiological cause of GD. GD is a progressive, multi-organ chronic disorder. Type 1 GD is the most prevalent form, with heterogeneous multisystem involvement and different severity of symptoms at any age. Hematological involvement is consistent, and a bleeding tendency is frequent, particularly at diagnosis. Several coagulation and primary hemostasis abnormalities are observed in GD. Bleeding manifestations are rarely severe and usually mucocutaneous. Post-operative, delivery, and post-partum hemorrhages are also common. Thrombocytopenia, platelet function defects, and clotting abnormalities, alone or variably associated, contribute to increase the risk of bleeding in GD. Enzyme replacement therapy (ERT) or substrate reduction therapy (SRT) are the two specific available treatments effective in improving typical hematological symptoms and abnormalities, including those of hemostasis. However, the use of medication to potentiate hemostasis may be also useful in defined clinical situations: recent starting of ERT/SRT, surgery, delivery, and life-threatening bleeding.
Collapse
|
10
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
12
|
Pandey MK. Pre-existing humoral immune comebacks control the development of the severe form of coronavirus disease 2019 in Gaucher patients. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e96. [PMID: 35942236 PMCID: PMC9349375 DOI: 10.1002/ctd2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) and the Gaucher disease (GD) exhibit lot of resemblances in induction of innate and adaptive immune inflammation that include the immune cells activation and the massive generation of pro-inflammatory cytokines, chemokines, and growth factors, which are all critical for propagation of the disease process and the multiple organ damage. However, majority of the GD patients have not revealed the expansion of severe form of the COVID-19. This study suggests that the pre-existing humoral immunity influence the devlopment of strong network of antibodies to different structural proteins of SARS-CoV2 in GD patients with COVID-19. Such antibodies and virus proteins interaction cause the comprehensive neutralization of SARS-CoV2 and provides protection from the development of severe form of COVID-19 in GD patients. This information could be helpful for better understanding of the disease mechanism as well as the development of additional potential therapy that could stop the growth of the severe symptoms and/or death in GD patients with COVID-19.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
13
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
15
|
Verkuil F, Bosch AM, Struijs PAA, Hemke R, van den Berg JM. Inflammatory arthritis complicating galactosialidosis: a case report. BMC Rheumatol 2021; 5:41. [PMID: 34629108 PMCID: PMC8504000 DOI: 10.1186/s41927-021-00208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Galactosialidosis (GS) is a rare inherited lysosomal storage disorder (LSD) which is characterized by a defect in the lysosomal glycoprotein catabolism. We report, for the first time, the case of a child affected by GS presenting with recurrent episodes of extensive joint inflammation in both knee joints. The aim of this case-report is to describe the clinical presentation as well as the laboratory, radiologic and microscopic features of this unique presentation of GS. Furthermore, we explore inflammatory mechanisms potentially responsible for the origination of the arthritic joint pathology observed in our patient. CASE PRESENTATION We describe the rare case of a 12-year-old boy diagnosed with GS (late infantile form) who presented with multiple episodes of inflammatory arthritis involving both knees; no other joints were suspected for joint inflammation. Laboratory results did not indicate an autoimmune disorder. Synovial fluid tested negative for any bacterial infection and ruled out a malignancy and crystal-induced arthritis. Microscopic examination of the synovial tissue revealed numerous foamy macrophages with extensive vacuolization, consistent with the previous diagnosis of GS. Treatment consisted of aspiration of excessive joint fluid and subsequent intra-articular injection of triamcinolonhexacetonide with excellent but transient result. Given the evidence of storage products within macrophages of the inflamed synovial tissue and the absence of other etiological clues, GS itself was considered as the primary cause for the relapsing inflammatory joint pathology. According to the restricted data on articular manifestations in GS, to date, GS cannot be linked directly to joint inflammation. Nevertheless, in several other LSDs, the accumulation of storage material has been associated with numerous osteoimmunological changes that might play a role in the pathophysiology of arthritic processes. CONCLUSIONS We hypothesize that the articular build-up of GS storage products triggered systemic as well as local inflammatory processes, resulting in the extensive inflammatory joint pathology as observed in our patient. Future identification of other patients with GS is required to corroborate the existence of an arthritic clinical phenotype of GS and to assess the underlying pathophysiology.
Collapse
Affiliation(s)
- F Verkuil
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands. .,Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam Movement Sciences, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - A M Bosch
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Metabolic Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - P A A Struijs
- Orthopedic Surgery, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - R Hemke
- Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam Movement Sciences, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - J M van den Berg
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Parolo S, Tomasoni D, Bora P, Ramponi A, Kaddi C, Azer K, Domenici E, Neves-Zaph S, Lombardo R. Reconstruction of the Cytokine Signaling in Lysosomal Storage Diseases by Literature Mining and Network Analysis. Front Cell Dev Biol 2021; 9:703489. [PMID: 34490253 PMCID: PMC8417786 DOI: 10.3389/fcell.2021.703489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous clinical manifestations, chronic inflammation has been consistently reported for several LSDs. However, the molecular mechanisms involved in the inflammatory response are still not completely understood. In this study, we performed text-mining and systems biology analyses to investigate the inflammatory signals in three LSDs characterized by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency (ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and then built on the extracted knowledge to investigate the inflammatory signals. We found numerous transcription factors that are putative regulators of cytokine expression in a cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2 as candidate regulators of the monocyte Gaucher disease cytokine network. Overall, our results suggest the presence of a complex inflammatory signaling in LSDs involving many cellular and molecular players that could be further investigated as putative targets of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Silvia Parolo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Danilo Tomasoni
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Pranami Bora
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Alan Ramponi
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Chanchala Kaddi
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Karim Azer
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Enrico Domenici
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Susana Neves-Zaph
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Rosario Lombardo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| |
Collapse
|
17
|
Magnusen AF, Hatton SL, Rani R, Pandey MK. Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Front Neurol 2021; 12:636139. [PMID: 34239490 PMCID: PMC8259624 DOI: 10.3389/fneur.2021.636139] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder attributed to the loss of dopaminergic (DA) neurons mainly in the substantia nigra pars compacta. Motor symptoms include resting tremor, rigidity, and bradykinesias, while non-motor symptoms include autonomic dysfunction, anxiety, and sleeping problems. Genetic mutations in a number of genes (e.g., LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7) and the resultant abnormal activation of microglial cells are assumed to be the main reasons for the loss of DA neurons in PD with genetic causes. Additionally, immune cell infiltration and their participation in major histocompatibility complex I (MHCI) and/or MHCII-mediated processing and presentation of cytosolic or mitochondrial antigens activate the microglial cells and cause the massive generation of pro-inflammatory cytokines and chemokines, which are all critical for the propagation of brain inflammation and the neurodegeneration in PD with genetic and idiopathic causes. Despite knowing the involvement of several of such immune devices that trigger neuroinflammation and neurodegeneration in PD, the exact disease mechanism or the innovative biomarker that could detect disease severity in PD linked to LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7 defects is largely unknown. The current review has explored data from genetics, immunology, and in vivo and ex vivo functional studies that demonstrate that certain genetic defects might contribute to microglial cell activation and massive generation of a number of pro-inflammatory cytokines and chemokines, which ultimately drive the brain inflammation and lead to neurodegeneration in PD. Understanding the detailed involvement of a variety of immune mediators, their source, and the target could provide a better understanding of the disease process. This information might be helpful in clinical diagnosis, monitoring of disease progression, and early identification of affected individuals.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Rani
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Paediatrics of University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
18
|
Revel-Vilk S, Szer J, Zimran A. Hematological manifestations and complications of Gaucher disease. Expert Rev Hematol 2021; 14:347-354. [PMID: 33759681 DOI: 10.1080/17474086.2021.1908120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Gaucher disease (GD), although pan-ethnic and rare (common in Ashkenazi Jews), is of great importance to hematologists both for diagnosis and management. The need for increased awareness of GD is that delayed diagnosis may lead to preventable irreversible complications (mainly skeletal) or unnecessary invasive procedures (e.g. bone marrow biopsy), and the birth of another affected sibling due to lack of genetic consulting.Areas covered: The review outlines the common hematological manifestations of GD, including splenomegaly, thrombocytopenia, and anemia. Other hematological manifestations such as coagulation abnormalities, platelet dysfunction, gammopathy, and other hematological malignancies associated with GD are also discussed. Current and future treatment modalities are delineated, including enzyme replacement and substrate reduction therapy, pharmacological chaperon, and gene therapy. A literature search was conducted to identify original research articles relevant to hematology manifestations and GD published before November 2020.Expert opinion: Patients with GD should be ideally followed and treated in a center of excellence where the GD expert benefits from experienced consultants in relevant disciplines. Due to the availability of several very expensive treatment options, it is important to have an unbiased expert who can select the most suitable management for the individual patients (including withholding prescription in asymptomatic patients).
Collapse
Affiliation(s)
- Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Centre, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeff Szer
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Centre, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Grabowski GA, Antommaria AHM, Kolodny EH, Mistry PK. Gaucher disease: Basic and translational science needs for more complete therapy and management. Mol Genet Metab 2021; 132:59-75. [PMID: 33419694 PMCID: PMC8809485 DOI: 10.1016/j.ymgme.2020.12.291] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory A Grabowski
- Department of Pediatrics, University of Cincinnati College of Medicine, United States of America; Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, United States of America; Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, OH, United States of America.
| | - Armand H M Antommaria
- Department of Pediatrics, University of Cincinnati College of Medicine, United States of America; Lee Ault Carter Chair of Pediatric Ethics, Cincinnati Children's Research Foundation, Cincinnati, OH, United States of America.
| | - Edwin H Kolodny
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States of America.
| | - Pramod K Mistry
- Departments of Medicine and Pediatrics, Yale School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
20
|
Fierro L, Nesheiwat N, Naik H, Narayanan P, Mistry PK, Balwani M. Gaucher disease and SARS-CoV-2 infection: Experience from 181 patients in New York. Mol Genet Metab 2021; 132:44-48. [PMID: 33353808 PMCID: PMC7834197 DOI: 10.1016/j.ymgme.2020.12.288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 infection carries high morbidity and mortality in individuals with chronic disorders. Its impact in rare disease populations such as Gaucher disease (GD) is unknown. In GD, decreased acid β-glucosidase activity leads to the accumulation of inflammatory glycosphingolipids and chronic myeloid cell immune activation which a priori could predispose to the most severe effects of SARS-CoV-2. To evaluate the determinants of SARS-CoV-2 infection in GD, we conducted a cross-sectional study in a large cohort. 181 patients were enrolled, including 150 adults and 31 children, with a majority of patients on treatment (78%). Information on COVID-19 exposure, symptoms, and SARS-CoV-2 nucleic acid and/or antibody testing was obtained during the peak of the pandemic in the New York City metropolitan area. Forty-five adults reported a primary exposure to someone with COVID-19 and 17 (38%) of these patients reported at least one COVID-19 symptom. A subset of adults was tested (n = 88) and in this group 18% (16/88) were positive. Patients testing positive for SARS-CoV-2 had significantly more symptoms (4.4 vs 0.3, p < 0.001) than patients testing negative. Among patients who were antibody-positive, quantitative titers indicated moderate to high antibody response. In GD adults, male gender, older age, increased BMI, comorbidities, GBA genotype, prior splenectomy and treatment status were not associated with the probability of reporting symptoms or testing positive. No patient required COVID-19-specific treatments and there were no deaths. Our data suggests that GD does not confer a heightened risk for severe effects of SARS-CoV-2 infection feared based on the known chronic inflammatory state in these patients.
Collapse
Affiliation(s)
- Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Nora Nesheiwat
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Praveena Narayanan
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States of America
| | - Pramod K Mistry
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States of America
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| |
Collapse
|
21
|
Dinur T, Istaiti M, Frydman D, Becker-Cohen M, Szer J, Zimran A, Revel-Vilk S. Patient reported outcome measures in a large cohort of patients with type 1 Gaucher disease. Orphanet J Rare Dis 2020; 15:284. [PMID: 33050940 PMCID: PMC7556970 DOI: 10.1186/s13023-020-01544-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background It is now acknowledged that the input of patients
in health outcome assessment is vital to understanding the impact of diseases and interventions for those diseases. This study is the first report of patient-reported outcome measures (PROM) in a large cohort of patients with type 1 Gaucher disease (GD1) enabling us to study predictors of the reported outcomes. Method The PROM was sent via a mobile phone survey
to 405 adult patients with GD1. Demographics, clinical data, and treatment status were extracted from clinic charts. Age, sex, severity score index (SSI) at presentation and treatment status were used as variables to assess outcomes. Results A total of 192 patients with GD1 (111 females) responded (47.4% response rate), of whom 124 (64.5%) had received GD1-specific therapy. Around 40% of patients reported that GD had restricted their education/job and fun activities and were concerned about being emotional and financial burdens on others. Concerns regarding the risk of bone disease and Parkinson disease were also high (60%). The severity of GD1 (reflected by the need for GD1-specific therapy and a high SSI) was associated with GD1-related restrictions and concerns, fatigue, physical weakness, bone pain, and worry regarding the future. Conclusions The use of GD1 specific PROM highlights personal problems that are not captured by traditional outcome parameters and that need to be addressed to improve health-related quality of life. Validated PROM should be included among the outcome measures in clinical practice and future prospective studies for patients with chronic and rare diseases.
Collapse
Affiliation(s)
- Tama Dinur
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel
| | - Dafna Frydman
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel
| | - Michal Becker-Cohen
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel
| | - Jeff Szer
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Centre, P.O. Box 3235, 91031, Jerusalem, Israel. .,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
22
|
Vardi A, Ben-Dor S, Cho SM, Kalinke U, Spanier J, Futerman AH. Mice defective in interferon signaling help distinguish between primary and secondary pathological pathways in a mouse model of neuronal forms of Gaucher disease. J Neuroinflammation 2020; 17:265. [PMID: 32892753 PMCID: PMC7487497 DOI: 10.1186/s12974-020-01934-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The type 1 interferon (IFN) response is part of the innate immune response and best known for its role in viral and bacterial infection. However, this pathway is also induced in sterile inflammation such as that which occurs in a number of neurodegenerative diseases, including neuronopathic Gaucher disease (nGD), a lysosomal storage disorder (LSD) caused by mutations in GBA. METHODS Mice were injected with conduritol B-epoxide, an irreversible inhibitor of acid beta-glucosidase, the enzyme defective in nGD. MyTrMaSt null mice, where four adaptors of pathogen recognition receptors (PRRs) are deficient, were used to determine the role of the IFN pathway in nGD pathology. Activation of inflammatory and other pathways was analyzed by a variety of methods including RNAseq. RESULTS Elevation in the expression of PRRs associated with the IFN response was observed in CBE-injected mice. Ablation of upstream pathways leading to IFN production had no therapeutic benefit on the lifespan of nGD mice but attenuated neuroinflammation. Primary and secondary pathological pathways (i.e., those associated or not with mouse survival) were distinguished, and a set of ~210 genes including those related to sphingolipid, cholesterol, and lipoprotein metabolism, along with a number of inflammatory pathways related to chemokines, TNF, TGF, complement, IL6, and damage-associated microglia were classified as primary pathological pathways, along with some lysosomal and neuronal genes. CONCLUSIONS Although IFN signaling is the top elevated pathway in nGD, we demonstrate that this pathway is not related to mouse viability and is consequently defined as a secondary pathology pathway. By elimination, we defined a number of critical pathways that are directly related to brain pathology in nGD, which in addition to its usefulness in understanding pathophysiological mechanisms, may also pave the way for the development of novel therapeutic paradigms by targeting such pathways.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Soo Min Cho
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
- Current address: NuriScience Inc., Achasan-ro 320, Seoul, 05053, Republic of Korea
| | - Ulrich Kalinke
- TWINCORE-Centre for Experimental and Clinical Infection Research, Institute for Experimental Infection Research, 30625, Hanover, Germany
| | - Julia Spanier
- TWINCORE-Centre for Experimental and Clinical Infection Research, Institute for Experimental Infection Research, 30625, Hanover, Germany
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
23
|
Salah NY. Vascular endothelial growth factor (VEGF), tissue inhibitors of metalloproteinase-1 (TIMP-1) and nail fold capillaroscopy changes in children and adolescents with Gaucher disease; relation to residual disease severity. Cytokine 2020; 133:155120. [DOI: 10.1016/j.cyto.2020.155120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
|
24
|
Mistry P, Balwani M, Barbouth D, Burrow TA, Ginns EI, Goker-Alpan O, Grabowski GA, Kartha RV, Kishnani PS, Lau H, Lee CU, Lopez G, Maegawa G, Packman S, Prada C, Rosenbloom B, Lal TR, Schiffmann R, Weinreb N, Sidransky E. Gaucher disease and SARS-CoV-2 infection: Emerging management challenges. Mol Genet Metab 2020; 130:164-169. [PMID: 32471800 PMCID: PMC7211677 DOI: 10.1016/j.ymgme.2020.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Pramod Mistry
- Department of Internal Medicine and Pediatrics,Yale School of Medicine, New Haven, CT, United States of America.
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, United States of America.
| | - Deborah Barbouth
- Department of Human Genetics, University of Miami, Miller School of Medicine, United States of America.
| | - T Andrew Burrow
- Department of Human Genetics, University of Miami, Miller School of Medicine, United States of America; Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Section of Genetics and Metabolism, Little Rock, AR, United States of America.
| | - Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, Departments of Psychiatry and Neurology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America.
| | - Gregory A Grabowski
- Departments of Pediatrics, and Molecular Genetics and Biochemistry, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States of America.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America.
| | - Heather Lau
- Division of Neurogenetics, Department of Neurology, New York University, New York, NY, United States of America.
| | - Chung U Lee
- Lucile Packard Children's Hospital Stanford, Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Palo Alta, CA, United States of America.
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States of America.
| | - Gustavo Maegawa
- Division of Genetics and Metabolism, Departments of Pediatrics, Neuroscience, Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America.
| | - Seymour Packman
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, United States of America.
| | - Carlos Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| | - Barry Rosenbloom
- Cedars-Sinai Tower Hematology Oncology, Beverly Hills, CA, United States of America.
| | - Tamanna Roshan Lal
- Rare Disease Institute, Children's National Medical Center, Washington DC, United States of America.
| | - Rapheal Schiffmann
- Baylor, Scott & White Research Institute, Dallas, TX, United States of America.
| | - Neal Weinreb
- Departments of Human Genetics and Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
25
|
Pawliński Ł, Tobór E, Suski M, Biela M, Polus A, Kieć-Wilk B. Proteomic biomarkers in Gaucher disease. J Clin Pathol 2020; 74:25-29. [PMID: 32409598 DOI: 10.1136/jclinpath-2020-206580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
AIMS The research work was conducted to find new biomarkers and potential drug targets in Gaucher disease type 1 (GDt1) by analysing the serum proteins. METHODS This study was an observational, cross-sectional analysis of a group of 12 adult participants: six Gaucher disease (GD) patients and six healthy control. Fasting venous blood underwent proteomics analysis and molecular tests. Over 400 proteins were analysed, and in case of significantly different concentrations between the study and control group, we checked corresponding genes to confirm changes in their expression and consistency with protein alteration. RESULTS We found 31 proteins that significantly differed in concentration between GDt1 patients and a control group. These were mostly proteins involved in the regulation of the inflammatory processes and haemostasis. The levels of proteins such as alpha-1-acid glycoprotein 2, S100-A8/A9, adenyl cyclase-associated protein 1, haptoglobin or translationally controlled tumour protein related to inflammation process were significantly higher in GD patients than in control group, whereas the levels of some proteins such as heavy constant mu and gamma 4 or complement C3/C4 complex involved in humoral response like immunoglobulins were significantly decreased in GD patients. Alteration in two proteins concentration was confirmed in RNA analysis. CONCLUSIONS The work revealed few new targets for further investigation which may be useful in clinical practice for diagnosis, treatment and monitoring GDt1 patients.
Collapse
Affiliation(s)
- Łukasz Pawliński
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Ewa Tobór
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Maria Biela
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Beata Kieć-Wilk
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| |
Collapse
|
26
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
28
|
Lipiński P, Szymańska-Rożek P, Socha P, Tylki-Szymańska A. Controlled attenuation parameter and liver stiffness measurements using transient elastography by FibroScan in Gaucher disease. Mol Genet Metab 2020; 129:125-131. [PMID: 31704237 DOI: 10.1016/j.ymgme.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Liver involvement in Gaucher disease (GD) is a result of glucosylceramide (GL1) and its deacylated lysolipid, glucosylsphingosine (lyso-GL1) infiltration of macrophages. The long-term liver-related complications of GD could include liver fibrosis and cirrhosis. The aim of the study was to evaluate clinical utility and relevance of TE by FibroScan in GD patients by assessing two parameters: controlled attenuation parameter (CAP) and liver stiffness (LS), in regard of GD-related variables, type of GD, age of patients, enzymatic replacement therapy (ERT), and metabolic features. METHODS 59 Polish patients (55 adults, 4 children) with GD (43 patients with type 1 and 16 patients with type 3) aged 7-86 years, underwent TE by FibroScan; elevated CAP was defined as >250 dB/m and elevated LS as >7 kPa. All patients, except five patients with type 1 GD (patients' refusal), were treated by ERT. RESULTS Elevated CAP was present in 23% of GD1 patients and 19% of GD3 patients. Elevated LS was present in 21% of GD1 patients and 13% of GD3 patients. CAP was fairly, positively (ρ = 0.356) correlated with BMI. LS was fairly, positively (ρ = 0.4) correlated with patient's age, as well as the age at start of ERT (ρ = 0.326). CAP was strongly, negatively (ρ = -0.52) correlated with the age at start of ERT. LS and CAP were correlated (strongly, positively) only in GD3. CONCLUSIONS TE by FibroScan could be considered as an additional method for evaluating GD patients for non-invasive assessment of CAP and LS. The investigation of serial TE measurements in untreated as well as treated GD patients is needed to better determine whether this technology should be added to recommendations for monitoring GD patients. TE by FibroScan could be performed in GD patients with increased BMI and especially those with metabolic syndrome as they have other important risks for liver disease. After our analysis we think these risks factors are independent of GD but still very important for their overall health.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
29
|
Liver involvement in patients with Gaucher disease types I and III. Mol Genet Metab Rep 2020; 22:100564. [PMID: 32099816 PMCID: PMC7026612 DOI: 10.1016/j.ymgmr.2019.100564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background & aims Gaucher disease (GD) is a multisystemic disease. Liver involvement in GD is not well characterised and ranges from hepatomegaly to cirrhosis and hepatocellular carcinoma. We aim to describe, and assess the effect of treatment, on the hepatic phenotype of a cohort of patients with GD types I and II. Methods Retrospective study based on the review of the medical files of the Gaucher Reference Centre of the Hospital de Clínicas de Porto Alegre, Brazil. Data from all GD types I and III patients seen at the centre since 2003 were analysed. Variables were compared as pre- (“baseline”) and post-treatment (“follow-up”). Results Forty-two patients (types I: 39, III: 3; female: 22; median age: 35 y; enzyme replacement therapy: 37; substrate reduction therapy: 2; non-treated: 3; median time on treatment-MTT: 124 months) were included. Liver enzyme abnormalities, hepatomegaly, and steatosis at baseline were seen in 19/28 (68%), 28/42 (67%), and 3/38 patients (8%), respectively; at follow-up, 21/38 (55%), 15/38 (39%) and 15/38 (39%). MRI iron quantification showed overload in 7/8 patients (treated: 7; MTT: 55 months), being severe in 2/7 (treated: 2/2; MTT: 44.5 months). Eight patients had liver biopsy (treated: 6; MTT: 58 months), with fibrosis in 3 (treated: 1; time on treatment: 108 months) and steatohepatitis in 2 (treated: 2; time on treatment: 69 and 185 months). One patient developed hepatocellular carcinoma. Conclusions GD is a heterogeneous disease that causes different patterns of liver damage even during treatment. Although treatment improves the hepatocellular damage, it is associated with an increased rate of steatosis. This study highlights the importance of a follow-up of liver integrity in these patients.
Collapse
|
30
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
31
|
Ryan E, Seehra GK, Sidransky E. Mutations, modifiers and epigenetics in Gaucher disease: Blurred boundaries between simple and complex disorders. Mol Genet Metab 2019; 128:10-13. [PMID: 31474515 DOI: 10.1016/j.ymgme.2019.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Emory Ryan
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gurpreet Kaur Seehra
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Ponomarev RV, Lukina EA. [Enzyme replacement therapy in adult patients with type I Gaucher disease]. TERAPEVT ARKH 2019; 91:127-131. [PMID: 32598746 DOI: 10.26442/00403660.2019.07.000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Enzyme replacement therapy (ERT) is the standard for the treatment of Gaucher disease (GD). A lifelong intravenous administration of a recombinant analogue of human glucocerebrosidase compensates for the functional deficiency of its own enzyme. The use of ERT has changed the clinical phenotype of GD, a severe progressive disease has been turned into the status of an asymptomatic metabolic defect. At the same time, a reduced dosing ERT regimen applied in Gaucher patients who had achieved therapeutic goals has not yet been developed.
Collapse
|
33
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
34
|
Affiliation(s)
- Claudia Kemper
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD20892, USA; Institute for Systemic Inflammation Research, University of Lübeck, 23562Lübeck, Germany; School of Immunology & Microbial Sciences, King's College London, King's College London, LondonSE1 9RT, UK
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH45229, USA
| |
Collapse
|
35
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|