1
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 subcomplex opposes G1 progression through regulation of CCND1 and CCND2. eLife 2025; 13:RP97577. [PMID: 39903505 PMCID: PMC11793871 DOI: 10.7554/elife.97577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kyle Wang
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | | | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Ian R Jones
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Frances V Hundley
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Charles Boone
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Yin Shen
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - David P Toczyski
- University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Korleski J, Sudhir S, Rui Y, Caputo CA, Sall S, Johnson AL, Khela HS, Madhvacharyula T, Rasamsetty A, Li Y, Lal B, Zhou W, Smith-Connor K, Tzeng SY, Green JJ, Laterra J, Lopez-Bertoni H. miR-217-5p NanomiRs Inhibit Glioblastoma Growth and Enhance Effects of Ionizing Radiation via EZH2 Inhibition and Epigenetic Reprogramming. Cancers (Basel) 2024; 17:80. [PMID: 39796709 PMCID: PMC11719642 DOI: 10.3390/cancers17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM. Methods: We utilized computational analyses to identify a subset of clinically relevant genes that were predicted to be repressed in a Polycomb repressive complex 2 (PRC2)-dependent manner in GBM upon induction of stem cell-driving events. These associations were validated in patient-derived GBM neurosphere models using state-of-the-art molecular techniques to express, silence, and measure microRNA (miRNA) and gene expression changes. Advanced Poly(β-amino ester) nanoparticle formulations (PBAEs) were used to deliver miRNAs in vivo to orthotopic human GBM tumor models. Results: We show that glioma stem cell (GSC) formation and tumor propagation involve the crosstalk between multiple epigenetic mechanisms, resulting in the repression of the miRNAs that regulate PRC2 function and histone H3 lysine 27 tri-methylation (H3K27me3). We also identified miR-217-5p as an EZH2 regulator repressed in GSCs and showed that miR-217-5p reconstitution using advanced nanoparticle formulations re-activates the PRC2-repressed genes, inhibits GSC formation, impairs tumor growth, and enhances the effects of ionizing radiation in an orthotopic model of GBM. Conclusions: These findings suggest that inhibiting PRC2 function by targeting EZH2 with miR-217-5p advanced nanoparticle formulations could have a therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sweta Sudhir
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A. Caputo
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tanmaya Madhvacharyula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Anisha Rasamsetty
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 Subcomplex Opposes G1 Progression through Regulation of CCND1 and CCND2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585604. [PMID: 38562687 PMCID: PMC10983909 DOI: 10.1101/2024.03.18.585604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including CML, breast cancer and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Harsha Garadi Suresh
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Frances V Hundley
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - David P Toczyski
- University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Munawar N, Wynne K, Oliviero G. PRC1 Protein Subcomplexes Architecture: Focus on the Interplay between Distinct PCGF Subunits in Protein Interaction Networks. Int J Mol Sci 2024; 25:9809. [PMID: 39337298 PMCID: PMC11432245 DOI: 10.3390/ijms25189809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.
Collapse
Affiliation(s)
- Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Kieran Wynne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| |
Collapse
|
5
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
6
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Aydin S, Pham DT, Zhang T, Keele GR, Skelly DA, Paulo JA, Pankratz M, Choi T, Gygi SP, Reinholdt LG, Baker CL, Churchill GA, Munger SC. Genetic dissection of the pluripotent proteome through multi-omics data integration. CELL GENOMICS 2023; 3:100283. [PMID: 37082146 PMCID: PMC10112288 DOI: 10.1016/j.xgen.2023.100283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 04/22/2023]
Abstract
Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.
Collapse
Affiliation(s)
- Selcan Aydin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Duy T. Pham
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Tian Zhang
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | - Ted Choi
- Predictive Biology, Inc., Carlsbad, CA 92010, USA
| | | | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christopher L. Baker
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
8
|
Tang C, Lv Y, Ding K, Cao Y, Ma Z, Yang L, Zhang Q, Zhou H, Wang Y, Liu Z, Cao X. Comprehensive Pan-Cancer Analysis of MTF2 Effects on Human Tumors. Curr Probl Cancer 2023; 47:100957. [PMID: 37027952 DOI: 10.1016/j.currproblcancer.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Understanding oncogenic processes and underlying mechanisms to advance research into human tumors is critical for effective treatment. Studies have shown that Metal regulatory transcription factor 2(MTF2) drives malignant progression in liver cancer and glioma. However, no systematic pan-cancer analysis of MTF2 has been performed. Here, we use University of California Santa Cruz, Cancer Genome Atlas , Genotype-Tissue Expression data, Tumor Immune Estimation Resource, and Clinical Proteomic Tumor Analysis Consortium bioinformatics tools to explore differential expression of MTF2 across different tumor types. MTF2 was found to be highly expressed in the cancer lines that were available through the respective databases included in the study, and overexpression of MTF2 may lead to a poor prognosis in tumor patients such as glioblastoma multiforme, brain lower grade glioma, KIPAN, LIHC, adrenocortical carcinoma, etc. We also validated MTF2 mutations in cancer, compared MTF2 methylation levels in normal and primary tumor tissues, analyzed the association of MTF2 with the immune microenvironment, and validated the functional role of MTF2 in glioma U87 and U251 and breast cancer MDA-MB-231 cell lines by cytometry. This also indicates that MTF2 has a promising application prospect in cancer treatment.
Collapse
|
9
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
10
|
Kurniawan F, Prasanth SG. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13:82-87. [PMID: 35904285 PMCID: PMC9467525 DOI: 10.1080/21541264.2022.2105128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Transcription regulation is an important mechanism that controls pluripotency and differentiation. Transcription factors dictate cell fate decisions by functioning cooperatively with chromatin regulators. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein regulates the expression of differentiation-associated genes by modulating the chromatin architecture at promoters. We highlight the collaboration of BEND3 with the polycomb repressive complex in coordinating transcription repression and propose a model highlighting the relevance of the BEND3-PRC2 axis in gene regulation and chromatin organization.Abbreviations: BEND3, BANP, E5R and Nac1 domain; rDNA, ribosomal DNA; PRC2, Polycomb Repressive Complex 2; H3K27me3, Histone H3 Lysine 27 methylation; PcG, Polycomb group.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| |
Collapse
|
11
|
Detraux D, Renard P. Succinate as a New Actor in Pluripotency and Early Development? Metabolites 2022; 12:651. [PMID: 35888775 PMCID: PMC9325148 DOI: 10.3390/metabo12070651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pluripotent cells have been stabilized from pre- and post-implantation blastocysts, representing respectively naïve and primed stages of embryonic stem cells (ESCs) with distinct epigenetic, metabolic and transcriptomic features. Beside these two well characterized pluripotent stages, several intermediate states have been reported, as well as a small subpopulation of cells that have reacquired features of the 2C-embryo (2C-like cells) in naïve mouse ESC culture. Altogether, these represent a continuum of distinct pluripotency stages, characterized by metabolic transitions, for which we propose a new role for a long-known metabolite: succinate. Mostly seen as the metabolite of the TCA, succinate is also at the crossroad of several mitochondrial biochemical pathways. Its role also extends far beyond the mitochondrion, as it can be secreted, modify proteins by lysine succinylation and inhibit the activity of alpha-ketoglutarate-dependent dioxygenases, such as prolyl hydroxylase (PHDs) or histone and DNA demethylases. When released in the extracellular compartment, succinate can trigger several key transduction pathways after binding to SUCNR1, a G-Protein Coupled Receptor. In this review, we highlight the different intra- and extracellular roles that succinate might play in the fields of early pluripotency and embryo development.
Collapse
Affiliation(s)
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| |
Collapse
|
12
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
13
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
14
|
Ghamlouch H, Boyle EM, Blaney P, Wang Y, Choi J, Williams L, Bauer M, Auclair D, Bruno B, Walker BA, Davies FE, Morgan GJ. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J Exp Clin Cancer Res 2021; 40:380. [PMID: 34857028 PMCID: PMC8638425 DOI: 10.1186/s13046-021-02185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Louis Williams
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Benedetto Bruno
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| |
Collapse
|
15
|
Structural insights into the interactions of Polycomb Repressive Complex 2 with chromatin. Biochem Soc Trans 2021; 49:2639-2653. [PMID: 34747969 DOI: 10.1042/bst20210450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complexes are a family of chromatin modifier enzymes which are critical for regulating gene expression and maintaining cell-type identity. The reversible chemical modifications of histone H3 and H2A by the Polycomb proteins are central to its ability to function as a gene silencer. PRC2 is both a reader and writer of the tri-methylation of histone H3 lysine 27 (H3K27me3) which serves as a marker for transcription repression, and heterochromatin boundaries. Over the last few years, several studies have provided key insights into the mechanisms regulating the recruitment and activation of PRC2 at Polycomb target genes. In this review, we highlight the recent structural studies which have elucidated the roles played by Polycomb cofactor proteins in mediating crosstalk between histone post-translational modifications and the recruitment of PRC2 and the stimulation of PRC2 methyltransferase activity.
Collapse
|
16
|
Meng X, Zhang Y, Hu Y, Zhong J, Jiang C, Zhang H. LncRNA CCAT1 sponges miR-218-5p to promote EMT, cellular migration and invasion of retinoblastoma by targeting MTF2. Cell Signal 2021; 86:110088. [PMID: 34265414 DOI: 10.1016/j.cellsig.2021.110088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023]
Abstract
Retinoblastoma (RB) is the primary neoplasms of the retina that is most common in pediatrics age. Long non-coding RNAs (lncRNAs) has been noticed for strong relation to the occurrence and progress of retinoblastoma. Previously, we have demonstrated that lncRNA colon cancer-associated transcript 1 (CCAT1) in two RB cell lines SO-RB50 and Y79 was obviously overexpressed, and notably, lncRNA CCAT1 attenuated miR-218-5p expressionand induced proliferation, cell migration and invasion. But, how lncRNA CCAT1 acts in RB development and the potential molecular mechanisms remain to be determined. In this study, the expression levels of lncRNA CCAT1 and miR-218-5p were evaluated in RB tissues by Q-PCR, which established the results in the cell lines. Further, lncRNA CCAT1 was shown to promote epithelial-to-mesenchymal transition (EMT), cellular migration and invasion of RB cells by functional analysis of downregulation and overexpression of lncRNA CCAT1 with specific siRNA and pcDNA transfection. By performing bioinformatics and dual luciferase reporter assay, we verified the direct interaction between lncRNA CCAT1 and miR-218-5p. Besides, bioinformatics analysis indicated that metal regulatory transcription factor 2 (MTF2) might be a potent novel target for miR-218-5p, which was further validated with luciferase reporter assay, Q-PCR and also Western blot analysis. Functional analysis and rescue analysis showed that lncRNA CCAT1 via competitive binding to miR-218-5p to modulate MTF2 expression thus accelerate EMT, cell migration and invasion of RB. In conclusion, here we identified the lncRNA CCAT1/miR-218-5p/MTF2 axis in RB cell lines. Our investigations on the function of lncRNA CCAT1 and the roles of the related molecules hint a novel potential target fo RB therapy.
Collapse
Affiliation(s)
- Xiangbo Meng
- Department of Rehabilitation Medicine, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Yixia Zhang
- Department of Fundus Disease, Chongqing Aier Eye Hospital, Chongqing 400020, China
| | - Yongping Hu
- Department of Ophthalmology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Jianguang Zhong
- Department of Ophthalmology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Chunming Jiang
- Department of Pediatrics, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Hongxu Zhang
- Department of Ophthalmology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
17
|
Liu J, Liu S, Han L, Sheng Y, Zhang Y, Kim IM, Wan J, Yang L. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 2021; 148:268341. [PMID: 34027990 PMCID: PMC8276986 DOI: 10.1242/dev.199628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis. Summary: This study reveals the indispensable role of the lncRNA HBL1 in guiding PRC2 function during early human cardiogenesis, and uncovers the crosstalk of the cytosolic and nuclear regions of HBL1 to orchestrate human cardiac development.
Collapse
Affiliation(s)
- Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Petracovici A, Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol Cell 2021; 81:2625-2639.e5. [PMID: 33887196 PMCID: PMC8217195 DOI: 10.1016/j.molcel.2021.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.
Collapse
Affiliation(s)
- Ana Petracovici
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Penailillo RS, Eckert JJ, Burton MA, Burdge GC, Fleming TP, Lillycrop KA. High maternal folic acid intake around conception alters mouse blastocyst lineage allocation and expression of key developmental regulatory genes. Mol Reprod Dev 2021; 88:261-273. [PMID: 33719134 DOI: 10.1002/mrd.23462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
Folate, a cofactor for the supply of one-carbon groups, is required by epigenetic processes to regulate cell lineage determination during development. The intake of folic acid (FA), the synthetic form of folate, has increased significantly over the past decade, but the effects of high periconceptional FA intake on cell lineage determination in the early embryo remains unknown. Here, we investigated the effect of maternal high FA (HFA) intake on blastocyst development and expression of key regulatory genes. C57BL/6 adult female mice were fed either Control diet (1 mg FA) for 4 weeks before conception and during the preimplantation period (Con-Con); Control diet for 4 weeks preconception, followed by HFA (5 mg FA) diet during preimplantation (Con-HFA); or HFA diet for 4 weeks preconception and during preimplantation (HFA-HFA). At E3.5, blastocyst cell number, protein, and mRNA expression were measured. In HFA-HFA blastocysts, trophectoderm cell numbers and expression of CDX2, Oct-4, and Nanog were reduced compared with Con-Con blastocysts; Con-HFA blastocysts showed lower CDX2 and Oct-4 expression than Con-Con blastocysts. These findings suggest periconceptional HFA intake induces changes in key regulators of embryo morphogenesis with potential implications for subsequent development.
Collapse
Affiliation(s)
- R S Penailillo
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - J J Eckert
- School of Human Health and Development, University of Southampton, Southampton, UK
| | - M A Burton
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - G C Burdge
- School of Human Health and Development, University of Southampton, Southampton, UK
| | - T P Fleming
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - K A Lillycrop
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Youmans DT, Gooding AR, Dowell RD, Cech TR. Competition between PRC2.1 and 2.2 subcomplexes regulates PRC2 chromatin occupancy in human stem cells. Mol Cell 2021; 81:488-501.e9. [PMID: 33338397 PMCID: PMC7867654 DOI: 10.1016/j.molcel.2020.11.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) silences expression of developmental transcription factors in pluripotent stem cells by methylating lysine 27 on histone H3. Two mutually exclusive subcomplexes, PRC2.1 and PRC2.2, are defined by the set of accessory proteins bound to the core PRC2 subunits. Here we introduce separation-of-function mutations into the SUZ12 subunit of PRC2 to drive it into a PRC2.1 or 2.2 subcomplex in human induced pluripotent stem cells (iPSCs). We find that PRC2.2 occupies polycomb target genes at low levels and that homeobox transcription factors are upregulated when this complex is exclusively present. In contrast with previous studies, we find that chromatin occupancy of PRC2 increases drastically when it is forced to form PRC2.1. Additionally, several cancer-associated mutations also coerce formation of PRC2.1. We suggest that PRC2 chromatin occupancy can be altered in the context of disease or development by tuning the ratio of PRC2.1 to PRC2.2.
Collapse
Affiliation(s)
- Daniel T Youmans
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
21
|
Liu X. A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Subcell Biochem 2020; 96:519-562. [PMID: 33252743 DOI: 10.1007/978-3-030-58971-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Al-Raawi D, Kanhere A. Autoregulation of JARID2 through PRC2 interaction with its antisense ncRNA. BMC Res Notes 2020; 13:501. [PMID: 33126912 PMCID: PMC7602346 DOI: 10.1186/s13104-020-05348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Objective JARID2 is a member of chromatin-modifying Polycomb Repressive Complex-2 or PRC2. It plays a role in recruiting PRC2 to developmental genes and regulating its activity. JARID2 along with PRC2 is indispensable for normal development. However, it remains unclear how JARID2 expression itself is regulated. Recently a number of non-protein-coding RNAs or ncRNAs are shown to regulate transcription. An antisense ncRNA, JARID2-AS1, is expressed from the first intron of JARID2 isoform-1 but its role in regulation of JARID2 expression has not been investigated. The objective of this study was to explore the role of JARID2-AS1 in regulating JARID2 and consequently PRC2. Results We found that JARID2-AS1 is localised in the nucleus and shows anti-correlated expression pattern to that of JARID2 isoform-1 mRNA. More interestingly, data mining approach strongly indicates that JARID2-AS1 binds to PRC2. These are important observations that provide insights into transcriptional regulation of JARID2, especially because they indicate that JARID2-AS1 by interacting and probably recruiting PRC2 participates in an auto-regulatory loop that controls levels of JARID2. This holds importance in regulation of developmental and differentiation processes. However, to support this hypothesis, further in-depth studies are needed which can verify JARID2-AS1-PRC2 interactions.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- Tumour Biology Research Program, 57357 Children's Cancer Hospital, Cairo, Egypt.,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom. .,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom.
| |
Collapse
|
23
|
Dong C, Nakagawa R, Oyama K, Yamamoto Y, Zhang W, Dong A, Li Y, Yoshimura Y, Kamiya H, Nakayama JI, Ueda J, Min J. Structural basis for histone variant H3tK27me3 recognition by PHF1 and PHF19. eLife 2020; 9:58675. [PMID: 32869745 PMCID: PMC7492083 DOI: 10.7554/elife.58675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/29/2020] [Indexed: 12/30/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a multicomponent histone H3K27 methyltransferase complex, best known for silencing the Hox genes during embryonic development. The Polycomb-like proteins PHF1, MTF2, and PHF19 are critical components of PRC2 by stimulating its catalytic activity in embryonic stem cells. The Tudor domains of PHF1/19 have been previously shown to be readers of H3K36me3 in vitro. However, some other studies suggest that PHF1 and PHF19 co-localize with the H3K27me3 mark but not H3K36me3 in cells. Here, we provide further evidence that PHF1 co-localizes with H3t in testis and its Tudor domain preferentially binds to H3tK27me3 over canonical H3K27me3 in vitro. Our complex structures of the Tudor domains of PHF1 and PHF19 with H3tK27me3 shed light on the molecular basis for preferential recognition of H3tK27me3 by PHF1 and PHF19 over canonical H3K27me3, implicating that H3tK27me3 might be a physiological ligand of PHF1/19.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kyohei Oyama
- Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yamamoto
- Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Weilian Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroyuki Kamiya
- Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Jun Ueda
- Centre for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
25
|
Wang F, Gao Y, Lv Y, Wu Y, Guo Y, Du F, Wang S, Yu J, Cao X, Li PA. Polycomb-like 2 regulates PRC2 components to affect proliferation in glioma cells. J Neurooncol 2020; 148:259-271. [PMID: 32436117 PMCID: PMC7316845 DOI: 10.1007/s11060-020-03538-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Introduction The Polycomb group (PcG) is an important family of transcriptional regulators that controls growth and tumorigenesis. The PcG mainly consists of two complexes, PRC1 and Polycomb Repressive Complex 2 (PRC2). Polycomb-like 2 (PCL2) is known to interact with the PRC2 protein. The role of PCL2 in the development and progression of glioma is unclear. Methods We use The Cancer Genome Atlas (TCGA) database to detect the expression of PCL2 in various tumors. 117 cases of clinical glioma (WHOI–IV) were collected, and PCL2 expression and localization were detected by immunohistochemical staining. Glioma cells U87/U251 were infected with overexpressed and interfered PCL2. CCK8 assay, colony formation assay, EdU method, cell cycle and apoptosis were used to detect cell proliferation and apoptosis. Western blot was used to detect the expression of PRC2-related core proteins. After DZNeP intervention, PRC2 protein expression was again measured to discuss the mechanism of PCL2 action. Results TCGA database results and immunohistochemical staining results suggest that PCL2 is highly expressed in gliomas. We found that the PCL2 gene promoted tumor cell proliferation, enhanced the colony formation ability, and increased S phase in the cell cycle. The overexpression of PCL2 upregulated the expression levels of EZH2 and EED (two core members of PRC2), decreased the expression of SUZ12, increased the level of H3K27 trimethylation (H3K27me3), H3K4 dimethylation (H3K4me2), and decreased H3K9 dimethylation (H3K9me2). The result after interfering with PCL2 was the opposite. Conclusions As an important accessory protein of PRC2, PCL2 can not only change the expression of PRC2 components, but also affect the expression level of Histone methylation. Therefore, PCL2 may be an important hub for regulating the synergy among PRC2 members. This study revealed PCL2 as a new target for tumor research and open up a new avenue for future research in glioma. Electronic supplementary material The online version of this article (10.1007/s11060-020-03538-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Yongying Gao
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, 750000, China
| | - Ye Lv
- Department of Oncology, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Yongzhen Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Fang Du
- School of Information Engineering, Ningxia University, Ningxia, 750021, China
| | - Shixiong Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China.
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
26
|
Carter CS, Patel RM. Ossifying Fibromyxoid Tumor: A Review With Emphasis on Recent Molecular Advances and Differential Diagnosis. Arch Pathol Lab Med 2020; 143:1504-1512. [PMID: 31765250 DOI: 10.5858/arpa.2019-0371-ra] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Ossifying fibromyxoid tumor (OFMT) is a rare, slow-growing mesenchymal neoplasm of uncertain histogenesis with intermediate malignant potential. OBJECTIVE.— To highlight the most important diagnostic features, including morphologic, immunohistochemical, and molecular findings; to provide comparisons to other entities in the differential diagnosis; and to provide a summary of the clinical features and outcomes in cases reported to date. DATA SOURCES.— The data sources include recently published literature encompassing OFMT and tumors in the histologic differential diagnosis, and cases from institutional files. CONCLUSIONS.— Ossifying fibromyxoid tumor is important to recognize because of its low-grade morphology but potential for recurrence and metastasis. Recent molecular analysis has expanded the morphologic spectrum of OFMT, with additional cases discovered that are enriched for aggressive behavior. The diagnosis can often be rendered through a combination of morphology and coexpression of S100 protein and desmin, although only a minority of cases described contain all of these primary features. In cases that do not have all of these features, a high index of suspicion guided by morphology and exclusion of other tumors in the histologic differential diagnosis can lead to the correct diagnosis. Growing access to molecular genetic testing will become increasingly important for correct diagnosis of tumors at the ends of the morphologic spectrum.
Collapse
Affiliation(s)
- Cody S Carter
- From the Departments of Pathology (Drs Carter and Patel) and Dermatology (Dr Patel), Michigan Medicine, University of Michigan, Ann Arbor
| | - Rajiv M Patel
- From the Departments of Pathology (Drs Carter and Patel) and Dermatology (Dr Patel), Michigan Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
27
|
Chen S, Jiao L, Liu X, Yang X, Liu X. A Dimeric Structural Scaffold for PRC2-PCL Targeting to CpG Island Chromatin. Mol Cell 2020; 77:1265-1278.e7. [PMID: 31959557 PMCID: PMC7571800 DOI: 10.1016/j.molcel.2019.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiuli Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Jain P, Ballare C, Blanco E, Vizan P, Di Croce L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife 2020; 9:51373. [PMID: 32155117 PMCID: PMC7064337 DOI: 10.7554/elife.51373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The Polycomb-like protein PHF19/PCL3 associates with PRC2 and mediates its recruitment to chromatin in embryonic stem cells. PHF19 is also overexpressed in many cancers. However, neither PHF19 targets nor misregulated pathways involving PHF19 are known. Here, we investigate the role of PHF19 in prostate cancer cells. We find that PHF19 interacts with PRC2 and binds to PRC2 targets on chromatin. PHF19 target genes are involved in proliferation, differentiation, angiogenesis, and extracellular matrix organization. Depletion of PHF19 triggers an increase in MTF2/PCL2 chromatin recruitment, with a genome-wide gain in PRC2 occupancy and H3K27me3 deposition. Transcriptome analysis shows that PHF19 loss promotes deregulation of key genes involved in growth, metastasis, invasion, and of factors that stimulate blood vessels formation. Consistent with this, PHF19 silencing reduces cell proliferation, while promotes invasive growth and angiogenesis. Our findings reveal a role for PHF19 in controlling the balance between cell proliferation and invasiveness in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballare
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
29
|
Wu TT, Cai J, Tian YH, Chen JF, Cheng ZL, Pu CS, Shi WZ, Suo XP, Wu XJ, Dou XW, Zhang KM. MTF2 Induces Epithelial-Mesenchymal Transition and Progression of Hepatocellular Carcinoma by Transcriptionally Activating Snail. Onco Targets Ther 2019; 12:11207-11220. [PMID: 31908487 PMCID: PMC6927270 DOI: 10.2147/ott.s226119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metal regulatory transcription factor 2 (MTF2) has been previously reported as a protein binding to the metal response element of the mouse metallothionein promoter, which is involved in chromosome inactivation and pluripotency. However, the function of MTF2 in tumor formation and progression has not yet been completely elucidated. Methods The expression of MTF2 and clinicopathological characteristics were evaluated by hepatocellular carcinoma (HCC) tissue microarray of 240 specimens. The role of MTF2 on HCC progression was determined using MTT, crystal violet, and transwell assays. Tumor growth was monitored in a xenograft model, and intrahepatic metastasis models were established. Results The expression of MTF2 was increased in HCC and strongly associated with the clinical characteristics and prognosis. Forced expression of MTF2 in HCC cells significantly promoted cell growth, migration, and invasion in vitro. In contrast, downregulation of MTF2 inhibited cell growth, migration, and invasion in vitro. Moreover, knock down of MTF2 suppressed tumorigenesis and intrahepatic metastasis of HCC cells in vivo. Mechanistically, MTF2 overexpression may promote growth and epithelial-mesenchymal transition processes of HCC cells by facilitating Snail transcription. Conclusion MTF2 promotes the proliferation, migration, and invasion of HCC cells by regulating Snail transcription, providing a potential therapeutic candidate for patients with HCC.
Collapse
Affiliation(s)
- Tian-Tian Wu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Jun Cai
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Yuan-Hu Tian
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Jian-Fei Chen
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Zhi-Lei Cheng
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Chang-Sheng Pu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Wen-Zai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xiao-Peng Suo
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xian-Jia Wu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xiao-Wei Dou
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Ke-Ming Zhang
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| |
Collapse
|
30
|
Ye F, Huang J, Wang H, Luo C, Zhao K. Targeting epigenetic machinery: Emerging novel allosteric inhibitors. Pharmacol Ther 2019; 204:107406. [PMID: 31521697 DOI: 10.1016/j.pharmthera.2019.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Epigenetics has emerged as an extremely exciting fast-growing area of biomedical research in post genome era. Epigenetic dysfunction is tightly related with various diseases such as cancer and aging related degeneration, potentiating epigenetics modulators as important therapeutics targets. Indeed, inhibitors of histone deacetylase and DNA methyltransferase have been approved for treating blood tumor malignancies, whereas inhibitors of histone methyltransferase and histone acetyl-lysine recognizer bromodomain are in clinical stage. However, it remains a great challenge to discover potent and selective inhibitors by targeting catalytic site, as the same subfamily of epigenetic enzymes often share high sequence identity and very conserved catalytic core pocket. It is well known that epigenetic modifications are usually carried out by multi-protein complexes, and activation of catalytic subunit is often tightly regulated by other interactive protein component, especially in disease conditions. Therefore, it is not unusual that epigenetic complex machinery may exhibit allosteric regulation site induced by protein-protein interactions. Targeting allosteric site emerges as a compelling alternative strategy to develop epigenetic drugs with enhanced druggability and pharmacological profiles. In this review, we highlight recent progress in the development of allosteric inhibitors for epigenetic complexes through targeting protein-protein interactions. We also summarized the status of clinical applications of those inhibitors. Finally, we provide perspectives of future novel allosteric epigenetic machinery modulators emerging from otherwise undruggable single protein target.
Collapse
Affiliation(s)
- Fei Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Huang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
31
|
Guo X, Wang Z, Lu C, Hong W, Wang G, Xu Y, Liu Z, Kang J. LincRNA-1614 coordinates Sox2/PRC2-mediated repression of developmental genes in pluripotency maintenance. J Mol Cell Biol 2019; 10:118-129. [PMID: 28992244 PMCID: PMC5951109 DOI: 10.1093/jmcb/mjx041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/12/2017] [Indexed: 11/14/2022] Open
Abstract
Large-intergenic noncoding RNAs (lincRNAs) cooperate with core transcription factors to coordinate the pluripotency network of embryonic stem cells. The mechanisms by which lincRNAs affect chromatin structure and gene transcription remain mostly unknown. Here, we identified that a lincRNA (linc1614), occupied by pluripotency factors at its promoter, was indispensable for both maintenance and acquisition of pluripotency. Linc1614 served as a specific partner of core factor Sox2 in maintaining pluripotency, primarily by mediating the function of Sox2 in the repression of developmental genes. Moreover, Ezh2, an essential subunit of polycomb repressive complex 2 (PRC2), physically interacted with linc1614 and contributed to lincRNA-mediated transcriptional silencing. Thus, we propose that the interplay of linc1614 with Sox2 implicates this lincRNA as a recruitment platform that mediates transcriptional silencing by guiding the PRC2 complex to the loci of developmental genes.
Collapse
Affiliation(s)
- Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zikang Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chenqi Lu
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wujun Hong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhongmin Liu
- Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Hu J, Wang J. From embryonic stem cells to induced pluripotent stem cells-Ready for clinical therapy? Clin Transplant 2019; 33:e13573. [PMID: 31013374 DOI: 10.1111/ctr.13573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells and induced pluripotent stem cells have increasingly important roles in many different fields of research and medicine. Major areas of impact include improved in vitro disease models, drug screening, and the development of cell-based clinical therapies. Here, we review the generation and uses of embryonic stem cells compared to induced pluripotent stem cells and discuss their advantages and limitations. We also evaluate the feasibility of clinical therapies and the future prospects for induced pluripotent cell-based treatments.
Collapse
Affiliation(s)
- Jing Hu
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Mellini P, Marrocco B, Borovika D, Polletta L, Carnevale I, Saladini S, Stazi G, Zwergel C, Trapencieris P, Ferretti E, Tafani M, Valente S, Mai A. Pyrazole-based inhibitors of enhancer of zeste homologue 2 induce apoptosis and autophagy in cancer cells. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0150. [PMID: 29685965 DOI: 10.1098/rstb.2017.0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 12/14/2022] Open
Abstract
Novel pyrazole-based EZH2 inhibitors have been prepared through a molecular pruning approach from known inhibitors bearing a bicyclic moiety as a central scaffold. The hit compound 1o (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxamide) showed low micromolar EZH2/PRC2 inhibition and high selectivity towards a panel of other methyltransferases. Moreover, 1o displayed cell growth arrest in breast MDA-MB231, leukaemia K562, and neuroblastoma SK-N-BE cancer cells joined to reduction of H3K27me3 levels and induction of apoptosis and autophagy.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Paolo Mellini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Diana Borovika
- Department of Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Lucia Polletta
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale Regina Elena 324, 00161 Roma, Italy
| | - Ilaria Carnevale
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale Regina Elena 324, 00161 Roma, Italy
| | - Serena Saladini
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale Regina Elena 324, 00161 Roma, Italy
| | - Giulia Stazi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Peteris Trapencieris
- Department of Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Elisabetta Ferretti
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale Regina Elena 324, 00161 Roma, Italy
| | - Marco Tafani
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale Regina Elena 324, 00161 Roma, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy .,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
34
|
Al-Raawi D, Jones R, Wijesinghe S, Halsall J, Petric M, Roberts S, Hotchin NA, Kanhere A. A novel form of JARID2 is required for differentiation in lineage-committed cells. EMBO J 2018; 38:embj.201798449. [PMID: 30573669 PMCID: PMC6356158 DOI: 10.15252/embj.201798449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Polycomb repressive complex‐2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone‐modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co‐factor of PRC2 and is important for targeting PRC2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage‐committed human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N‐terminal PRC2‐interacting domain (ΔN‐JARID2). We show that ΔN‐JARID2 is a cleaved product of full‐length JARID2 spanning the C‐terminal conserved jumonji domains. JARID2 knockout in keratinocytes results in up‐regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2‐null keratinocytes can be rescued by expression of ΔN‐JARID2 suggesting that, in contrast to PRC2, ΔN‐JARID2 promotes activation of differentiation genes. We propose that a switch from expression of full‐length JARID2 to ΔN‐JARID2 is important for the up‐regulation differentiation genes.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rhian Jones
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - John Halsall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Marija Petric
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neil A Hotchin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Abstract
In this issue, Maganti and colleagues described an epigenetic link between reduced abundance of Polycomb-related protein MTF2 and chemotherapy resistance in refractory acute myeloid leukemia. MTF2 deficiency impaired expression of the PRC2 complex and deposition of H3K27me3 at many genes, including the key target gene MDM2, leading to increased MDM2 expression that in turn depleted p53 and thereby conferred chemoresistance. Cancer Discov; 8(11); 1348-51. ©2018 AACR See related article by Maganti et al., p. 1376.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
36
|
Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ, Yockell-Lelièvre J, Battaion HL, Khan ST, Howard JP, Li Y, Grzybowski AT, Sabri E, Ruthenburg AJ, Dilworth FJ, Perkins TJ, Sabloff M, Ito CY, Stanford WL. Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy. Cancer Discov 2018; 8:1376-1389. [PMID: 30115703 DOI: 10.1158/2159-8290.cd-17-0841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/21/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Deep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that metal response element binding transcription factor 2/polycomblike 2 (MTF2/PCL2) plays a fundamental role in the polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML. Unbiased systems analyses identified the loss of MTF2-PRC2 repression of MDM2 as central to, and therefore a biomarker for, refractory AML. Thus, immature MTF2-deficient CD34+CD38- cells overexpress MDM2, thereby inhibiting p53 that leads to chemoresistance due to defects in cell-cycle regulation and apoptosis. Targeting this dysregulated signaling pathway by MTF2 overexpression or MDM2 inhibitors sensitized refractory patient leukemic cells to induction chemotherapeutics and prevented relapse in AML patient-derived xenograft mice. Therefore, we have uncovered a direct epigenetic mechanism by which MTF2 functions as a tumor suppressor required for AML chemotherapeutic sensitivity and identified a potential therapeutic strategy to treat refractory AML.Significance: MTF2 deficiency predicts refractory AML at diagnosis. MTF2 represses MDM2 in hematopoietic cells and its loss in AML results in chemoresistance. Inhibiting p53 degradation by overexpressing MTF2 in vitro or by using MDM2 inhibitors in vivo sensitizes MTF2-deficient refractory AML cells to a standard induction-chemotherapy regimen. Cancer Discov; 8(11); 1376-89. ©2018 AACR. See related commentary by Duy and Melnick, p. 1348 This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Harinad B Maganti
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher Cafariello
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Janet L Manias Rothberg
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Julien Yockell-Lelièvre
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Hannah L Battaion
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Safwat T Khan
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joel P Howard
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yuefeng Li
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Elham Sabri
- Clinical Epidemiology Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mitchell Sabloff
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Caryn Y Ito
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - William L Stanford
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Hirasaki M, Ueda A, Asaka MN, Uranishi K, Suzuki A, Kohda M, Mizuno Y, Okazaki Y, Nishimoto M, Sharif J, Koseki H, Okuda A. Identification of the Coiled-Coil Domain as an Essential Methyl-CpG-Binding Domain Protein 3 Element for Preserving Lineage Commitment Potential of Embryonic Stem Cells. Stem Cells 2018; 36:1355-1367. [DOI: 10.1002/stem.2849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 04/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masamitsu N. Asaka
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Kousuke Uranishi
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masakazu Kohda
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Jafar Sharif
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Haruhiko Koseki
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| |
Collapse
|
38
|
Youmans DT, Schmidt JC, Cech TR. Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 2018; 32:794-805. [PMID: 29891558 PMCID: PMC6049511 DOI: 10.1101/gad.311936.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.
Collapse
Affiliation(s)
- Daniel T Youmans
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Anschutz Medical Campus, University of Colorado at Denver, Aurora, Colorado 80045, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Jens C Schmidt
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
39
|
PCL2, a novel tumor suppressor in breast cancer. Sci Bull (Beijing) 2018; 63:597-598. [PMID: 36658878 DOI: 10.1016/j.scib.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Liang Y, Yang Y, Guo R, Gao S, Guo X, Li D, Wang M, Koseki H, Li X. PCL2 regulates p53 stability and functions as a tumor suppressor in breast cancer. Sci Bull (Beijing) 2018; 63:629-639. [PMID: 36658883 DOI: 10.1016/j.scib.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
Abstract
Polycomblike2 (PCL2) is a well-known component of polycomb repressive complex 2 (PRC2) and plays important roles in H3K27 methylation and homeotic gene silencing. However, the involvement of PCL2 in breast cancer development remains unclear. Here, we established PCL2 as a tumor suppressor gene in breast cancer. Expression level of PCL2 was significantly downregulated in breast cancer tissue samples observed at different TNM stages. Ectopic expression of PCL2 could significantly inhibit cell proliferation and promoted apoptosis. PCL2 also remarkably elevated levels of p53 and its targets by increasing p53 stability. Mechanistically, PCL2 protected p53 proteins from MDM2-mediated ubiquitination and degradation by sequestering MDM2 into the nucleolus. Overexpression of PCL2 also suppressed migration and invasion by inhibiting epithelial-mesenchymal transition. PCL2 expression was correlated with E-cadherin expression and was inversely correlated with vimentin expression. Furthermore, PCL2 knockdown could attenuate anti-tumor effect of MLN4924. Taken together, our findings indicated that PCL2 played a tumor suppressor role in development and progression of breast cancer and may be a prognostic and predictive marker for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China; Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yang Yang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Renbo Guo
- Department of Urology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China
| | - Shuang Gao
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Xinghong Guo
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Danyang Li
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Meng Wang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xiangzhi Li
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China.
| |
Collapse
|
41
|
A novel role of metal response element binding transcription factor 2 at the Hox gene cluster in the regulation of H3K27me3 by polycomb repressive complex 2. Oncotarget 2018; 9:26572-26585. [PMID: 29899877 PMCID: PMC5995182 DOI: 10.18632/oncotarget.25505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to play an important role in the regulation of early embryonic development, differentiation, and cellular proliferation by introducing methyl groups onto lysine 27 of histone H3 (H3K27me3). PRC2 is tightly associated with silencing of Hox gene clusters and their sequential activation, leading to normal development and differentiation. To investigate epigenetic changes induced by PRC2 during differentiation, deposition of PRC2 components and levels of H3K27me3 were extensively examined using mouse F9 cells as a model system. Contrary to positive correlation between PRC2 deposition and H3K27me3 level, down-regulation of PRC2 components by shRNA and inhibition of EZH1/2 resulted in unexpected elevation of H3K27me3 level at the Hox gene cluster despite its global decrease. We found that metal response element binding transcriptional factor 2 (MTF2), one of sub-stoichiometric components of PRC2, was stably bound to Hox genes. Its binding capability was dependent on other core PRC2 components. A high level of H3K27me3 at Hox genes in Suz12-knock out cells was reversed by knockdown of Mtf2.This shows that MTF2 is necessary to consolidate PRC2-mediated histone methylation. Taken together, our results indicate that expression of Hox gene clusters during differentiation is strictly modulated by the activity of PRC2 secured by MTF2.
Collapse
|
42
|
Rothberg JLM, Maganti HB, Jrade H, Porter CJ, Palidwor GA, Cafariello C, Battaion HL, Khan ST, Perkins TJ, Paulson RF, Ito CY, Stanford WL. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov 2018; 4:21. [PMID: 29736258 PMCID: PMC5928144 DOI: 10.1038/s41421-018-0022-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/13/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) accessory proteins play substoichiometric, tissue-specific roles to recruit PRC2 to specific genomic loci or increase enzymatic activity, while PRC2 core proteins are required for complex stability and global levels of trimethylation of histone 3 at lysine 27 (H3K27me3). Here, we demonstrate a role for the classical PRC2 accessory protein Mtf2/Pcl2 in the hematopoietic system that is more akin to that of a core PRC2 protein. Mtf2-/- erythroid progenitors demonstrate markedly decreased core PRC2 protein levels and a global loss of H3K27me3 at promoter-proximal regions. The resulting de-repression of transcriptional and signaling networks blocks definitive erythroid development, culminating in Mtf2-/- embryos dying by e15.5 due to severe anemia. Gene regulatory network (GRN) analysis demonstrated Mtf2 directly regulates Wnt signaling in erythroblasts, leading to activated canonical Wnt signaling in Mtf2-deficient erythroblasts, while chemical inhibition of canonical Wnt signaling rescued Mtf2-deficient erythroblast differentiation in vitro. Using a combination of in vitro, in vivo and systems analyses, we demonstrate that Mtf2 is a critical epigenetic regulator of Wnt signaling during erythropoiesis and recast the role of polycomb accessory proteins in a tissue-specific context.
Collapse
Affiliation(s)
- Janet L. Manias Rothberg
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Harinad B. Maganti
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Christopher J. Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Gareth A. Palidwor
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Christopher Cafariello
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Hannah L. Battaion
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Safwat T. Khan
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Theodore J. Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Robert F. Paulson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802 USA
| | - Caryn Y. Ito
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - William L. Stanford
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
43
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R, Nogales E. Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science 2018; 359:940-944. [PMID: 29348366 PMCID: PMC5840869 DOI: 10.1126/science.aar5700] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
Transcriptionally repressive histone H3 lysine 27 methylation by Polycomb repressive complex 2 (PRC2) is essential for cellular differentiation and development. Here we report cryo-electron microscopy structures of human PRC2 in a basal state and two distinct active states while in complex with its cofactors JARID2 and AEBP2. Both cofactors mimic the binding of histone H3 tails. JARID2, methylated by PRC2, mimics a methylated H3 tail to stimulate PRC2 activity, whereas AEBP2 interacts with the RBAP48 subunit, mimicking an unmodified H3 tail. SUZ12 interacts with all other subunits within the assembly and thus contributes to the stability of the complex. Our analysis defines the complete architecture of a functionally relevant PRC2 and provides a structural framework to understand its regulation by cofactors, histone tails, and RNA.
Collapse
Affiliation(s)
- Vignesh Kasinath
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Poepsel
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dvir Reif
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Xinyu Ashlee Feng
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Goran Stjepanovic
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Eva Nogales
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, Zhang Z, Wang YV, Huang L, Yuan M, Xia W, Chang WC, Huang WC, Liu CL, Chang YC, Liu J, Wu Y, Jin VX, Dai X, Guo J, Liu J, Jiang S, Li J, Asara JM, Brown M, Hung MC, Wei W. Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Mol Cell 2018; 69:279-291.e5. [PMID: 29351847 PMCID: PMC5777296 DOI: 10.1016/j.molcel.2017.12.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/11/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Sustained energy starvation leads to activation of AMP-activated protein kinase (AMPK), which coordinates energy status with numerous cellular processes including metabolism, protein synthesis, and autophagy. Here, we report that AMPK phosphorylates the histone methyltransferase EZH2 at T311 to disrupt the interaction between EZH2 and SUZ12, another core component of the polycomb repressive complex 2 (PRC2), leading to attenuated PRC2-dependent methylation of histone H3 at Lys27. As such, PRC2 target genes, many of which are known tumor suppressors, were upregulated upon T311-EZH2 phosphorylation, which suppressed tumor cell growth both in cell culture and mouse xenografts. Pathologically, immunohistochemical analyses uncovered a positive correlation between AMPK activity and pT311-EZH2, and higher pT311-EZH2 correlates with better survival in both ovarian and breast cancer patients. Our finding suggests that AMPK agonists might be promising sensitizers for EZH2-targeting cancer therapies.
Collapse
Affiliation(s)
- Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yao Vickie Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Liyu Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Chinese National Human Genome Center at Shanghai, Shanghai 201203, PRC
| | - Min Yuan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Jinsong Liu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Wu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianfeng Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PRC
| | - Jia Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, PRC
| | - Shulong Jiang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Oncology, Jining First People's Hospital, Jining, Shandong 272111, PRC; Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PRC
| | - Jin Li
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Urology, 254th Hospital of PLA, Tianjin 300142, PRC
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
46
|
Zheng YS, Lu YQ, Meng YY, Zhang RZ, Zhang H, Sun JM, Wang MM, Li LH, Li RY. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat. Proteomics 2017; 17. [PMID: 28225203 DOI: 10.1002/pmic.201600331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation.
Collapse
Affiliation(s)
- Yong-Sheng Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Yu-Qing Lu
- Institute of Crop Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ying-Ying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong-Zhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Han Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Jia-Mei Sun
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Mu-Mu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li-Hui Li
- Institute of Crop Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ru-Yu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| |
Collapse
|
47
|
Choi J, Bachmann AL, Tauscher K, Benda C, Fierz B, Müller J. DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 2017; 24:1039-1047. [DOI: 10.1038/nsmb.3488] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
|
48
|
Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 2017; 549:287-291. [PMID: 28869966 PMCID: PMC5937281 DOI: 10.1038/nature23881] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and plays essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like proteins (PCLs), including PHF1, MTF2 and PHF19, are PRC2 associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate PRC2’s enzymatic activity or its recruitment to specific genomic loci4–13. Mammalian PRC2 binding sites are enriched in CG content, which correlate with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. In this study, we solved the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We found that the extended homologous (EH) regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a manner completely different from the canonical winged-helix motif-DNA recognition. We further showed that the PCL EH domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic cells. Our research provides the first direct evidence demonstrating that PCLs are critical for PRC2 recruitment to CpG islands, thereby further clarifying their roles in transcriptional regulation in vivo.
Collapse
|
49
|
Beringer M, Pisano P, Di Carlo V, Blanco E, Chammas P, Vizán P, Gutiérrez A, Aranda S, Payer B, Wierer M, Di Croce L. EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells. Mol Cell 2017; 64:645-658. [PMID: 27863225 DOI: 10.1016/j.molcel.2016.10.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
The cellular plasticity of pluripotent stem cells is thought to be sustained by genomic regions that display both active and repressive chromatin properties. These regions exhibit low levels of gene expression, yet the mechanisms controlling these levels remain unknown. Here, we describe Elongin BC as a binding factor at the promoters of bivalent sites. Biochemical and genome-wide analyses show that Elongin BC is associated with Polycomb Repressive Complex 2 (PRC2) in pluripotent stem cells. Elongin BC is recruited to chromatin by the PRC2-associated factor EPOP (Elongin BC and Polycomb Repressive Complex 2 Associated Protein, also termed C17orf96, esPRC2p48, E130012A19Rik), a protein expressed in the inner cell mass of the mouse blastocyst. Both EPOP and Elongin BC are required to maintain low levels of expression at PRC2 genomic targets. Our results indicate that keeping the balance between activating and repressive cues is a more general feature of chromatin in pluripotent stem cells than previously appreciated.
Collapse
Affiliation(s)
- Malte Beringer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paola Pisano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valerio Di Carlo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paul Chammas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Pedro Vizán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Michael Wierer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
50
|
Chen Z, Chang WY, Etheridge A, Strickfaden H, Jin Z, Palidwor G, Cho JH, Wang K, Kwon SY, Doré C, Raymond A, Hotta A, Ellis J, Kandel RA, Dilworth FJ, Perkins TJ, Hendzel MJ, Galas DJ, Stanford WL. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell 2017; 16:870-887. [PMID: 28597562 PMCID: PMC5506428 DOI: 10.1111/acel.12621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Ideally, disease modeling using patient‐derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson–Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome‐wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease. We generated a library of iPSC lines from fibroblasts of patients with HGPS and controls, including one family trio. HGPS patient‐derived iPSCs are nearly indistinguishable from controls in terms of pluripotency, nuclear membrane integrity, as well as transcriptional and epigenetic profiles, and can differentiate into affected cell lineages recapitulating disease progression, despite the nuclear aberrations, altered gene expression, and epigenetic landscape inherent to the donor fibroblasts. These analyses demonstrate the power of iPSC reprogramming to reset the epigenetic landscape to a revitalized pluripotent state in the face of widespread epigenetic defects, validating their use to model the initiation and progression of disease in affected cell lineages.
Collapse
Affiliation(s)
- Zhaoyi Chen
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Wing Y. Chang
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Hilmar Strickfaden
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Zhigang Jin
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Gareth Palidwor
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Ji-Hoon Cho
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Kai Wang
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Sarah Y. Kwon
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Angela Raymond
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA); Kyoto University; Kyoto Japan
| | - James Ellis
- Program in Developmental and Stem Cell Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Rita A. Kandel
- Pathology and Experimental Medicine; Mount Sinai Hospital; Toronto Ontario Canada
| | - F. Jeffrey Dilworth
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Theodore J. Perkins
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - David J. Galas
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| |
Collapse
|