1
|
Liu J, Huang H, Xu P, Wang L, Liu Z, Fan Y. Damage evaluation and life prediction of pilot’s intervertebral disc based on continuum damage mechanics. INTERNATIONAL JOURNAL OF FATIGUE 2025; 193:108781. [DOI: 10.1016/j.ijfatigue.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Xing H, Li R, Huang Z, Gao Z, Mao Q, Shen Y, Huang G, Chu G, Wang Y. Engineered Cell Membrane-Coated Keratin Nanoparticles Attenuated Intervertebral Disc Degeneration by Remodeling the Disc Microenvironment. Adv Healthc Mater 2025:e2404173. [PMID: 39876590 DOI: 10.1002/adhm.202404173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling. To achieve this, salivary acid glycoengineered adipose mesenchymal stem cell membranes are used to coat keratin, a core protein for structural support and cellular protection. The synthesized cell membrane-coated keratin nanoparticles (MKNs) effectively protected mitochondrial integrity in NP cells from oxidative stress-induced damage. Moreover, MKNs modulate mitochondrial metabolism and attenuate NP cell senescence. In addition, MKNs activate integrins at the cell membrane and enhance the interactions between NP cells and ECM, resulting in increased ECM anabolism and decreased catabolism. The proposed multi-targeted strategy to block the degenerative cycle inside the disc is efficacious for treating disc degeneration and may have the potential for clinical application.
Collapse
Affiliation(s)
- Hongyuan Xing
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Run Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhongyang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yifan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guanrui Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
3
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
4
|
D’Erminio DN, Adelzadeh KA, Rosenberg AM, Wiener RJ, Torre OM, Ferreri ED, Nasser P, Costa KD, Han WM, Huang AH, Iatridis JC. Regenerative potential of mouse neonatal intervertebral disc depends on collagen crosslink density. iScience 2024; 27:110883. [PMID: 39319260 PMCID: PMC11421255 DOI: 10.1016/j.isci.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Intervertebral disc (IVD) defects heal poorly and can cause back pain and disability. We identified that IVD herniation injury heals regeneratively in neonatal mice until postnatal day 14 (p14) and shifts to fibrotic healing by p28. This age coincides with the shift in expansive IVD growth from cell proliferation to matrix elaboration, implicating collagen crosslinking. β-aminopropionitrile treatment reduced IVD crosslinking and caused fibrotic healing without affecting cell proliferation. Bulk sequencing on naive IVDs was depleted for matrix structural organization from p14 to p28 to validate the importance of crosslinking in regenerative healing. We conclude that matrix changes are key drivers in the shift to fibrotic healing, and a stably crosslinked matrix is needed for IVD regeneration.
Collapse
Affiliation(s)
- Danielle N. D’Erminio
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering, The City College of New York at CUNY, New York, NY, USA
| | - Kaya A. Adelzadeh
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Rosenberg
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J. Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M. Torre
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily D. Ferreri
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D. Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woojin M. Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - James C. Iatridis
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Sono T, Shima K, Shimizu T, Murata K, Matsuda S, Otsuki B. Regenerative therapies for lumbar degenerative disc diseases: a literature review. Front Bioeng Biotechnol 2024; 12:1417600. [PMID: 39257444 PMCID: PMC11385613 DOI: 10.3389/fbioe.2024.1417600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
This review aimed to summarize the recent advances and challenges in the field of regenerative therapies for lumbar disc degeneration. The current first-line treatment options for symptomatic lumbar disc degeneration cannot modify the disease process or restore the normal structure, composition, and biomechanical function of the degenerated discs. Cell-based therapies tailored to facilitate intervertebral disc (IVD) regeneration have been developed to restore the IVD extracellular matrix or mitigate inflammatory conditions. Human clinical trials on Mesenchymal Stem Cells (MSCs) have reported promising outcomes exhibited by MSCs in reducing pain and improving function. Nucleus pulposus (NP) cells possess unique regenerative capacities. Biomaterials aimed at NP replacement in IVD regeneration, comprising synthetic and biological materials, aim to restore disc height and segmental stability without compromising the annulus fibrosus. Similarly, composite IVD replacements that combine various biomaterial strategies to mimic the native disc structure, including organized annulus fibrosus and NP components, have shown promise. Furthermore, preclinical studies on regenerative medicine therapies that utilize cells, biomaterials, growth factors, platelet-rich plasma (PRP), and biological agents have demonstrated their promise in repairing degenerated lumbar discs. However, these therapies are associated with significant limitations and challenges that hinder their clinical translation. Thus, further studies must be conducted to address these challenges.
Collapse
Affiliation(s)
- Takashi Sono
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Shima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
7
|
Rahman T, Kibble MJ, Harbert G, Smith N, Brewer E, Schaer TP, Newell N. Comparison of four in vitro test methods to assess nucleus pulposus replacement device expulsion risk. JOR Spine 2024; 7:e1332. [PMID: 38655007 PMCID: PMC11037461 DOI: 10.1002/jsp2.1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Nucleus replacement devices (NRDs) are not routinely used in clinic, predominantly due to the risk of device expulsion. Rigorous in vitro testing may enable failure mechanisms to be identified prior to clinical trials; however, current testing standards do not specify a particular expulsion test. Multiple methods have therefore been developed, complicating comparisons between NRD designs. Thus, this study assessed the effectiveness of four previously reported expulsion testing protocols; hula-hoop (Protocol 1), adapted hula-hoop (Protocol 2), eccentric cycling (Protocol 3), and ramp to failure (Protocol 4), applied to two NRDs, one preformed and one in situ curing. Methods Nucleus material was removed from 40 bovine tail intervertebral disks. A NRD was inserted posteriorly into each cavity and the disks were subjected to one of four expulsion protocols. Results NRD response was dependent on both the NRD design and the loading protocol. Protocol 1 resulted in higher migration and earlier failure rates compared to Protocol 2 in both NRDs. The preformed NRD was more likely to migrate when protocols incorporated rotation. The NRDs had equal migration (60%) and expulsion (60%) rates when using unilateral bending and ramp testing. Combining the results of multiple tests revealed complimentary information regarding the NRD response. Conclusions Adapted hula-hoop (Protocol 2) and ramp to failure (Protocol 4), combined with fluoroscopic analysis, revealed complimentary insights regarding migration and failure risk. Therefore, when adopting the surgical approach and animal model used in this study, it is recommended that NRD performance be assessed using both a cyclic and ramp loading protocol.
Collapse
Affiliation(s)
- Tamanna Rahman
- Department of BioengineeringImperial College LondonLondonUK
- Biomechanics Group, Department of Mechanical EngineeringImperial College LondonLondonUK
| | | | | | - Nigel Smith
- Division of Surgery and Interventional ScienceUniversity College LondonStanmoreUK
| | - Erik Brewer
- Department of Biomedical EngineeringRowan UniversityGlassboroNew JerseyUSA
| | - Thomas P. Schaer
- Department of Clinical Studies New Bolton CenterUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | - Nicolas Newell
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
8
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
9
|
Wei Z, Ye H, Li Y, Li X, Liu Y, Chen Y, Yu J, Wang J, Ye X. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater 2024; 178:50-67. [PMID: 38382832 DOI: 10.1016/j.actbio.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-β1) (OHA-DA-PAM/CMP/TGF-β1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-β1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-β1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-β1), was developed to facilitate AF regeneration. The sustained release of TGF-β1 enhanced AF cell recruitment, while both TGF-β1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-β1 composite hydrogel for repairing AF defects.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaoxiao Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yi Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
10
|
Hu Y, Yang R, Liu S, Song Z, Wang H. The Emerging Roles of Nanocarrier Drug Delivery System in Treatment of Intervertebral Disc Degeneration-Current Knowledge, Hot Spots, Challenges and Future Perspectives. Drug Des Devel Ther 2024; 18:1007-1022. [PMID: 38567254 PMCID: PMC10986407 DOI: 10.2147/dddt.s448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Low back pain (LBP) is a common condition that has substantial consequences on individuals and society, both socially and economically. The primary contributor to LBP is often identified as intervertebral disc degeneration (IVDD), which worsens and leads to significant spinal problems. The conventional treatment approach for IVDD involves physiotherapy, drug therapy for pain management, and, in severe cases, surgery. However, none of these treatments address the underlying cause of the condition, meaning that they cannot fundamentally reverse IVDD or restore the mechanical function of the spine. Nanotechnology and regenerative medicine have made significant advancements in the field of healthcare, particularly in the area of nanodrug delivery systems (NDDSs). These approaches have demonstrated significant potential in enhancing the efficacy of IVDD treatments by providing benefits such as high biocompatibility, biodegradability, precise drug delivery to targeted areas, prolonged drug release, and improved therapeutic results. The advancements in different NDDSs designed for delivering various genes, cells, proteins and therapeutic drugs have opened up new opportunities for effectively addressing IVDD. This comprehensive review provides a consolidated overview of the recent advancements in the use of NDDSs for the treatment of IVDD. It emphasizes the potential of these systems in overcoming the challenges associated with this condition. Meanwhile, the insights and ideas presented in this review aim to contribute to the advancement of precise IVDD treatment using NDDSs.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Rui Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Sanmao Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
| | - Hong Wang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| |
Collapse
|
11
|
Mamdouhi T, Wang V, Echevarria AC, Katz A, Morris M, Zavurov G, Verma R. A Comprehensive Review of the Historical Description of Spine Surgery and Its Evolution. Cureus 2024; 16:e54461. [PMID: 38510905 PMCID: PMC10953613 DOI: 10.7759/cureus.54461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Major strides in the advancement of spine surgery came about in the 21st century. However, the extensive history of spine surgery can be traced back to long before this time. A clear description of the journey from a primitive yet accurate understanding of the human musculoskeletal system to today's modern aspects of spinal techniques is lacking. A narrative literature review was conducted to elucidate where spine surgery began and the techniques used that evolved over time. This review was conducted using PubMed and Google Scholar. Search terms used included "history of spine surgery," "evolution of spine surgery," "origins of spine surgery," "history of laminectomy," "history of spinal fusion," "history of lumbar interbody fusion," "minimally invasive spine surgery," and "navigation in spine surgery." We highlight the evolution of the basic understanding of anatomy and non-surgical and surgical techniques, including bracing, laminectomy, discectomy, and spinal fusion. The current evolution and integration of minimally invasive techniques, lumbar interbody fusion techniques, robotics, navigation, and motion preservation are discussed, as these are the major areas of focus for technological advancement. This review presents an overarching synopsis of the events that chronicle the progress made in spine surgery since its conception. The review uniquely contributes to the growing body of literature on the expansion of spine surgery and highlights major events in its history.
Collapse
Affiliation(s)
- Tania Mamdouhi
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Orthopedic Surgery, University of Michigan, Ann Arbor, USA
| | - Victoria Wang
- Orthopedic Surgery, University of Connecticut, Storrs, USA
| | | | - Austen Katz
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
| | - Matthew Morris
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
- Orthopedic Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
| | - Gabriel Zavurov
- Orthopedic Surgery, North Shore University Hospital, Manhasset, USA
- Orthopedic Surgery, Spine Surgery, North Shore University Hospital, Manhasset, USA
| | - Rohit Verma
- Orthopedic Surgery, Northwell Health, Manhassett, USA
- Orthopedic Surgery, Spine Surgery, North Shore University Hospital, Manhasset, USA
| |
Collapse
|
12
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
13
|
Zhou D, Liu H, Zheng Z, Wu D. Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review. Bioact Mater 2024; 31:422-439. [PMID: 37692911 PMCID: PMC10485601 DOI: 10.1016/j.bioactmat.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
15
|
Li X, Hou Q, Yuan W, Zhan X, Yuan H. Inhibition of miR-96-5p alleviates intervertebral disc degeneration by regulating the peroxisome proliferator-activated receptor γ/nuclear factor-kappaB pathway. J Orthop Surg Res 2023; 18:916. [PMID: 38041147 PMCID: PMC10691123 DOI: 10.1186/s13018-023-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD. METHODS In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling. RESULTS PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P < 0.05). Upregulation or/and activation of PPARγ inhibited IL-1β-induced the increase in inflammatory factor levels, apoptosis, degradation of the ECM, and the nuclear translocation of NF-κB (P < 0.05). MiR-96-5p was highly expressed but PPARγ was lowly expressed in IDD, while knockdown of PPARγ partially reversed remission of IDD induced by miR-96-5p downregulation (P < 0.05). MiR-96-5p promoted NF-κB entry into the nucleus but PPARγ inhibited this process. CONCLUSION Inhibition of miR-96-5p suppressed IDD progression by regulating the PPARγ/NF-κB pathway. MiR-96-5p may be a promising target for IDD treatment clinically.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Malaysia
| | - Qian Hou
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Wenqi Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Xuehua Zhan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Haifeng Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
16
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
17
|
Li Y, Zhou S, Hu X, Lu S. The pathological mechanisms of circRNAs in mediating intervertebral disc degeneration. Noncoding RNA Res 2023; 8:633-640. [PMID: 37780894 PMCID: PMC10539873 DOI: 10.1016/j.ncrna.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
Lower back pain (LBP) is a worldwide health problem associated with significant economic and social burden. Intervertebral disc degeneration (IVDD) is a leading cause of LBP. Several studies show that the death of nucleus pulposus cells (NPCs), abnormal metabolism of the extracellular matrix (ECM), and inflammatory response are the key mechanisms behind the pathogenesis of IVDD. Circular RNAs (circRNAs) are key regulators of gene expression and play a significant role in regulating NPCs death, ECM homeostasis, and inflammatory response by acting as microRNAs (miRNAs) sponges in IVDD. However, the regulatory role of circRNAs in mediating IVDD remains unknown. This review comprehensively describes the normal anatomic structure and function of IVD, the pathogenesis of IVDD, the characteristics, synthesis, mechanisms, and function of circRNAs. Moreover, we highlighted the 23 circRNAs that mediate ECM metabolism, 16 circRNAs that mediate NPCs apoptosis, circ_0004354 and circ_0040039 that mediate NPCs pyroptosis, and 5 circRNAs that mediate inflammatory response in IVDD. In addition, this review presents suggestions for future studies, such as the need for further investigation on ferroptosis-related circRNAs in IVDD. This review could provide novel insights into the pathogenesis and treatment of IVDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Suzhe Zhou
- Department of Orthopedics, Anhui No 2 Provincial People's Hospital, Hefei, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
18
|
Hou Z, Wang W, Su S, Chen Y, Chen L, Lu Y, Zhou H. Bibliometric and Visualization Analysis of Biomechanical Research on Lumbar Intervertebral Disc. J Pain Res 2023; 16:3441-3462. [PMID: 37869478 PMCID: PMC10590139 DOI: 10.2147/jpr.s428991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Background Biomechanical research on the lumbar intervertebral disc (IVD) provides valuable information for the diagnosis, treatment, and prevention of related diseases, and has received increasing attention. Using bibliometric methods and visualization techniques, this study investigates for the first time the research status and development trends in this field, with the aim of providing guidance and support for subsequent research. Methods The Science Citation Index Expanded (SCI-Expanded) within the Web of Science Core Collection (WoSCC) database was used as the data source to select literature published from 2003 to 2022 related to biomechanical research on lumbar IVD. VOSviewer 1.6.19 and CiteSpace 6.2.R2 visualization software, as well as the online analysis platform of literature metrology, were utilized to generate scientific knowledge maps for visual display and data analysis. Results The United States is the most productive country in this field, with the Ulm University making the largest contribution. Wilke HJ is both the most prolific author and one of the highly cited authors, while Adams MA is the most cited author. Spine, J Biomech, Eur Spine J, Spine J, and Clin Biomech are not only the journals with the highest number of publications, but also highly cited journals. The main research topics in this field include constructing and validating three-dimensional (3D) finite element model (FEM) of lumbar spine, measuring intradiscal pressure, exploring the biomechanical effects and related risk factors of lumbar disc degeneration, studying the mechanical responses to different torque load combinations, and classifying lumbar disc degeneration based on magnetic resonance images (MRI), which are also the hot research themes in recent years. Conclusion This study systematically reviews the knowledge system and development trends in the field of biomechanics of lumbar IVD, providing valuable references for further research.
Collapse
Affiliation(s)
- Zhaomeng Hou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, People’s Republic of China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, People’s Republic of China
| | - Wei Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Shaoting Su
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Yixin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Longhao Chen
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
| | - Yan Lu
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
| |
Collapse
|
19
|
Zhu Z, Yu Q, Li H, Han F, Guo Q, Sun H, Zhao H, Tu Z, Liu Z, Zhu C, Li B. Vanillin-based functionalization strategy to construct multifunctional microspheres for treating inflammation and regenerating intervertebral disc. Bioact Mater 2023; 28:167-182. [PMID: 37256210 PMCID: PMC10225820 DOI: 10.1016/j.bioactmat.2023.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain. Although local delivery strategies using biomaterial carriers have shown potential for IVDD treatment, it remains challenging for intervention against multiple adverse contributors by a single delivery platform. In the present work, we propose a new functionalization strategy using vanillin, a natural molecule with anti-inflammatory and antioxidant properties, to develop multifunctional gelatin methacrylate (GelMA) microspheres for local delivery of transforming growth factor β3 (TGFβ3) toward IVDD treatment. In vitro, functionalized microspheres not only improved the release kinetics of TGFβ3 but also effectively inhibited inflammatory responses and promoted the secretion of extracellular matrix (ECM) in lipopolysaccharide-induced nucleus pulposus (NP) cells. In vivo, functionalized platform plays roles in alleviating inflammation and oxidative stress, preserving the water content of NP and disc height, and maintaining intact structure and biomechanical functions, thereby promoting the regeneration of IVD. High-throughput sequencing suggests that inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling might be associated with their therapeutic effects. In summary, the vanillin-based functionalization strategy provides a novel and simple way for packaging multiple functions into a single delivery platform and holds promise for tissue regeneration beyond the IVD.
Collapse
Affiliation(s)
- Zhuang Zhu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Qifan Yu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Hanwen Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Feng Han
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Qianping Guo
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Heng Sun
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengdong Tu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Caihong Zhu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China
| |
Collapse
|
20
|
Fletcher CDA, Ives EJ, Kajin F, Seath I, Grapes NJ, Lopes BA, Knebel A, Volk HA, De Decker S. Thoracic to lumbar vertebral column length and length ratios in miniature dachshunds with and without thoracolumbar intervertebral disc extrusion. Vet Rec 2023; 193:e3057. [PMID: 37269549 DOI: 10.1002/vetr.3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/11/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The chondrodystrophic body type predisposes miniature dachshunds to thoracolumbar intervertebral disc extrusion (IVDE). However, the relationship between thoracolumbar IVDE and the relative lengths of the thoracic and lumbar vertebral columns has not yet been evaluated. METHODS This prospective multicentre study included 151 miniature dachshunds with (n = 47) and without (n = 104) thoracolumbar IVDE. All dogs had their thoracic and lumbar vertebral columns measured with a tape measure. Detailed descriptions were provided to facilitate consistent measurement. A thoracic to lumbar vertebral column ratio was calculated. Thoracolumbar IVDE was confirmed by magnetic resonance imaging or computed tomography. RESULTS The thoracic to lumbar vertebral column length ratio and absolute thoracic vertebral column length were significantly smaller in miniature dachshunds with IVDE than in those without IVDE (p < 0.0001 for both). There were no significant differences in lumbar vertebral column length, age, sex or neuter status between the two groups. LIMITATIONS The dogs without IVDE did not undergo a neurological examination and the thoracic and lumbar vertebral column measurements were not validated. CONCLUSIONS The relative lengths of the thoracic and lumbar vertebral column segments could contribute to the development of thoracolumbar IVDE in miniature dachshunds. Further studies are needed to evaluate ideal thoracic to lumbar vertebral column length ratios in miniature dachshunds.
Collapse
Affiliation(s)
| | - Edward J Ives
- Anderson Moores Veterinary Specialists, Winchester, UK
| | - Filip Kajin
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Nicholas J Grapes
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, UK
| | - Bruno A Lopes
- Anderson Moores Veterinary Specialists, Winchester, UK
| | - Anna Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Steven De Decker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
21
|
Xu H, Li J, Fei Q, Jiang L. Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. Connect Tissue Res 2023; 64:413-427. [PMID: 37161923 DOI: 10.1080/03008207.2023.2212051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province, China
| |
Collapse
|
22
|
Zhu C, Zhou Q, Wang Z, Zhang J, Xu C, Ruan D. Growth differentiation factor 5 inhibits lipopolysaccharide-mediated pyroptosis of nucleus pulposus mesenchymal stem cells via RhoA signaling pathway. Mol Biol Rep 2023; 50:6337-6347. [PMID: 37310547 DOI: 10.1007/s11033-023-08547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degenerative disc disease(DDD)is one of the most important causes of low back pain (LBP). Programmed death of human nucleus pulposus mesenchymal stem cells (NPMSCs) plays an important role in the progression of DDD. Growth differentiation factor-5 (GDF-5) is a protein that promotes chondrogenic differentiation, and has been reported to slow the expression of inflammatory factors in nucleus pulposus cells. Compared with those in normal rats, MRI T2-weighted images show hypointense in the central nucleus pulposus region of the intervertebral disc in GDF-5 knockout rats. METHODS AND RESULTS We aimed to evaluate the role of GDF-5 and Ras homolog family member A (RhoA) in NPMSCs. We used lipopolysaccharide (LPS) to simulate the inflammatory environment in degenerative disc disease, and performed related experiments on the effects of GDF-5 on NPMSCs, including the effects of pyroptosis, RhoA protein, and the expression of extracellular matrix components, and the effects of GDF-5, on NPMSCs. In addition, the effect of GDF-5 on chondroid differentiation of NPMSCs was included. The results showed that the addition of GDF-5 inhibited the LPS-induced pyroptosis of NPMSCs, and further analysis of its mechanism showed that this was achieved by activating the RhoA signaling pathway. CONCLUSION These findings suggest that GDF-5 plays an important role in inhibiting the pyroptosis of NPMSCs and GDF-5 may have potential for degenerative disc disease gene-targeted therapy in the future.
Collapse
Affiliation(s)
- Chao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Qing Zhou
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedic Surgery, Navy Clinical College of Anhui Medical University, Beijing, 100048, China
| | - Zuqiang Wang
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Junyou Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Cheng Xu
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
23
|
Sukmana BI, Margiana R, Almajidi YQ, Almalki SG, Hjazi A, Shahab S, Romero-Parra RM, Alazbjee AAA, Alkhayyat A, John V. Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathol Res Pract 2023; 248:154575. [PMID: 37285734 DOI: 10.1016/j.prp.2023.154575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Oral Biology Department, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Afa Alkhayyat
- College of Pharmacy, the Islamic University, 54001 Najaf, Iraq
| | - Vivek John
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
24
|
Liu C, Gao X, Lou J, Li H, Chen Y, Chen M, Zhang Y, Hu Z, Chang X, Luo M, Zhai Y, Li C. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res Ther 2023; 25:117. [PMID: 37420255 PMCID: PMC10327399 DOI: 10.1186/s13075-023-03093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is closely associated with the structural damage in the annulus fibrosus (AF). Aberrant mechanical loading is an important inducement of annulus fibrosus cells (AFCs) apoptosis, which contributes to the AF structural damage and aggravates IVDD, but the underlying mechanism is still unclear. This study aims to investigate the mechanism of a mechanosensitive ion channel protein Piezo1 in aberrant mechanical loading-induced AFCs apoptosis and IVDD. METHODS Rats were subjected to lumbar instability surgery to induce the unbalanced dynamic and static forces to establish the lumbar instability model. MRI and histological staining were used to evaluate the IVDD degree. A cyclic mechanical stretch (CMS)-stimulated AFCs apoptosis model was established by a Flexcell system in vitro. Tunel staining, mitochondrial membrane potential (MMP) detection, and flow cytometry were used to evaluate the apoptosis level. The activation of Piezo1 was detected using western blot and calcium fluorescent probes. Chemical activator Yoda1, chemical inhibitor GSMTx4, and a lentiviral shRNA-Piezo1 system (Lv-Piezo1) were utilized to regulate the function of Piezo1. High-throughput RNA sequencing (RNA-seq) was used to explore the mechanism of Piezo1-induced AFCs apoptosis. The Calpain activity and the activation of Calpain2/Bax/Caspase3 axis were evaluated by the Calpain activity kit and western blot with the siRNA-mediated Calapin1 or Calpain2 knockdown. Intradiscal administration of Lv-Piezo1 was utilized to evaluate the therapeutic effect of Piezo1 silencing in IVDD rats. RESULTS Lumbar instability surgery promoted the expression of Piezo1 in AFCs and stimulated IVDD in rats 4 weeks after surgery. CMS elicited distinct apoptosis of AFCs, with enhanced Piezo1 activation. Yoda1 further promoted CMS-induced apoptosis of AFCs, while GSMTx4 and Lv-Piezo1 exhibited opposite effects. RNA-seq showed that knocking down Piezo1 inhibited the calcium signaling pathway. CMS enhanced Calpain activity and elevated the expression of BAX and cleaved-Caspase3. Calpain2, but not Calpain1 knockdown, inhibited the expression of BAX and cleaved-Caspase3 and alleviated AFCs apoptosis. Lv-Piezo1 significantly alleviated the progress of IVDD in rats after lumbar instability surgery. CONCLUSIONS Aberrant mechanical loading induces AFCs apoptosis to promote IVDD by activating Piezo1 and downstream Calpain2/BAX/Caspase3 pathway. Piezo1 is expected to be a potential therapeutic target in treating IVDD.
Collapse
Affiliation(s)
- Chenhao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Xiaoxin Gao
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Jinhui Lou
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
- Center of Traumatic Orthopedics, People's Liberation Army 990 Hospital, Xinyang, 464000, Henan, China
| | - Molong Chen
- Department of Orthopedics/Sports Medicine Center, The First Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
| | - Yuyao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Menglin Luo
- Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Yu Zhai
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (The Third Military Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China.
| |
Collapse
|
25
|
Gallate ZS, D'Erminio DN, Nasser P, Laudier DM, Iatridis JC. Galectin-3 and RAGE differentially control advanced glycation endproduct-induced collagen damage in murine intervertebral disc organ culture. JOR Spine 2023; 6:e1254. [PMID: 37361328 PMCID: PMC10285763 DOI: 10.1002/jsp2.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background Back and neck pain are leading causes of global disability that are associated with intervertebral disc (IVD) degeneration. Causes of IVD degeneration are multifactorial, and diet, age, and diabetes have all been linked to IVD degeneration. Advanced glycation endproducts (AGEs) accumulate in the IVD as a result of aging, diet, and diabetes, and AGE accumulation in the IVD has been shown to induce oxidative stress and catabolic activity that result in collagen damage. An association between AGE accumulation and IVD degeneration is emerging, yet mechanism behind this association remains unclear. The Receptor for AGEs (RAGE) is thought to induce catabolic responses in the IVD, and the AGE receptor Galectin 3 (Gal3) had a protective effect in other tissue systems but has not been evaluated in the IVD. Methods This study used an IVD organ culture model with genetically modified mice to analyze the roles of RAGE and Gal3 in an AGE challenge. Results Gal3 was protective against an AGE challenge in the murine IVD ex vivo, limiting collagen damage and biomechanical property changes. Gal3 receptor levels in the AF significantly decreased upon an AGE challenge. RAGE was necessary for AGE-induced collagen damage in the IVD, and RAGE receptor levels in the AF significantly increased upon AGE challenge. Discussion These findings suggest both RAGE and Gal3 are important in the IVD response to AGEs and highlight Gal3 as an important receptor with protective effects on collagen damage. This research improves understanding the mechanisms of AGE-induced IVD degeneration and suggests Gal3 receptor modulation as a potential target for preventative and therapeutic treatment for IVD degeneration.
Collapse
Affiliation(s)
- Zachary S. Gallate
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Danielle N. D'Erminio
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Philip Nasser
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Damien M. Laudier
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
26
|
Demott C, Jones MR, Chesney CD, Grunlan MA. Adhesive Hydrogel Building Blocks to Reconstruct Complex Cartilage Tissues. ACS Biomater Sci Eng 2023; 9:1952-1960. [PMID: 36881710 PMCID: PMC10848198 DOI: 10.1021/acsbiomaterials.2c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Cartilage has an intrinsically low healing capacity, thereby requiring surgical intervention. However, limitations of biological grafting and existing synthetic replacements have prompted the need to produce cartilage-mimetic substitutes. Cartilage tissues perform critical functions that include load bearing and weight distribution, as well as articulation. These are characterized by a range of high moduli (≥1 MPa) as well as high hydration (60-80%). Additionally, cartilage tissues display spatial heterogeneity, resulting in regional differences in stiffness that are paramount to biomechanical performance. Thus, cartilage substitutes would ideally recapitulate both local and regional properties. Toward this goal, triple network (TN) hydrogels were prepared with cartilage-like hydration and moduli as well as adhesivity to one another. TNs were formed with either an anionic or cationic 3rd network, resulting in adhesion upon contact due to electrostatic attractive forces. With the increased concentration of the 3rd network, robust adhesivity was achieved as characterized by shear strengths of ∼80 kPa. The utility of TN hydrogels to form cartilage-like constructs was exemplified in the case of an intervertebral disc (IVD) having two discrete but connected zones. Overall, these adhesive TN hydrogels represent a potential strategy to prepare cartilage substitutes with native-like regional properties.
Collapse
Affiliation(s)
- Connor
J. Demott
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - McKenzie R. Jones
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - Caleb D. Chesney
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843-3003, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843-3003, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
27
|
Regulatory Mechanism between Ferritin and Mitochondrial Reactive Oxygen Species in Spinal Ligament-Derived Cells from Ossification of Posterior Longitudinal Ligament Patient. Int J Mol Sci 2023; 24:ijms24032872. [PMID: 36769191 PMCID: PMC9917908 DOI: 10.3390/ijms24032872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary spinal ligament-derived cells (SLDCs) from cervical herniated nucleus pulposus tissue (control, Ctrl) and ossification of the posterior longitudinal ligament (OPLL) tissue of surgical patients were analyzed for pathogenesis elucidation. Here, we found that decreased levels of ferritin and increased levels of alkaline phosphatase (ALP), a bone formation marker, provoked osteogenesis in SLDCs in OPLL. SLDCs from the Ctrl and OPLL groups satisfied the definition of mesenchymal stem/stromal cells. RNA sequencing revealed that oxidative phosphorylation and the citric acid cycle pathway were upregulated in the OPLL group. SLDCs in the OPLL group showed increased mitochondrial mass, increased mitochondrial reactive oxygen species (ROS) production, decreased levels of ROS scavengers including ferritin. ROS and ferritin levels were upregulated and downregulated in a time-dependent manner, and both types of molecules repressed ALP. Osteogenesis was mitigated by apoferritin addition. We propose that enhancing ferritin levels might alleviate osteogenesis in OPLL.
Collapse
|
28
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
29
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
30
|
Kolosova OY, Shaikhaliev AI, Krasnov MS, Bondar IM, Sidorskii EV, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 64. Preparation and Properties of Poly(vinyl alcohol)-Based Cryogels Loaded with Antimicrobial Drugs and Assessment of the Potential of Such Gel Materials to Perform as Gel Implants for the Treatment of Infected Wounds. Gels 2023; 9:gels9020113. [PMID: 36826283 PMCID: PMC9956285 DOI: 10.3390/gels9020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Physical macroporous poly(vinyl alcohol)-based cryogels formed by the freeze-thaw technique without the use of any foreign cross-linkers are of significant interests for biomedical applications. In the present study, such gel materials loaded with the antimicrobial substances were prepared and their physicochemical properties were evaluated followed by an assessment of their potential to serve as drug carriers that can be used as implants for the treatment of infected wounds. The antibiotic Ceftriaxone and the antimycotic Fluconazole were used as antimicrobial agents. It was shown that the Ceftriaxone additives caused the up-swelling effects with respect to the cryogel matrix and some decrease in its heat endurance but did not result in a substantial change in the gel strength. With that, the drug release from the cryogel vehicle occurred without any diffusion restrictions, which was demonstrated by both the spectrophotometric recording and the microbiological agar diffusion technique. In turn, the in vivo biotesting of such drug-loaded cryogels also showed that these materials were able to function as rather efficient antimicrobial implants injected in the artificially infected model wounds of laboratory rabbits. These results confirmed the promising biomedical potential of similar implants.
Collapse
Affiliation(s)
- Olga Yu. Kolosova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Astemir I. Shaikhaliev
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Mikhail S. Krasnov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan M. Bondar
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Egor V. Sidorskii
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Elena V. Sorokina
- Microbiology Department, Biology Faculty, M.V.Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
31
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
32
|
Supra R, Agrawal DK. Mechanobiology of MicroRNAs in Intervertebral Disk Degeneration. JOURNAL OF SPINE RESEARCH AND SURGERY 2023; 5:1-9. [PMID: 36777190 PMCID: PMC9912327 DOI: 10.26502/fjsrs0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intervertebral disk degeneration (IDD) is an intricate pathological process contributing to one of the major causes of low back pain. The degradation of the extracellular matrix (ECM), inflammation, and apoptosis have all been investigated as critical factors involved in the pathology of degenerative disk disease. Additionally, the presence of aberrant microRNAs (miRNAs), conserved molecules that regulate the amount protein post-transcriptionally, may play a crucial role in the pathogenesis of IDD. Research regarding the dysfunction of miRNAs in IDD has been well researched over the past five years. Here, we provide a critical overview of the current knowledge of miRNAs, emphasizing the processes involved in the degenerative disk pathology.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Pomona, California
| |
Collapse
|
33
|
Peng X, Zhang C, Gao JW, Wang F, Bao JP, Zhou ZM, Sun R, Ji HY, Vlf C, Wu XT. A20 ameliorates disc degeneration by suppressing mTOR/BNIP3 axis-mediated mitophagy. Genes Genomics 2022; 45:657-671. [PMID: 36583816 DOI: 10.1007/s13258-022-01343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathological mechanism of intervertebral disc degeneration (IDD) is an unanswered question that we are committed to exploring. A20 is an anti-inflammatory protein of nucleus pulposus (NP) cells and plays a protective role in intervertebral disc degeneration. OBJECTIVE This study aims to investigate the molecular mechanism by which A20 attenuates disc degeneration. METHODS The proteins of interest were measured by immunoblotting, immunofluorescence, ELISA assay, and immunohistochemical technique to conduct related experiments. Immunofluorescence assays and mitochondrial membrane potential (JC-1) were used to assess mitophagy and mitochondrial fitness, respectively. RESULTS Here, we demonstrated that A20 promoted mitophagy, attenuated pyroptosis, and inhibited the degradation of the extracellular matrix, consequently significantly ameliorating disc degeneration. Mechanistically, A20 reduces pyroptosis and further suppresses cellular mTOR activity. On the one hand, A20-induced mTOR inhibition triggers BNIP3-mediated mitophagy to ensure mitochondrial fitness under LPS stimulation, as a result of mitigating mitochondrial dysfunction induced by LPS. On the other hand, A20-induced mTOR inhibition reduces the loss of mitochondrial membrane potential and the generation of Mitochondrial ROS. CONCLUSION The study revealed that A20 promotes BNIP3-mediated mitophagy by suppressing mTOR pathway activation against LPS-induced pyroptosis.
Collapse
Affiliation(s)
- Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jia-Wei Gao
- Medical School of Southeast University, Nanjing, China
| | - Feng Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun-Ping Bao
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Medical School of Southeast University, Nanjing, China
| | - Rui Sun
- Medical School of Southeast University, Nanjing, China
| | - Hang-Yu Ji
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cabral Vlf
- Medical School of Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Medical School of Southeast University, Nanjing, China.
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
34
|
An Injectable Hydrogel Scaffold Loaded with Dual-Drug/Sustained-Release PLGA Microspheres for the Regulation of Macrophage Polarization in the Treatment of Intervertebral Disc Degeneration. Int J Mol Sci 2022; 24:ijms24010390. [PMID: 36613833 PMCID: PMC9820357 DOI: 10.3390/ijms24010390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the unique physical characteristics of intervertebral disc degeneration (IVDD) and the pathological microenvironment that it creates, including inflammation and oxidative stress, effective self-repair is impossible. During the process of intervertebral disc degeneration, there is an increase in the infiltration of M1 macrophages and the secretion of proinflammatory cytokines. Here, we designed a novel injectable composite hydrogel scaffold: an oligo [poly (ethylene glycol) fumarate]/sodium methacrylate (OPF/SMA) hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres containing IL-4 (IL-4-PLGA) and kartogenin (KGN-PLGA). This scaffold exhibited good mechanical properties and low immunogenicity while also promoting the sustained release of drugs. By virtue of the PLGA microspheres loaded with IL-4 (IL-4-PLGA), the composite hydrogel scaffold induced macrophages to transition from the M1 phenotype into the M2 phenotype during the early induced phase and simultaneously exhibited a continuous anti-inflammatory effect through the PLGA microspheres loaded with kartogenin (KGN-PLGA). Furthermore, we investigated the mechanisms underlying the immunomodulatory and anti-inflammatory effects of the composite hydrogel scaffold. We found that the scaffold promoted cell proliferation and improved cell viability in vitro. While ensuring mechanical strength, this composite hydrogel scaffold regulated the local inflammatory microenvironment and continuously repaired tissue in the nucleus pulposus via the sequential release of drugs in vivo. When degenerative intervertebral discs in a rat model were injected with the scaffold, there was an increase in the proportion of M2 macrophages in the inflammatory environment and higher expression levels of type II collagen and aggrecan; this was accompanied by reduced levels of MMP13 expression, thus exhibiting long-term anti-inflammatory effects. Our research provides a new strategy for promoting intervertebral disc tissue regeneration and a range of other inflammatory diseases.
Collapse
|
35
|
Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater Today Bio 2022; 18:100523. [PMID: 36590980 PMCID: PMC9800636 DOI: 10.1016/j.mtbio.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens. By contrast, the extracellular matrix (ECM), including collagen and glycosaminoglycans, which are well retained, have been extensively studied in IVD regeneration. DCM inherits the native architecture and specific-differentiation induction ability of IVD and has demonstrated effectiveness in IVD regeneration in vitro and in vivo. Moreover, significant improvements have been achieved in the preparation process, mechanistic insights, and application of DCM for IDD repair. Herein, we comprehensively summarize and provide an overview of the roles and applications of DCM for IDD repair based on the existing evidence to shed a novel light on the clinical treatment of IDD.
Collapse
Key Words
- (3D), three-dimensional
- (AF), annular fibers
- (AFSC), AF stem cells
- (APNP), acellular hydrogel descendent from porcine NP
- (DAF-G), decellularized AF hydrogel
- (DAPI), 4,6-diamidino-2-phenylindole
- (DCM), decellularized matrix
- (DET), detergent-enzymatic treatment
- (DWJM), Wharton's jelly matrix
- (ECM), extracellular matrix
- (EVs), extracellular vesicles
- (Exos), exosome
- (IDD), intervertebral disc degeneration
- (IVD), intervertebral disc
- (LBP), Low back pain
- (NP), nucleus pulposus
- (NPCS), NP-based cell delivery system
- (PEGDA/DAFM), polyethylene glycol diacrylate/decellularized AF matrix
- (SD), sodium deoxycholate
- (SDS), sodium dodecyl sulfate
- (SIS), small intestinal submucosa
- (TGF), transforming growth factor
- (bFGF), basic fibroblast growth factor
- (hADSCs), human adipose-derived stem cells
- (hDF), human dermal fibroblast
- (iAF), inner annular fibers
- (oAF), outer annular fibers
- (sGAG), sulfated glycosaminoglycan
- Decellularized matrix
- Intervertebral disc degeneration
- Regenerative medicine
- Tissue engineering
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li He
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Corresponding author. Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Corresponding author. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
36
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
37
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Romaniyanto FNU, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Adipose-Derived Stem Cells (ASCs) for Regeneration of Intervertebral Disc Degeneration: Review Article. STEM CELLS AND CLONING: ADVANCES AND APPLICATIONS 2022; 15:67-76. [DOI: 10.2147/sccaa.s379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
|
39
|
He S, Zhou X, Yang G, Zhou Z, Zhang Y, Shao X, Liang T, Lv N, Chen J, Qian Z. Proteomic comparison between physiological degeneration and needle puncture model of disc generation disease. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2920-2934. [PMID: 35842490 DOI: 10.1007/s00586-022-07284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The completeness of the intervertebral disc proteome is fundamental to the integrity and functionality of the intervertebral disc. METHODS The 20 experimental rats were placed into two groups randomly, normal group (NG) and acupuncture pathological degeneration group-2 weeks (APDG-2w). The ten 24-month-old rats were grouped into physiological degeneration group (PDG). Magnetic resonance imaging, X-ray examination, histological staining (hematoxylin & eosin, safranin-O cartilage, and alcian blue staining), and immunohistochemical examination were carried out for assessing the degree of disc degradation. Intervertebral disc was collected, and protein composition was determined by LC- MS, followed by bioinformatic analysis including significance analysis, subcellular localization prediction, protein domain prediction, GO function and KEGG pathway analysis, and protein interaction network construction. LC-PRM was done for protein quantification. RESULTS Physiological degeneration and especially needle puncture decreased T2 signal intensity and intervertebral disc height. Results from hematoxylin & eosin, safranin-O, and alcian blue staining revealed that the annulus fibrosus apparently showed the wavy and collapsed fibrocartilage lamellas in APDG-2w and PDG groups. The contents of the nucleus pulposus were decreased in physiological degeneration group and APDG-2w group compared with NG. Results from immunohistochemical analysis suggested the degeneration of intervertebral disc and inflammation in APDG-2w and PDG groups. The protein composition and expression between needle puncture rat models and the physiological degeneration group showed significant difference. CONCLUSIONS Our studies produced point-reference datasets of normal rats, physiological degeneration rats, and needle puncture rat models, which is beneficial to subsequent pathological studies. There is differential expression of protein expression in degenerative discs with aging and acupuncture, which may be used as a potential discriminating index for different intervertebral degenerations.
Collapse
Affiliation(s)
- Shuangjun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinfeng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Guotao Yang
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yijian Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ting Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, 41 Hailian Street, Lianyungang, Jiangsu, China.
| | - Jianhong Chen
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China.
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
40
|
Demott CJ, Jones MR, Chesney CD, Yeisley DJ, Culibrk RA, Hahn MS, Grunlan MA. Ultra-High Modulus Hydrogels Mimicking Cartilage of the Human Body. Macromol Biosci 2022; 22:e2200283. [PMID: 36040017 DOI: 10.1002/mabi.202200283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Indexed: 12/25/2022]
Abstract
The human body is comprised of numerous types of cartilage with a range of high moduli, despite their high hydration. Owing to the limitations of cartilage tissue healing and biological grafting procedures, synthetic replacements have emerged but are limited by poorly matched moduli. While conventional hydrogels can achieve similar hydration to cartilage tissues, their moduli are substantially inferior. Herein, triple network (TN) hydrogels are prepared to synergistically leverage intra-network electrostatic repulsive and hydrophobic interactions, as well as inter-network electrostatic attractive interactions. They are comprised of an anionic 1st network, a neutral 2nd network (capable of hydrophobic associations), and a cationic 3rd network. Collectively, these interactions act synergistically as effective, yet dynamic crosslinks. By tuning the concentration of the cationic 3rd network, these TN hydrogels achieve high moduli of ≈1.5 to ≈3.5 MPa without diminishing cartilage-like water contents (≈80%), strengths, or toughness values. This unprecedented combination of properties poises these TN hydrogels as cartilage substitutes in applications spanning articulating joints, intervertebral discs (IVDs), trachea, and temporomandibular joint disc (TMJ).
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - McKenzie R Jones
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Caleb D Chesney
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Department of Materials Science & Engineering, and Department of Chemistry, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
41
|
Heng W, Wei F, Liu Z, Yan X, Zhu K, Yang F, Du M, Zhou C, Qian J. Physical exercise improved muscle strength and pain on neck and shoulder in military pilots. Front Physiol 2022; 13:973304. [PMID: 36117716 PMCID: PMC9479108 DOI: 10.3389/fphys.2022.973304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: To evaluate the effects of physical exercise on neck and shoulder muscle strength and pain in military pilots. Method: Embase, PubMed, and Cochrane Library databases were searched studies published up to April 1, 2022. Studies that met the screening criteria were included in the final meta-analysis. We calculated neck and shoulder maximal voluntary isometric contractions (MVICs), prevalence of pain, and pain intensity. Heterogeneity was explored by subgroup and sensitivity analyses. Result: A total of 15 studies with 907 participants were included. In the exercise group, muscle strength was significantly increased in four directions of neck motion: flexion (standardized mean difference (SMD) = 0.45; 95% CI, 0.08–0.82), extension (SMD = 0.63; 95% CI, 0.27–1.00), right lateral flexion (Rtflx) (SMD = 0.53; 95% CI, 0.12–0.94), and left lateral flexion (Ltflx) (SMD = 0.50; 95% CI, 0.09–0.91). Subgroup analysis showed that fighter pilots, strength plus endurance training, and a follow-up period <20 weeks exhibited more significant muscle strength improvements than helicopter pilots, simple strength training, and a follow-up period ≥20 weeks. Overall, the pooled odds ratio (OR) for the effect of physical exercise on the prevalence of neck pain was not statistically significant (I2 = 60%). Sensitivity analysis revealed that the heterogeneity was restored after removing each of two studies (I2 = 47%), and the pooled OR was statistically significant (OR = 0.46; 95% CI, 0.23 to 0.94, or OR = 0.47; 95% CI, 0.24–0.91). Furthermore, compared with observational studies (OS), the reduction in the prevalence of neck pain was more significant in randomized controlled trials (RCTs) (OR = 0.37; 95% CI, 0.18–0.78). No significant differences in the effects of exercise on shoulder muscle strength and neck and shoulder pain intensity were observed. Conclusion: Physical exercise can improve neck muscle strength in military pilots. After removing studies that may be the source of heterogeneity, exercise showed a protective effect on neck pain, especially in RCTs. The conclusion that exercise had no effects on shoulder muscle strength and pain intensity should be taken with caution.
Collapse
Affiliation(s)
- Wei Heng
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhisheng Liu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- 94333 Military Hospital, Shandong, China
| | - Xiaodong Yan
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Kailong Zhu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Yang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Mingrui Du
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Chengpei Zhou
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chengpei Zhou, ; Jixian Qian,
| | - Jixian Qian
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chengpei Zhou, ; Jixian Qian,
| |
Collapse
|
42
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
43
|
In-vitro models of disc degeneration - A review of methods and clinical relevance. J Biomech 2022; 142:111260. [PMID: 36027637 DOI: 10.1016/j.jbiomech.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
The intervertebral disc (IVD) provides flexibility, acts as a shock absorber, and transmits load. Degeneration of the IVD includes alterations in the biomechanics, extracellular matrix (ECM), and cellular activity. These changes are not always perceived, however, IVD degeneration can lead to severe health problems including long-term disability. To understand the pathogenesis of IVD degeneration and suitable testing methods for emerging treatments and therapies, this review documents in-vitro models of IVD degeneration including physical disruption, hyperphysiological loading, ECM degradation by enzyme digestion, or a combination of these methods. This paper reviews and critically analyses the models of degeneration published since the year 2000 in either in human or animal specimens. The results are categorised in terms of the IVD biomechanics, physical attributes, ECM composition, tissue damage and cellularity to evaluate the models with respect to natural human degeneration, and to provide recommendations for clinically relevant models for the various stages of degeneration. There is no one model that replicates the wide range of degenerative changes that occur as part of normal degeneration. However, cyclic overloading replicates many aspects of degeneration, with the advantage of a dose-response allowing the tuning of damage initiated. Models of severe degeneration are currently lacking, but there is potential that combining cyclic overloading and enzymatic digestion will provide model that closely resembles human IVD degeneration. This will provide an effective way to investigate the effects of severe degeneration, and the evaluation of treatments for the IVD, which would generally be indicated at this advanced stage of degeneration.
Collapse
|
44
|
Panebianco CJ, Rao S, Hom WW, Meyers JH, Lim TY, Laudier DM, Hecht AC, Weir MD, Weiser JR, Iatridis JC. Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials 2022; 287:121641. [PMID: 35759923 PMCID: PMC9758274 DOI: 10.1016/j.biomaterials.2022.121641] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.
Collapse
Affiliation(s)
- Christopher J Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjna Rao
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Warren W Hom
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James H Meyers
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Y Lim
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jennifer R Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
45
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
46
|
Zhang D, Feng M, Liu W, Yu J, Wei X, Yang K, Zhan J, Peng W, Luo M, Han T, Jin Z, Yin H, Sun K, Yin X, Zhu L. From Mechanobiology to Mechanical Repair Strategies: A Bibliometric Analysis of Biomechanical Studies of Intervertebral Discs. J Pain Res 2022; 15:2105-2122. [PMID: 35923841 PMCID: PMC9342884 DOI: 10.2147/jpr.s361938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Neck pain and low back pain are major challenges in public health, and intervertebral disc (IVD) biomechanics is an important multidisciplinary field. To date, no bibliometric literature review of the relevant literature has been performed, so we explored the emerging trends, landmark studies, and major contributors to IVD biomechanics research. We searched the Web of Science core collection (1900–2022) using keywords mainly composed of “biomechanics” and “intervertebral disc” to conduct a bibliometric analysis of original papers and their references, focusing on citations, authors, journals, and countries/regions. A co-citation analysis and clustering of the references were also completed. A total of 3189 records met the inclusion criteria. In the co-citation network, cluster #0, labeled as “annulus fibrosus tissue engineering”, and cluster #1, labeled as “micromechanical environment”, were the biggest clusters. References by MacLean et al and Holzapfel et al were positioned exactly between them and had high betweenness centrality. There existed a research topic evolution between mechanobiology and mechanical repair strategies of IVDs, and the latter had been identified as an emerging trend in IVD biomechanics. Numerous landmark studies had contributed to several fields, including mechanical testing of normal and pathological IVDs, mechanical evaluation of new repair strategies and development of finite element model. Adams MA was the author most cited by IVD biomechanics papers. Spine, the European Spine Journal, and the Journal of Biomechanics were the three journals where the most original articles and their references have been published. The United States has contributed most to the literature (n = 1277 papers); however, the research output of China is increasing. In conclusion, the present study suggests that IVD repair is an emerging trend in IVD biomechanics.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Minshan Feng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jie Yu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xu Wei
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kexin Yang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jiawen Zhan
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Peng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingyi Luo
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tao Han
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhefeng Jin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - He Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kai Sun
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xunlu Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Xunlu Yin; Liguo Zhu, Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, People’s Republic of China, Email ;
| | - Liguo Zhu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
47
|
Ex vivo biomechanical evaluation of Acute lumbar endplate injury and comparison to annulus fibrosus injury in a rat model. J Mech Behav Biomed Mater 2022; 131:105234. [DOI: 10.1016/j.jmbbm.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
|
48
|
Wang XH, Gao JW, Bao JP, Zhu L, Xie ZY, Chen L, Peng X, Zhang C, Wu XT. GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Arch Gerontol Geriatr 2022; 101:104676. [DOI: 10.1016/j.archger.2022.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
|
49
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
50
|
Costăchescu B, Niculescu AG, Teleanu RI, Iliescu BF, Rădulescu M, Grumezescu AM, Dabija MG. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int J Mol Sci 2022; 23:6460. [PMID: 35742903 PMCID: PMC9223374 DOI: 10.3390/ijms23126460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) represents a frequent and debilitating condition affecting a large part of the global population and posing a worldwide health and economic burden. The major cause of LBP is intervertebral disc degeneration (IDD), a complex disease that can further aggravate and give rise to severe spine problems. As most of the current treatments for IDD either only alleviate the associated symptoms or expose patients to the risk of intraoperative and postoperative complications, there is a pressing need to develop better therapeutic strategies. In this respect, the present paper first describes the pathogenesis and etiology of IDD to set the framework for what has to be combated to restore the normal state of intervertebral discs (IVDs), then further elaborates on the recent advances in managing IDD. Specifically, there are reviewed bioactive compounds and growth factors that have shown promising potential against underlying factors of IDD, cell-based therapies for IVD regeneration, biomimetic artificial IVDs, and several other emerging IDD therapeutic options (e.g., exosomes, RNA approaches, and artificial intelligence).
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania;
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Florin Iliescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Marius Gabriel Dabija
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|