1
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
2
|
Tognetti J, Franks WT, Lewandowski JR, Brown SP. Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N- 1H through-bond heteronuclear correlation solid-state NMR spectroscopy. Phys Chem Chem Phys 2022; 24:20258-20273. [PMID: 35975627 PMCID: PMC9429863 DOI: 10.1039/d2cp01041k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
Abstract
The Lee-Goldburg condition for homonuclear decoupling in 1H magic-angle spinning (MAS) solid-state NMR sets the angle θ, corresponding to arctan of the ratio of the rf nutation frequency, ν1, to the rf offset, to be the magic angle, θm, equal to tan-1(√2) = 54.7°. At 60 kHz MAS, we report enhanced decoupling compared to MAS alone in a 1H spectrum of 15N-glycine with at θ = 30° for a ν1 of ∼100 kHz at a 1H Larmor frequency, ν0, of 500 MHz and 1 GHz, corresponding to a high chemical shift scaling factor (λCS) of 0.82. At 1 GHz, we also demonstrate enhanced decoupling compared to 60 kHz MAS alone for a lower ν1 of 51 kHz, i.e., a case where the nutation frequency is less than the MAS frequency, with θ = 18°, λCS = 0.92. The ratio of the rotor period to the decoupling cycle time, Ψ = τr/τc, is in the range 0.53 to 0.61. Windowed decoupling using the optimised parameters for a ν1 of ∼100 kHz also gives good performance in a 1H spin-echo experiment, enabling implementation in a 1H-detected 15N-1H cross polarisation (CP)-refocused INEPT heteronuclear correlation NMR experiment. Specifically, initial 15N transverse magnetisation as generated by 1H-15N CP is transferred back to 1H using a refocused INEPT pulse sequence employing windowed 1H decoupling. Such an approach ensures the observation of through-bond N-H connectivities. For 15N-glycine, while the CP-refocused INEPT experiment has a lower sensitivity (∼50%) as compared to a double CP experiment (with a 200 μs 15N to 1H CP contact time), there is selectivity for the directly bonded NH3+ moiety, while intensity is observed for the CH21H resonances in the double CP experiment. Two-dimensional 15N-1H correlation MAS NMR spectra are presented for the dipeptide β-AspAla and the pharmaceutical cimetidine at 60 kHz MAS, both at natural isotopic abundance. For the dipeptide β-AspAla, different build-up dependence on the first spin-echo duration is observed for the NH and NH3+ moieties demonstrating that the experiment could be used to distinguish resonances for different NHx groups.
Collapse
Affiliation(s)
- Jacqueline Tognetti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | - W Trent Franks
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Duong NT, Nishiyama Y. Detection of remote proton-nitrogen correlations by 1H-detected 14N overtone solid-state NMR at fast MAS. Phys Chem Chem Phys 2022; 24:10717-10726. [PMID: 35315474 DOI: 10.1039/d2cp00155a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detecting proton and nitrogen correlations in solid-state nuclear magnetic resonance (NMR) is important for the structural determination of biological and chemical systems. Recent advances in proton detection-based approaches under fast magic-angle spinning have facilitated the detection of 1H-14N correlations by solid-state NMR. However, observing remote 1H-14N correlations by these approaches is still a challenge, especially for 14N sites having large quadrupolar couplings. To address this issue, we introduce the 1H-14N overtone continuous wave rotational-echo saturation-pulse double-resonance (1H-14N OT CW-RESPDOR) sequence. Unlike regular 2D correlation experiments where the indirect dimension is recorded in the time domain, the 1H-14N OT CW-RESPDOR experiment is directly observed in the frequency domain. A set of 1H-14N OT CW-RESPDOR filtered 1H spectra is recorded at varying 14N OT frequencies. Thanks to the selective nature of the 14N OT pulse, the filtered 1H spectra appear only if the 14N OT frequency hits the positions of the 14N OT central band or one of the spinning sidebands. This set of filtered 1H spectra represents a 2D 1H-14N OT correlation map. We have also investigated the optimizable parameters for CW-RESPDOR and figured out that these parameters are not strictly needed for our working magnetic field of 14.1 T. Hence, the experiment is easy to set up and requires almost no optimization. We have demonstrated the experimental feasibility of 1H-14N OT CW-RESPDOR on monoclinic L-histidine and L-alanyl L-alanine. The remote 1H-14N correlations have been efficiently detected, no matter how large the 14N quadrupolar interaction is, and agree with the crystal structures. In addition, based on the remote 1H-14N correlations from the non-protonated 14N site of L-histidine, we can unambiguously distinguish the orthorhombic and monoclinic forms.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan. .,JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| |
Collapse
|
4
|
Zheng M, Xin S, Wang Q, Trébosc J, Xu J, Qi G, Feng N, Lafon O, Deng F. Through-space 11 B- 27 Al correlation: Influence of the recoupling channel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1062-1076. [PMID: 33847409 DOI: 10.1002/mrc.5163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Through-space heteronuclear correlation (D-HETCOR) experiments based on heteronuclear multiple-quantum correlation (D-HMQC) and refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) sequences have been proven to be useful approaches for the detection of the spatial proximity between half-integer quadrupolar nuclei in solids under magic-angle spinning (MAS) conditions. The corresponding pulse sequences employ coherence transfers mediated by heteronuclear dipolar interactions, which are reintroduced under MAS by radiofrequency irradiation of only one of the two correlated nuclei. We investigate herein using numerical simulations of spin dynamics and solid-state NMR experiments on magnesium aluminoborate glass how the choice of the channel to which the heteronuclear dipolar recoupling is applied affects the transfer efficiency of D-HMQC and D-RINEPT sequences between 11 B and 27 Al nuclei. Experimental results show that maximum transfer efficiency is achieved when the recoupling scheme is applied to the channel, for which the spin magnetization is parallel to the B0 axis in average.
Collapse
Affiliation(s)
- Mingji Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohui Xin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wanhua Chemical Group Co., Ltd, Yantai, China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Julien Trébosc
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Michel-Eugène Chevreul (IMEC),Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC, Lille, F-59000, France
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guodong Qi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Olivier Lafon
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
5
|
Paluch P, Kupče Ē, Trébosc J, Lafon O, Amoureux JP. Hadamard acquisition of 13 C- 13 C 2-D correlation NMR spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:247-256. [PMID: 31714638 DOI: 10.1002/mrc.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
We show that a multiselective excitation with Hadamard encoding is a powerful tool for 2-D acquisition of 13 C─13 C homonuclear correlations. This method is not designed to improve the sensitivity, but rather to reduce the experiment time, provided there is sufficient sensitivity. Therefore, it allows fast acquisition of such 2-D spectra in labeled molecules. The technique has been demonstrated using a U─13 C─15 N histidine hydrochloride monohydrate sample allowing each point of the build-up curves of the 13 C─13 C cross-peaks to be recorded within 4 min 35 s, which is very difficult with conventional methods. Using the U─13 C─15 N f-MLF sample, we have demonstrated that the method can be applied to molecules with 14 13 C resonances with a minimum frequency separation of 240 Hz.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
| | | | - Julien Trébosc
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- CNRS-2638, Fédération Chevreul, University of Lille, Lille, France
| | - Olivier Lafon
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- Department of Chemistry, Institut Universitaire de France, Paris, France
| | - Jean-Paul Amoureux
- CNRS-8181, Unit of Catalysis and Chemistry of Solids, University of Lille, Lille, France
- Bruker Biospin, Wissembourg, France
- NMR Science and Development Division, RIKEN, Yokohama, Japan
| |
Collapse
|
6
|
Dudek MK, Paluch P, Pindelska E. Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:322-335. [PMID: 32831253 DOI: 10.1107/s205252062000373x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination.
Collapse
Affiliation(s)
- Marta K Dudek
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Piotr Paluch
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Edyta Pindelska
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw, 02097, Poland
| |
Collapse
|
7
|
Dudek MK, Paluch P, Śniechowska J, Nartowski KP, Day GM, Potrzebowski MJ. Crystal structure determination of an elusive methanol solvate – hydrate of catechin using crystal structure prediction and NMR crystallography. CrystEngComm 2020. [DOI: 10.1039/d0ce00452a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A useful short-cut was developed to limit the number of molecular conformations that need to be regarded in crystal structure prediction calculations, which led to the crystal structure determination of new methanol solvate – hydrate of catechin.
Collapse
Affiliation(s)
- Marta K. Dudek
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Justyna Śniechowska
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Karol P. Nartowski
- Department of Drug Form Technology
- Wroclaw Medical University
- 50-556 Wroclaw
- Poland
| | - Graeme M. Day
- Computational Systems Chemistry
- School of Chemistry
- University of Southampton
- UK
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences
- 90-363 Lodz
- Poland
| |
Collapse
|
8
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
9
|
Dudek MK, Wielgus E, Paluch P, Śniechowska J, Kostrzewa M, Day GM, Bujacz GD, Potrzebowski MJ. Understanding the formation of apremilast cocrystals. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:803-814. [PMID: 32830759 DOI: 10.1107/s205252061900917x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 06/11/2023]
Abstract
Apremilast (APR), an anti-psoriatic agent, easily forms isostructural cocrystals and solvates with aromatic entities, often disobeying at the same time Kitaigorodsky's rule as to the saturation of possible hydrogen-bonding sites. In this paper the reasons for this peculiar behavior are investigated, employing a joint experimental and theoretical approach. This includes the design of cocrystals with coformers having a high propensity towards the formation of both aromatic-aromatic and hydrogen-bonding interactions, determination of their structure, using solid-state NMR spectroscopy and X-ray crystallography, as well as calculations of stabilization energies of formation of the obtained cocrystals, followed by crystal structure prediction calculations and solubility measurements. The findings indicate that the stabilization energies of cocrystal formation are positive in all cases, which results from strain in the APR conformation in these crystal forms. On the other hand, solubility measurements show that the Gibbs free energy of formation of the apremilast:picolinamide cocrystal is negative, suggesting that the formation of the studied cocrystals is entropy driven. This entropic stabilization is associated with the disorder observed in almost all known cocrystals and solvates of APR.
Collapse
Affiliation(s)
- Marta K Dudek
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Justyna Śniechowska
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Maciej Kostrzewa
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Graeme M Day
- Computational Systems Chemistry, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Grzegorz D Bujacz
- Institute of Technical Biochemistry, Technical University of Lodz, Stefanowskiego 4/10, Lodz, 90-924, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| |
Collapse
|
10
|
Rankin AGM, Trébosc J, Paluch P, Lafon O, Amoureux JP. Evaluation of excitation schemes for indirect detection of 14N via solid-state HMQC NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:28-41. [PMID: 30999136 DOI: 10.1016/j.jmr.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
It has previously been shown that 14N NMR spectra can be reliably obtained through indirect detection via HMQC experiments. This method exploits the transfer of coherence between single-(SQ) or double-quantum (DQ) 14N coherences, and SQ coherences of a suitable spin-1/2 'spy' nucleus, e.g., 1H. It must be noted that SQ-SQ methods require a carefully optimized setup to minimize the broadening related to the first-order quadrupole interaction (i.e., an extremely well-adjusted magic angle and a highly stable spinning speed), whereas DQ-SQ ones do not. In this work, the efficiencies of four 14N excitation schemes (DANTE, XiX, Hard Pulse (HP), and Selective Long Pulse (SLP)) are compared using J-HMQC based numerical simulations and either SQ-SQ or DQ-SQ 1H-{14N} D-HMQC experiments on l-histidine HCl and N-acetyl-l-valine at 18.8 T and 62.5 kHz MAS. The results demonstrate that both DANTE and SLP provide a more efficient 14N excitation profile than XiX and HP. Furthermore, it is shown that the SLP scheme: (i) is efficient over a large range of quadrupole interaction, (ii) is highly robust to offset and rf-pulse length and amplitude, and (iii) is very simple to set up. These factors make SLP ideally suited to widespread, non-specialist use in solid-state NMR analyses of nitrogen-containing materials.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France.
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Piotr Paluch
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90363 Lodz, Poland
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166 Wissembourg, France.
| |
Collapse
|
11
|
Rossi F, Duong NT, Pandey MK, Chierotti MR, Gobetto R, Nishiyama Y. Determination of the 15 N chemical shift anisotropy in natural abundance samples by proton-detected 3D solid-state NMR under ultrafast MAS of 70 kHz. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:294-303. [PMID: 30684385 DOI: 10.1002/mrc.4841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Chemical shift anisotropy (CSA) is a sensitive probe of electronic environment at a nucleus, and thus, it offers deeper insights into detailed structural and dynamic properties of different systems, for example, chemical, biological, and materials. Over the years, massive efforts have been made to develop recoupling methods that reintroduce CSA interaction under magic angle spinning (MAS) conditions. Most of them require slow or moderate MAS (≤20 kHz) and isotopically enriched samples. On the other hand, to the best of the authors' knowledge, no 13 C or 15 N CSA recoupling schemes at ultrafast MAS (≥60 kHz) suitable for cost-effective natural abundant samples have been developed. We present here a proton-detected 3D 15 N CS/15 N CSA/1 H CS correlation experiment which employs 1 H indirect detection for sensitivity enhancement and a γ-encoded RNnν -symmetry-based CSA recoupling scheme. In particular, two different symmetries, that is, R837 and R1049 , are first tested, in a 2D 15 N CSA/1 H CS version, on [U-15 N]-L-histidine·HCl·H2 O as a model sample under 70 kHz MAS. Then the 3D experiment is applied on glycyl-L-alanine at natural abundance, resulting in site-resolved 15 N CSA lineshapes from which CSA parameters are retrieved by SIMPSON numerical fittings. We demonstrate that this 3D R-symmetry-based pulse sequence is highly robust with respect to wide-range offset mismatches and weakly dependent to rf inhomogeneity within mis-sets of ±10% from the theoretical value.
Collapse
Affiliation(s)
- Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, V. P. Giuria 7, Torino, Italy
| | | | - Manoj Kumar Pandey
- Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, India
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. P. Giuria 7, Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, V. P. Giuria 7, Torino, Italy
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa, Japan
- NMR Science and Development Division, RIKEN SPring-8 Center, Yokohama, Kanagawa, Japan
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, Japan
| |
Collapse
|
12
|
Lu X, Skomski D, Thompson KC, McNevin MJ, Xu W, Su Y. Three-Dimensional NMR Spectroscopy of Fluorinated Pharmaceutical Solids under Ultrafast Magic Angle Spinning. Anal Chem 2019; 91:6217-6224. [DOI: 10.1021/acs.analchem.9b00884] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xingyu Lu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Karen C. Thompson
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael J. McNevin
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Bielytskyi P, Gräsing D, Zahn S, Mote KR, Alia A, Madhu PK, Matysik J. Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by 13C- 1H photo-CIDNP MAS-J-HMQC experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:64-76. [PMID: 30529893 DOI: 10.1016/j.jmr.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Modified versions of through-bond heteronuclear correlation (HETCOR) experiments are presented to take advantage of the light-induced hyperpolarization that occurs on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Such 13C-1H photo-CIDNP MAS-J-HMQC and photo-CIDNP MAS-J-HSQC experiments are applied to acquire the 2D 13C-1H correlation spectra of selectively 13C-labeled photochemically active cofactors in the frozen quinone-blocked photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wild-type (WT). Resulting spectra contain no correlation peaks arising from the protein backbone, which greatly simplifies the assignment of aliphatic region. Based on the photo-CIDNP MAS-J-HMQC NMR experiment, we obtained assignment of selective 1H NMR resonances of the cofactors involved in the electron transfer process in the RC and compared them with values theoretically predicted by density functional theory (DFT) calculation as well as with the chemical shifts obtained from monomeric cofactors in the solution. We also compared proton chemical shifts obtained by photo-CIDNP MAS-J-HMQC experiment under continuous illumination with the ones obtained in dark by classical cross-polarization (CP) HETCOR. We expect that the proposed approach will become a method of choice for obtaining 1H chemical shift maps of the active cofactors in photosynthetic RCs and will aid the interpretation of heteronuclear spin-torch experiments.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, the Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
14
|
Potnuru LR, Ramanathan KV. Polarization inversion applied to proton MAS-NMR spectroscopy - Methylene and methine free proton NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:181-187. [PMID: 30292003 DOI: 10.1016/j.jmr.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Polarization-inversion (PI) has been applied to proton magic angle spinning (MAS) NMR spectra recorded under fast MAS conditions. The combination of cross-polarization (CP) from carbon to proton and subsequent polarization-inversion produces strong oscillatory behavior in the proton signal intensities at high MAS speeds of 60 kHz. It is observed that by a suitable choice of the polarization-inversion time, a proton spectrum free of methylene and methine protons can be obtained. Such a spectrum, on the one hand, increases the resolution of the crowded proton spectrum and on the other hand provides exclusively chemical shifts of protons such as NH, OH and SH which might otherwise overlap with carbon attached protons. The oscillations observed during PI can also be used to estimate the dipolar coupling between proton and carbon by Fourier transformation of data acquired at equally incremented time periods. The utility of the above ideas has been demonstrated on a set of molecules with both 13C labeled and 13C in natural abundance.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K V Ramanathan
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
15
|
Kupče Ē, Trébosc J, Perrone B, Lafon O, Amoureux JP. Recording 13C- 15N HMQC 2D sparse spectra in solids in 30 s. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:76-83. [PMID: 29438833 DOI: 10.1016/j.jmr.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We propose a dipolar HMQC Hadamard-encoded (D-HMQC-Hn) experiment for fast 2D correlations of abundant nuclei in solids. The main limitation of the Hadamard methods resides in the length of the encoding pulses, which results from a compromise between the selectivity and the sensitivity due to losses. For this reason, these methods should mainly be used with sparse spectra, and they profit from the increased separation of the resonances at high magnetic fields. In the case of the D-HMQC-Hn experiments, we give a simple rule that allows directly setting the optimum length of the selective pulses, versus the minimum separation of the resonances in the indirect dimension. The demonstration has been performed on a fully 13C,15N labelled f-MLF sample, and it allowed recording the build-up curves of the 13C-15N cross-peaks within 10 min. However, the method could also be used in the case of less sensitive samples, but with more accumulations.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - Barbara Perrone
- Bruker BioSpin AG, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS, Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Bruker Biospin, 34, rue de l'industrie, 67166 Wissembourg, France.
| |
Collapse
|
16
|
Widdifield CM, Nilsson Lill SO, Broo A, Lindkvist M, Pettersen A, Svensk Ankarberg A, Aldred P, Schantz S, Emsley L. Does Z' equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease. Phys Chem Chem Phys 2018. [PMID: 28621371 DOI: 10.1039/c7cp02349a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR (1H, 13C, 15N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13C shift tensors and the observation of residual dipolar coupling between 13C and 14N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at room temperature, although dynamic disorder is present on the NMR timescale. Of the CSP-generated structures, 2 are found to be fully consistent with the SSNMR and pXRD data; within this pair, they are found to be structurally very similar (RMSD16 = 0.30 Å). We establish that the CSP structure in best agreement with the NMR data possesses the highest degree of structural similarity with the scXRD-determined structure (RMSD16 = 0.17 Å), and has the lowest DFT-calculated energy amongst all CSP-generated structures with Z' = 2.
Collapse
Affiliation(s)
- Cory M Widdifield
- Institut des Sciences Analytiques (CNRS/ENS de Lyon/UCB Lyon 1), Centre de RMN à Très Hauts Champs, Université de Lyon, 69100 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kobayashi T, Perras FA, Chaudhary U, Slowing II, Huang W, Sadow AD, Pruski M. Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:38-44. [PMID: 28834782 DOI: 10.1016/j.ssnmr.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate that dynamic nuclear polarization (DNP)-enhanced 1H-X heteronuclear correlation (HETCOR) measurements of hydrogen-rich surface species are better accomplished by using proton-free solvents. This approach notably prevents HETCOR spectra from being obfuscated by the solvent-derived signals otherwise present in DNP measurements. Additionally, in the hydrogen-rich materials studied here, which included functionalized mesoporous silica nanoparticles and metal organic frameworks, the use of proton-free solvents afforded higher sensitivity gains than the commonly used solvents containing protons. We also explored the possibility of using a solvent-free sample formulation and the feasibility of indirect detection in DNP-enhanced HETCOR experiments.
Collapse
Affiliation(s)
| | | | - Umesh Chaudhary
- Department of Chemistry, Iowa State University, IA 50011, USA
| | - Igor I Slowing
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, IA 50011, USA
| | - Wenyu Huang
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, IA 50011, USA
| | - Aaron D Sadow
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, IA 50011, USA
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, IA 50011, USA.
| |
Collapse
|
18
|
Colaux H, Nishiyama Y. Resolution enhancement in proton double quantum magic-angle spinning spectra by constant-time acquisition. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:104-110. [PMID: 28655441 DOI: 10.1016/j.ssnmr.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/01/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Although very fast MAS rate (>60 kHz) paves a way to obtain a sufficient resolution in the 1H double-quantum magic-angle spinning (DQMAS) experiments to probe 1H proximities, the 1H resolution still limits wider applications below its potential use. Here, the combination of the DQMAS experiment with the constant-time (CT) acquisition approach is demonstrated, giving an increased peak-separation power in the DQ dimension. The advantages and disadvantages in terms of sensitivity and resolution of the conventional and CT approaches are discussed.
Collapse
Affiliation(s)
- Henri Colaux
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
19
|
Shen M, Wegner S, Trébosc J, Hu B, Lafon O, Amoureux JP. Minimizing the t 1-noise when using an indirect 1H high-resolution detection of unlabeled samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:111-116. [PMID: 28688541 DOI: 10.1016/j.ssnmr.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The most utilized through-space correlation 1H-{X} methods with proton indirect detection use two consecutive transfers, 1H → X and then X → 1H, with the evolution time t1 in the middle. When the X isotope is not 100% naturally abundant (NA), only the signal of the protons close to these isotopes is modulated by the 1H-X dipolar interactions. This signal is theoretically disentangled with phase-cycling from the un-modulated one. However, this separation is never perfect and it may lead to t1-noise in case of isotopes with very small NA, such as 13C or even worse 15N. One way to reduce this t1-noise is to minimize, 'purge', during t1 the un-modulated 1H magnetization before trying to suppress it with phase-cycling. We analyze experimentally several sequences following the HORROR condition, which allow purging the 1H transverse magnetization. The comparison is made at three spinning speeds, including very fast ones for 1H resolution: 27.75, 55.5 and 111 kHz. We show (i) that the efficiency of this purging process increases with the spinning speed, and (ii) that the best recoupling sequences are the two simplest ones: XY and S1 = SR212. We then compare the S/N that can be achieved with the two most used 1H-{X} 2D methods, called D-HMQC and CP-CP. The only difference in between these two methods is that the transfers are done with either two π/2-pulses on X channel (D-HMQC), or two Cross-Polarization (CP) transfers (CP-CP). The first method, D-HMQC, is very robust and should be preferred when indirectly detecting nuclei with high NA. The second method, CP-CP, (i) requires experimental precautions to limit the t1-noise, and (ii) is difficult to use with quadrupolar nuclei because the two CP transfers are then not efficient nor robust. However, CP-CP is presently the best method to indirectly detect isotopes with small NA, such as 13C and 15N.
Collapse
Affiliation(s)
- M Shen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - S Wegner
- Bruker BioSpin GmbH, 4 Silberstreifen, 76287 Rheinstetten, Germany
| | - J Trébosc
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - B Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - O Lafon
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
| | - J P Amoureux
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Bruker France, 34 Rue de l'Industrie, 67166 Wissembourg, France.
| |
Collapse
|
20
|
Venkatesh A, Hanrahan MP, Rossini AJ. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:171-181. [PMID: 28392024 DOI: 10.1016/j.ssnmr.2017.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/09/2023]
Abstract
Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as 13C, 15N and 29Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the 1H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as 17O, 27Al, 35Cl and 71Ga is demonstrated.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Michael P Hanrahan
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Dudek MK, Bujacz G, Potrzebowski MJ. Experimental tests for quality validation of computationally predicted crystal structures – a case of a conformationally flexible procyanidin A-2 dihydrate. CrystEngComm 2017. [DOI: 10.1039/c7ce00618g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
23
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
24
|
Brauckmann JO, Janssen JWGH, Kentgens APM. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes. Phys Chem Chem Phys 2016; 18:4902-10. [PMID: 26806199 DOI: 10.1039/c5cp07857a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.
Collapse
Affiliation(s)
- J Ole Brauckmann
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - J W G Hans Janssen
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands.
| | - Arno P M Kentgens
- Institute of Molecules and Materials, Radboud University, 6500 GL Nijmegen, Netherlands.
| |
Collapse
|
25
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
26
|
Mote KR, Madhu PK. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:149-56. [PMID: 26580064 DOI: 10.1016/j.jmr.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/11/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India.
| | - Perunthiruthy K Madhu
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|
27
|
Eedugurala N, Wang Z, Chaudhary U, Nelson N, Kandel K, Kobayashi T, Slowing II, Pruski M, Sadow AD. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01671] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naresh Eedugurala
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Umesh Chaudhary
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Nicholas Nelson
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Kapil Kandel
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Takeshi Kobayashi
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Igor I. Slowing
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Marek Pruski
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Aaron D. Sadow
- U.S. Department of Energy
Ames Laboratory and Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Pinon A, Rossini AJ, Widdifield CM, Gajan D, Emsley L. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR. Mol Pharm 2015; 12:4146-53. [PMID: 26393368 PMCID: PMC4699642 DOI: 10.1021/acs.molpharmaceut.5b00610] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
Abstract
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as (1)H-(13)C and (1)H-(15)N HETCOR or (13)C-(13)C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs.
Collapse
Affiliation(s)
- Arthur
C. Pinon
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institut
de Sciences Analytiques (CNRS/ENS de Lyon/UCB-Lyon 1), Centre de RMN
à Très Hauts Champs, Université
de Lyon, 69100 Villeurbanne, France
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institut
de Sciences Analytiques (CNRS/ENS de Lyon/UCB-Lyon 1), Centre de RMN
à Très Hauts Champs, Université
de Lyon, 69100 Villeurbanne, France
| | - Cory M. Widdifield
- Institut
de Sciences Analytiques (CNRS/ENS de Lyon/UCB-Lyon 1), Centre de RMN
à Très Hauts Champs, Université
de Lyon, 69100 Villeurbanne, France
| | - David Gajan
- Institut
de Sciences Analytiques (CNRS/ENS de Lyon/UCB-Lyon 1), Centre de RMN
à Très Hauts Champs, Université
de Lyon, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institut
de Sciences Analytiques (CNRS/ENS de Lyon/UCB-Lyon 1), Centre de RMN
à Très Hauts Champs, Université
de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
29
|
Wickramasinghe A, Wang S, Matsuda I, Nishiyama Y, Nemoto T, Endo Y, Ishii Y. Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:9-16. [PMID: 26476810 PMCID: PMC4674312 DOI: 10.1016/j.ssnmr.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 05/19/2023]
Abstract
This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using (13)C and (15)N CPMAS under ultra-fast MAS at a spinning speed (νR) of 80-100kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D (13)C CPMAS experiments for uniformly (13)C- and (15)N-labeled alanine demonstrated that the sensitivity per given sample amount obtained at νR of 100kHz and a (1)H NMR frequency (νH) of 750.1MHz is ~10 fold higher than that of a traditional CPMAS experiment obtained at νR of 20kHz and νH of 400.2MHz. A comparison of different (1)H-decoupling schemes in CPMAS at νR of 100kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5-20kHz. Excellent (1)H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at νR of 80kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1nmol to 80nmol by (1)H-detected 2D (15)N/(1)H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.
Collapse
Affiliation(s)
- Ayesha Wickramasinghe
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Songlin Wang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Isamu Matsuda
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Nemoto
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; Center for Structural Biology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
30
|
Zhang R, Nishiyama Y, Ramamoorthy A. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. J Chem Phys 2015; 143:164201. [PMID: 26520504 PMCID: PMC4617735 DOI: 10.1063/1.4933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
31
|
Preston CM. Environmental NMR--the early years. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:635-647. [PMID: 25627248 DOI: 10.1002/mrc.4180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Caroline M Preston
- Pacific Forestry Centre, Natural Resources Canada, 506 W. Burnside Rd., Victoria, BC, V8Z 1M5, Canada
| |
Collapse
|
32
|
Pandey MK, Nishiyama Y. Proton-detected 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H-(1)H RFDR mixing on a natural abundant sample under ultrafast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:96-101. [PMID: 26232769 DOI: 10.1016/j.jmr.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered l-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish (14)N/(14)N correlation from a 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between (14)N and (1)H has been achieved by HMQC experiment, whereas (14)N/(14)N correlation is attained through enhanced (1)H-(1)H spin diffusion process due to (1)H-(1)H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90kHz) provides sensitivity enhancement through increased (1)H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong (14)N radio frequency (RF) fields further improves the sensitivity per unit sample volume.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
33
|
Zhang R, Pandey MK, Nishiyama Y, Ramamoorthy A. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Sci Rep 2015; 5:11810. [PMID: 26138791 PMCID: PMC4490345 DOI: 10.1038/srep11810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- 1] RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan [2] JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
34
|
Zhang R, Ramamoorthy A. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions. J Chem Phys 2015; 142:204201. [PMID: 26026440 PMCID: PMC4449354 DOI: 10.1063/1.4921381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/08/2015] [Indexed: 01/30/2023] Open
Abstract
Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
35
|
Gu W, Stalzer MM, Nicholas CP, Bhattacharyya A, Motta A, Gallagher JR, Zhang G, Miller JT, Kobayashi T, Pruski M, Delferro M, Marks TJ. Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst···Acidic Oxide Surface Binding Geometry. J Am Chem Soc 2015; 137:6770-80. [DOI: 10.1021/jacs.5b03254] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Weixing Gu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Madelyn Marie Stalzer
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher P. Nicholas
- Exploratory Catalysis Research, UOP LLC, a Honeywell Company, 25 East Algonquin Road, Des Plaines, Illinois 60017, United States
| | - Alak Bhattacharyya
- Exploratory Catalysis Research, UOP LLC, a Honeywell Company, 25 East Algonquin Road, Des Plaines, Illinois 60017, United States
| | - Alessandro Motta
- Dipartimento
di Chimica, Universita’ degli Studi di Roma “La Sapienza” and INSTM UdR Roma, p.le A. Moro 5, I-00185, Roma, Italy
| | - James R. Gallagher
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Guanghui Zhang
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Jeffrey T. Miller
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Takeshi Kobayashi
- U.S.
DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Marek Pruski
- U.S.
DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Massimiliano Delferro
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J. Marks
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling. PLoS One 2015; 10:e0122714. [PMID: 25856081 PMCID: PMC4391754 DOI: 10.1371/journal.pone.0122714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/14/2015] [Indexed: 11/19/2022] Open
Abstract
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sudhakar Parthasarathy
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
| | | | - Kazuo Yamauchi
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
- Nuclear Magnetic Resonance Core Lab., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
| | - Tsutomu Terauchi
- SAIL Technologies Co., Inc., Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
- Center for Priority Areas, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Ishii
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
37
|
Paluch P, Pawlak T, Oszajca M, Lasocha W, Potrzebowski MJ. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 65:2-11. [PMID: 25240460 DOI: 10.1016/j.ssnmr.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/29/2014] [Indexed: 05/25/2023]
Abstract
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland
| | - Tomasz Pawlak
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland
| | - Marcin Oszajca
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Niezapominajek 8, 30-239 Krakow, Poland
| | - Wieslaw Lasocha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS, Niezapominajek 8, 30-239 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marek J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Lodz, Poland.
| |
Collapse
|
38
|
Guo Z, Kobayashi T, Wang LL, Goh TW, Xiao C, Caporini MA, Rosay M, Johnson DD, Pruski M, Huang W. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy. Chemistry 2014; 20:16308-13. [DOI: 10.1002/chem.201403884] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/07/2014] [Indexed: 11/06/2022]
|
39
|
Zhang R, Ramamoorthy A. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 243:85-92. [PMID: 24792960 PMCID: PMC4057659 DOI: 10.1016/j.jmr.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 05/04/2023]
Abstract
The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA; School of Physics, Nankai University, Tianjin 300071, PR China
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|