1
|
Jiang M, Huang F, Hong X, Xu C, Zhang B, Hu S, Wang G, Hu D, Sun W, Lu Q, Liu H, Cai D, Yang X, Lin T, Chen S. PQQ Inhibits PRC2 Methyltransferase Activity and Suppresses the Proliferation of B-Cell Lymphoma In Vitro. Chem Biodivers 2025:e202500198. [PMID: 40024903 DOI: 10.1002/cbdv.202500198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Polycomb repressive complex 2 (PRC2) is a multi-subunit complex that catalyzes the tri-methylation of histone H3 at lysine 27 (H3K27me3), serving as an epigenetic marker of gene silencing. PRC2 plays a crucial role in numerous fundamental biological processes, and its dysregulation is closely linked to cancer and developmental disorders. EZH2, a key component of PRC2, is aberrantly overexpressed in various human cancers. Inhibition of EZH2 enzymatic activity has been shown to effectively reduce cancer cell proliferation and tumorigenesis. Consequently, EZH2 is widely recognized as a driver of cancer, and the development of EZH2-specific inhibitors has become an active area of research. In this study, we screened over 2000 compounds from solid libraries using a PRC2 enzymatic activity assay and identified pyrroloquinoline quinone (PQQ) as a potent inhibitor of PRC2 methyltransferase activity in vitro. We evaluated the antitumor effects of PQQ across different tumor cell lines and found that it exhibited strong anticancer activity, specifically against B-cell lymphoma cells, which demonstrate elevated EZH2 activity. We used a combination of biochemical assays, cellular assays, and molecular docking studies to thoroughly investigate the inhibitory effects of PQQ on PRC2 activity. Furthermore, PQQ is a naturally occurring compound with various biological activities, including antioxidant and neuroprotective effects, and it has been approved as a nutritional supplement and health product in the United States. This study demonstrates, for the first time, that PQQ, a dietary supplement, selectively inhibits PRC2 methyltransferase activity, therefore providing new insights for targeted anti-lymphoma therapies involving PRC2.
Collapse
Affiliation(s)
- Meizhi Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Fangfang Huang
- Department of Hematology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiuli Hong
- Department of Hematology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chenyu Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Bin Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Shengwei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Guijiang Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Die Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Wenxin Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Quanyi Lu
- Department of Hematology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Huiheng Liu
- Emergency Department of Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Dachuan Cai
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xianwen Yang
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Siming Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025:bnae034. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburg, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
3
|
Bystrykh LV. Why an integrated view of gene expression studies on hematopoiesis in mouse aging is better than the sum of their parts. FEBS Lett 2024; 598:2765-2773. [PMID: 38627103 PMCID: PMC11586588 DOI: 10.1002/1873-3468.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 11/26/2024]
Abstract
Globally, the human population is aging, with an increased proportion of people in "old age" (over 60 years). This trend leads to a growing demand in aging research, stimulating studies in animal models such as mice, fish, and invertebrates. Recently, we published a research summary on the aging of hematopoietic stem cells (HSCs) in C57BL/6 mice based on 12 gene expression datasets. Here, I discuss in greater detail the added value of taking an integrated view, rather than considering each publication separately, to determine genes involved in aging. Considerable variation exists between lists of differentially expressed (DE) genes in HSCs, comparing young and old mice. This variation can result from factors such as inconsistent definitions of "young" and "old", technical variations and variations between laboratory mouse strains. We previously demonstrated that the variation between gene lists could be circumvented by forming a unified list of DE genes-the "aging list"-with citation indexes attached. The most frequently detected DE genes [approximately 200 most cited, which we named the "aging signature" (AS)] were highly consistent across publications. Gene Ontology classification of the AS list identified additional sources of variation between studies: one comes from the specifics of how the data are collected and analyzed; another comes from inconsistencies between how we define the gene categories. As discussed, overcoming these variations is the next challenge toward an integral approach to our systematic knowledge of the aging process.
Collapse
Affiliation(s)
- Leonid V. Bystrykh
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center of Groningen (UMCG)University of GroningenThe Netherlands
| |
Collapse
|
4
|
Tomita-Naito S, Sulekh S, Yoo SK. Insidious chromatin change with a propensity to exhaust intestinal stem cells during aging. iScience 2024; 27:110793. [PMID: 39371074 PMCID: PMC11452737 DOI: 10.1016/j.isci.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
During aging, tissue stem cells can demonstrate two opposing phenotypes of tissue homeostasis disruption: proliferation and exhaustion. Stem cells can exhaust as a result of excessive cell proliferation or independently of cell proliferation. There are many silent changes in chromatin structures and gene expression that are not necessarily reflected in manifested phenotypes during aging. Here through analyses of chromatin accessibility and gene expression in intestinal progenitor cells during aging, we discovered changes of chromatin accessibility and gene expression that have a propensity to exhaust intestinal stem cells (ISCs). During aging, Trithorax-like (Trl) target genes, ced-6 and ci, close their chromatin structures and decrease their expression in intestinal progenitor cells. Inhibition of Trl, ced-6, or ci exhausts ISCs. This study provides new insight into changes of chromatin accessibility and gene expression that have a potential to exhaust ISCs during aging.
Collapse
Affiliation(s)
- Saki Tomita-Naito
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| |
Collapse
|
5
|
Bernhardt A, Jamil A, Morshed MT, Ponnath P, Gille V, Stephan N, Sauer H, Wartenberg M. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age. Sci Rep 2024; 14:19885. [PMID: 39191852 DOI: 10.1038/s41598-024-70382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Patient age is critical for mesenchymal stem cell quality and differentiation capacity. We demonstrate that proliferation and adipogenic capacity of subcutaneous adipose stem cells (ASCs) from female patients declined with advanced age, associated with reduction in cell nucleus size, increase in nuclear lamina protein lamin B1/B2, and lamin A, upregulation of senescence marker p16INK4a and senescence-associated β-galactosidase activity. Adipogenic induction resulted in differentiation of adipocytes and upregulation of adipogenic genes CCAAT enhancer binding protein alpha, fatty acid binding protein 4, lipoprotein lipase, and peroxisome proliferator-activated receptor-γ, which was not affected by the Sirt-1 activator YK-3-237 or the Sirt-1 inhibitor EX-527. Protein expression of the stem cell markers Oct4 and Sox2 was not significantly downregulated with advanced patient age. Mitochondrial reactive oxygen species were increased in ASCs from old-aged patients, whereas protein expression of NADPH oxidases NOX1 and NOX4 was downregulated, and dual oxidase isoforms remained unchanged. Generation of nitric oxide and iNOS expression was downregulated. Protein expression of Sirt-1 and Sirt-3 decreased with patient age, whereas Sirt-2 and Sirt-5 remained unchanged. Induction of adipogenesis stimulated protein expression of Sirt-1 and Sirt-3, which was not affected upon pre-incubation with the Sirt-1-activator YK-3-237 or the Sirt-1-inhibitor EX-527. The Sirt-1 inhibitor Sirtinol downregulated adiponectin protein expression and the number of adipocytes, whereas YK-3-237 exerted stimulatory effects. In summary, our data demonstrate increased oxidative stress in ASCs of aging patients, and decline of adipogenic capacity due to Sirt-1- mediated adiponectin downregulation in elderly patients.
Collapse
Affiliation(s)
- Anne Bernhardt
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Alan Jamil
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Md Tanvir Morshed
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Pia Ponnath
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Veronika Gille
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Nadine Stephan
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
6
|
Liang J, Wang J, Sui B, Tong Y, Chai J, Zhou Q, Zheng C, Wang H, Kong L, Zhang H, Bai Y. Ptip safeguards the epigenetic control of skeletal stem cell quiescence and potency in skeletogenesis. Sci Bull (Beijing) 2024; 69:2099-2113. [PMID: 38493069 DOI: 10.1016/j.scib.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Stem cells remain in a quiescent state for long-term maintenance and preservation of potency; this process requires fine-tuning regulatory mechanisms. In this study, we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells (SSCs) in skeletogenesis governed by a key regulator, Ptip (also known as Paxip1, Pax interaction with transcription-activation domain protein-1). Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs, and loss of Ptip in type II collagen (Col2)+ progenitors causes abnormal activation and differentiation of SSCs, impaired growth plate morphogenesis, and long bone dysplasia. We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1 (Pgk1) by repressing histone H3 lysine 27 acetylation (H3K27ac) at the promoter region. Notably, inhibition of glycolysis improved the function of SSCs despite Ptip deficiency. To the best of our knowledge, this is the first study to establish an epigenetic framework based on Ptip, which safeguards skeletal stem cell quiescence and potency through metabolic control. This framework is expected to improve SSC-based treatments of bone developmental disorders.
Collapse
Affiliation(s)
- Jianfei Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yibo Tong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430079, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Cruciani S, Coradduzza D, Balzano F, Garroni G, Azara E, Pala R, Delitala AP, Madonia M, Tedde A, Capobianco G, Petrillo M, Angelucci C, Carru C, Ventura C, Maioli M. Modulation of adipose-derived stem cell behavior by prostate pathology-associated plasma: insights from in vitro exposure. Sci Rep 2024; 14:14765. [PMID: 38926454 PMCID: PMC11208502 DOI: 10.1038/s41598-024-64625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are promising in regenerative medicine. Their proliferation, survival and activation are influenced by specific signals within their microenvironment, also known as niche. The stem cell niche is regulated by complex interactions between multiple cell types. When transplanted in a specific area, ADSCs can secrete several immunomodulatory factors. At the same time, a tumor microenvironment can influence stem cell behavior, modulating proliferation and their ability to differentiate into a specific phenotype. Whitin this context, we exposed ADSCs to plasma samples derived from human patients diagnosed with prostate cancer (PC), or precancerous lesions (PL), or benign prostatic hyperplasia (BPH) for 4, 7 or 10 days. We then analyzed the expression of main stemness-related markers and cell-cycle regulators. We also measured cytokine production and polyamine secretion in culture medium and evaluated cell morphology and collagen production by confocal microscopy. The results obtained from this study show significant changes in the morphology of ADSCs exposed to plasma samples, especially in the presence of prostate cancer plasma, suggesting important implications in the use of ADSCs for the development of new treatments and application in regenerative medicine.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100, Sassari, Italy
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Alessandro P Delitala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Massimo Madonia
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, Sassari, Italy
| | - Alessandro Tedde
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Marco Petrillo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Cecilia Angelucci
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
- Medical Oncology Unit, University Hospital (AOU) of Sassari, 07100, Sassari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, Istituto Nazionale Biostrutture E Biosistemi (INBB)-Eldor Lab, Via Corticella 183, 40128, Bologna, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
| |
Collapse
|
8
|
Xue G, Zhang X, Li W, Zhang L, Zhang Z, Zhou X, Zhang D, Zhang L, Li Z. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 2024; 12:RP88742. [PMID: 38652107 PMCID: PMC11037919 DOI: 10.7554/elife.88742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
Collapse
Affiliation(s)
- Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaoyi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Wanqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaolin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking UniversityBeijingChina
| | - Zhiyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
9
|
Deng S, Gong H, Zhang D, Zhang M, He X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat Methods 2024; 21:597-608. [PMID: 38379073 DOI: 10.1038/s41592-024-02189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Quantifying the number of progenitor cells that found an organ, tissue or cell population is of fundamental importance for understanding the development and homeostasis of a multicellular organism. Previous efforts rely on marker genes that are specifically expressed in progenitors. This strategy is, however, often hindered by the lack of ideal markers. Here we propose a general statistical method to quantify the progenitors of any tissues or cell populations in an organism, even in the absence of progenitor-specific markers, by exploring the cell phylogenetic tree that records the cell division history during development. The method, termed targeting coalescent analysis (TarCA), computes the probability that two randomly sampled cells of a tissue coalesce within the tissue-specific monophyletic clades. The inverse of this probability then serves as a measure of the progenitor number of the tissue. Both mathematic modeling and computer simulations demonstrated the high accuracy of TarCA, which was then validated using real data from nematode, fruit fly and mouse, all with related cell phylogenetic trees. We further showed that TarCA can be used to identify lineage-specific upregulated genes during embryogenesis, revealing incipient cell fate commitments in mouse embryos.
Collapse
Affiliation(s)
- Shanjun Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Di Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mengdong Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Swann JW, Olson OC, Passegué E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat Rev Immunol 2024:10.1038/s41577-024-00998-7. [PMID: 38467802 DOI: 10.1038/s41577-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- James W Swann
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Ando Y, Munetsuna E, Yamada H, Ikeya M, Teshigawara A, Kageyama I, Nouchi Y, Wakasugi T, Yamazaki M, Mizuno G, Tsuboi Y, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Impact of maternal fructose intake on liver stem/progenitor cells in offspring: Insights into developmental origins of health and disease. Life Sci 2024; 336:122315. [PMID: 38035994 DOI: 10.1016/j.lfs.2023.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
AIMS The developmental origin of health and disease (DOHaD) theory postulates that poor nutrition during fetal life increases the risk of disease later in life. Excessive fructose intake has been associated with obesity, diabetes, and nonalcoholic fatty liver disease, and maternal fructose intake during pregnancy has been shown to affect offspring health. In this study, we investigated the effects of high maternal fructose intake on the liver stem/progenitor cells of offspring. MAIN METHOD A fructose-based DOHaD model was established using Sprague-Dawley rats. Small hepatocytes (SHs), which play an important role in liver development and regeneration, were isolated from the offspring of dams that were fed a high-fructose corn syrup (HFCS) diet. The gene expression and DNA methylation patterns were analyzed on postnatal day (PD) 21 and 60. KEY FINDINGS Maternal HFCS intake did not affect body weight or caloric intake, but differences in gene expression and DNA methylation patterns were observed in the SHs of offspring. Functional analysis revealed an association between metabolic processes and ion transport. SIGNIFICANCE These results suggest that maternal fructose intake affects DNA methylation and gene expression in the liver stem/progenitor cells of offspring. Furthermore, the prolonged retention of these changes in gene expression and DNA methylation in adulthood (PD 60) suggests that maternal fructose intake may exert lifelong effects. These findings provide insights into the DOHaD for liver-related disorders and highlight the importance of maternal nutrition for the health of the next generation.
Collapse
Affiliation(s)
- Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Miyuki Ikeya
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho Takamatsu, Kagawa 761-0123, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
13
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
14
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
15
|
Guo H, Zeng H, Hu Y, Jiang L, Lei L, Hung J, Fu C, Li H, Long Y, Chen J, Zeng Q. UVB promotes melanogenesis by regulating METTL3. J Cell Physiol 2023; 238:2161-2171. [PMID: 37417881 DOI: 10.1002/jcp.31077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Ultraviolet (UV) radiation is the primary exogenous inducer of skin pigmentation, although the mechanism has not been fully elucidated. N6-methyladenosine (m6 A) modification is one of the key epigenetic form of gene regulation that affects multiple biological processes. The aim of this study was to explore the role and underlying mechanisms of m6 A modification in UVB-induced melanogenesis. Low-dose UVB increased global m6 A modification in melanocytes (MCs) and MNT1 melanoma cell line. The GEPIA database predicted that methyltransferase METTL3 is positively correlated with the melanogenic transcription factor MITF in the sun-exposed skin tissues. After METTL3 respectively overexpressed and knocked down in the MNT1, the melanin content and melanogenesis-related genes were significantly upregulated after overexpression of METTL3, especially with UVB irradiation, and downregulated after METTL3 knockdown. METTL3 levels were also higher in melanocytic nevi with high melanin content. METTL3 overexpression and knockdown also altered the protein level of YAP1. SRAMP analysis predicted four high-potential m6 A modification sites on YAP1 mRNA, of which three were confirmed by methylated RNA immunoprecipitation. Inhibition of YAP1 expression can partially reverse melanogenesis induced by overexpression of METTL3. In conclusion, UVB irradiation promotes global m6 A modification in MCs and upregulates METTL3, which increases the expression level of YAP1 through m6 A modification, thereby activating the co-transcription factor TEAD1 and promoting melanogenesis.
Collapse
Affiliation(s)
- Haoran Guo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Hung
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Long
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
17
|
Zhu H, Wang G, Nguyen-Ngoc KV, Kim D, Miller M, Goss G, Kovsky J, Harrington AR, Saunders DC, Hopkirk AL, Melton R, Powers AC, Preissl S, Spagnoli FM, Gaulton KJ, Sander M. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell 2023; 58:727-743.e11. [PMID: 37040771 PMCID: PMC10175223 DOI: 10.1016/j.devcel.2023.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-β cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β cell maturation and identify sex hormones as drivers of β cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.
Collapse
Affiliation(s)
- Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Kim-Vy Nguyen-Ngoc
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Dongsu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Jenna Kovsky
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Austin R Harrington
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Rebecca Melton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212-2637, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Rong L, Zhang L, Yang Z, Xu L. New insights into the properties, functions, and aging of skeletal stem cells. Osteoporos Int 2023:10.1007/s00198-023-06736-4. [PMID: 37069243 DOI: 10.1007/s00198-023-06736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs.
Collapse
Affiliation(s)
- Lingjun Rong
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaigang Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Mishra S, Raval M, Kachhawaha AS, Tiwari BS, Tiwari AK. Aging: Epigenetic modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:171-209. [PMID: 37019592 DOI: 10.1016/bs.pmbts.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aging is one of the most complex and irreversible health conditions characterized by continuous decline in physical/mental activities that eventually poses an increased risk of several diseases and ultimately death. These conditions cannot be ignored by anyone but there are evidences that suggest that exercise, healthy diet and good routines may delay the Aging process significantly. Several studies have demonstrated that Epigenetics plays a key role in Aging and Aging-associated diseases through methylation of DNA, histone modification and non-coding RNA (ncRNA). Comprehension and relevant alterations in these epigenetic modifications can lead to new therapeutic avenues of age-delaying contrivances. These processes affect gene transcription, DNA replication and DNA repair, comprehending epigenetics as a key factor in understanding Aging and developing new avenues for delaying Aging, clinical advancements in ameliorating aging-related diseases and rejuvenating health. In the present article, we have described and advocated the epigenetic role in Aging and associated diseases.
Collapse
|
22
|
Tizazu AM, Mengist HM, Demeke G. Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immun Ageing 2022; 19:53. [PMID: 36369012 PMCID: PMC9650172 DOI: 10.1186/s12979-022-00309-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by having a heterogeneous disease course, ranging from asymptomatic and mild symptoms to more severe and critical cases. In most cases the severity of COVID-19 is related to host factors, especially deregulation of the immune response in patients. Even if COVID-19 indiscriminately affects individuals of different age group, ethnicity and economic status; most severe cases and disproportional mortality occur in elderly individuals. This point out that aging is one risk factor for unfavourable clinical outcomes among COVID-19 patients. The biology of aging is a complex process; Aging can alter the structure and function of cells, tissues, and organs resulting in impaired response to stress. Alongside with other systems, the immune system is also affected with the aging process. Immunosenescence is an age associated change in the immune system that affects the overall response to immunological challenges in the elderly. Similarly, apart from the normal inflammatory process, aging is associated with a low grade, sterile, chronic inflammation which is termed as inflammaging. We hypothesized that inflammaging and immunosenescence could play an important role in SARS-CoV-2 pathogenesis and poor recovery from COVID-19 in elderly individuals. This review summarizes the changes in the immune system with age and how these changes play part in the pathogenesis of SARS-CoV-2 and clinical outcome of COVID-19 which could add to the understanding of age associated targeted immunotherapy in the elderly.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Parasitology and Immunology, School of Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gebreselassie Demeke
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
23
|
Shin TH, Zhou Y, Chen S, Cordes S, Grice MZ, Fan X, Lee BC, Aljanahi AA, Hong SG, Vaughan KL, Mattison JA, Kohama SG, Fabre MA, Uchida N, Demirci S, Corat MA, Métais JY, Calvo KR, Buscarlet M, Natanson H, McGraw KL, List AF, Busque L, Tisdale JF, Vassiliou GS, Yu KR, Dunbar CE. A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. Blood 2022; 140:1774-1789. [PMID: 35714307 PMCID: PMC9837449 DOI: 10.1182/blood.2021014875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/26/2022] [Indexed: 01/21/2023] Open
Abstract
Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1β (IL-1β) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Shirley Chen
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Stefan Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Max Z. Grice
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Aisha A. Aljanahi
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Margarete A. Fabre
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Marcus A.F. Corat
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Multidisciplinary Center for Biological Research, University of Campinas, Campinas, Brazil
| | - Jean-Yves Métais
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Katherine R. Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD
| | - Manuel Buscarlet
- Hôpital Maisonneuve-Rosemont, Universite de Montreal, Montreal, QC, Canada
| | - Hannah Natanson
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Kathy L. McGraw
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | | | - Lambert Busque
- Hôpital Maisonneuve-Rosemont, Universite de Montreal, Montreal, QC, Canada
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - George S. Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kyung-Rok Yu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
24
|
Xu Y, Yang X. Autophagy and pluripotency: self-eating your way to eternal youth. Trends Cell Biol 2022; 32:868-882. [PMID: 35490141 PMCID: PMC10433133 DOI: 10.1016/j.tcb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/18/2023]
Abstract
Pluripotent stem cells (PSCs) can self-renew indefinitely in culture while retaining the potential to differentiate into virtually all normal cell types in the adult animal. Due to these remarkable properties, PSCs not only provide a superb system to investigate mammalian development and model diseases, but also hold promise for regenerative therapies. Autophagy is a self-digestive process that targets proteins, organelles, and other cellular contents for lysosomal degradation. Here, we review recent literature on the mechanistic role of different types of autophagy in embryonic development, embryonic stem cells (ESCs), and induced PSCs (iPSCs), focusing on their remodeling functions on protein, metabolism, and epigenetics. We present a perspective on unsolved issues and propose that autophagy is a promising target to modulate acquisition, maintenance, and directed differentiation of PSCs.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
25
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
26
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
28
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
29
|
Chen Z, Guo Q, Song G, Hou Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci 2022; 79:218. [PMID: 35357574 PMCID: PMC11072845 DOI: 10.1007/s00018-022-04200-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Guo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
30
|
Poisa-Beiro L, Landry JJM, Raffel S, Tanaka M, Zaugg J, Gavin AC, Ho AD. Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23063028. [PMID: 35328449 PMCID: PMC8955027 DOI: 10.3390/ijms23063028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Comprehensive proteomics studies of human hematopoietic stem and progenitor cells (HSPC) have revealed that aging of the HSPC compartment is characterized by elevated glycolysis. This is in addition to deregulations found in murine transcriptomics studies, such as an increased differentiation bias towards the myeloid lineage, alterations in DNA repair, and a decrease in lymphoid development. The increase in glycolytic enzyme activity is caused by the expansion of a more glycolytic HSPC subset. We therefore developed a method to isolate HSPC into three distinct categories according to their glucose uptake (GU) levels, namely the GUhigh, GUinter and GUlow subsets. Single-cell transcriptomics studies showed that the GUhigh subset is highly enriched for HSPC with a differentiation bias towards myeloid lineages. Gene set enrichment analysis (GSEA) demonstrated that the gene sets for cell cycle arrest, senescence-associated secretory phenotype, and the anti-apoptosis and P53 pathways are significantly upregulated in the GUhigh population. With this series of studies, we have produced a comprehensive proteomics and single-cell transcriptomics atlas of molecular changes in human HSPC upon aging. Although many of the molecular deregulations are similar to those found in mice, there are significant differences. The most unique finding is the association of elevated central carbon metabolism with senescence. Due to the lack of specific markers, the isolation and collection of senescent cells have yet to be developed, especially for human HSPC. The GUhigh subset from the human HSPC compartment possesses all the transcriptome characteristics of senescence. This property may be exploited to accurately enrich, visualize, and trace senescence development in human bone marrow.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany;
| | - Simon Raffel
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Inst, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany;
| | - Judith Zaugg
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Correspondence:
| |
Collapse
|
31
|
Lee DG, Lee YJ, Park SH, Park HR, Kang H, Kim JE. Preventive Effects of a Human Hematopoietic Mesenchymal Stem Cell (hHMSC) Therapy in Ovalbumin-Induced Food Allergy. Biomedicines 2022; 10:biomedicines10020511. [PMID: 35203718 PMCID: PMC8962321 DOI: 10.3390/biomedicines10020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
No effective therapeutic strategies have been developed against food allergies. Immunomodulation during early infant period could prevent the development of food allergies. We investigated the preventive effects of human hematopoietic mesenchymal stem cells (hHMSCs) in mice with ovalbumin (OVA)-induced food allergy. BALB/c mice with OVA-induced food allergy were divided into 3 groups, and each group was treated with hHMSCs or hHMSC culture medium (hHMSC-CM) or saline. Ear thickness, allergy score, rectal temperature, and diarrhea occurrence were checked. Total IgE, OVA-specific IgE, and mucosal mast cell protease-1 (mMCP-1) were measured by ELISA. Other allergic parameters were analyzed using histology specimens, RT-PCR, and flow cytometry. Treatment with hHMSCs or hHMSC-CM significantly suppressed the frequency of anaphylactic response and rectal temperature decline, reduced diarrhea, total IgE, OVA-specific IgE, and mMCP-1. While the treatment decreased the level of Th2 cytokines, it enhanced IL-10 and TGF-β1 mRNA. Exposure to hHMSC or hHMSC-CM did not generate regulatory T cells, but reduced mast cells. The immunomodulatory effect on the Th2 cytokines was greater in hHMSC-CM than in hHMSCs. hHMSC treatment may be a promising preventive intervention against food allergy. Further studies are needed to elucidate the key substances released from hHMSC to induce immune tolerance.
Collapse
|
32
|
Ali M, Ribeiro MM, Del Sol A. Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods Mol Biol 2022; 2471:83-109. [PMID: 35175592 DOI: 10.1007/978-1-0716-2193-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
33
|
Su X, Zhang H, Lei F, Wang R, Lin T, Liao L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J Cell Mol Med 2021; 26:375-384. [PMID: 34874118 PMCID: PMC8743666 DOI: 10.1111/jcmm.17089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, a hallmark of ageing, inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells in long bone. The dysfunction of the cellular antioxidant defence system is a critical cause of oxidative stress, but the mechanism of the decline of antioxidant defence in senescent stem cells remains elusive. Here, we found that EZH2, an epigenetic regulator of histone methylation, acted as a suppressor of the antioxidative defence system in BMSCs from the femur. The increased EZH2 led to a decrease in the levels of antioxidant enzymes and exaggerated oxidative damage in aged BMSCs, resulting in the defect of bone formation and regeneration. Mechanistically, EZH2 enhanced the modification of H3K27me3 on the promoter of Foxo1 and suppressed its function to activate the downstream genes in antioxidant defence. Moreover, epigenetic therapy targeting EZH2-mediated H3K27me3 modification largely recovered the antioxidant defence in BMSCs and attenuate oxidative damage, leading to the recovery of the osteogenesis in old BMSCs. Taken together, our findings revealed novel crosstalk between histone epigenetic modification and oxidative stress during stem cell ageing, suggesting a possibility of epigenetic therapy in the recovery of BMSCs senescence and treatment of age-related bone disease.
Collapse
Affiliation(s)
- Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fengzhen Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Lin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Takamatsu K, Tanaka J, Katada R, Azuma K, Takakura I, Aota K, Kamatani T, Shirota T, Inoue S, Mishima K. Aging-associated stem/progenitor cell dysfunction in the salivary glands of mice. Exp Cell Res 2021; 409:112889. [PMID: 34678306 DOI: 10.1016/j.yexcr.2021.112889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Although stem cell aging leads to a decline in tissue homeostasis and regenerative capacity, it remains unclear whether salivary gland stem cell function changes during this process. However, the salivary glands are gradually replaced by connective tissue during aging. Here, we show a decline in the stem cell ability of CD133-positive stem/progenitor cells in the salivary glands of aged mice. The CD133-positive cells were isolated from young, adult, and aged mice. The number of CD133-positive cells was significantly decreased in aged mice. They also showed a lower sphere formation capacity compared to young and adult mice. RNA sequencing revealed that CD133-positive cells in aged mice exhibited lower gene expression of several aging-related genes, including FoxO3a, than those in young and adult mice. Salivary gland cells infected with a recombinant lentivirus encoding the FoxO3a gene showed a reduction in oxidative stress induced by hydrogen peroxide compared with those infected with a control virus. Thus, FoxO3a may inhibit stem cell aging via oxidative stress.
Collapse
Affiliation(s)
- Koki Takamatsu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryogo Katada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ikuko Takakura
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Kamatani
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
35
|
Picerno A, Stasi A, Franzin R, Curci C, di Bari I, Gesualdo L, Sallustio F. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells 2021; 13:1714-1732. [PMID: 34909119 PMCID: PMC8641024 DOI: 10.4252/wjsc.v13.i11.1714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their self-renewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Claudia Curci
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
36
|
Yang BA, Castor-Macias J, Fraczek P, Cornett A, Brown LA, Kim M, Brooks SV, Lombaert IMA, Lee JH, Aguilar CA. Sestrins regulate muscle stem cell metabolic homeostasis. Stem Cell Reports 2021; 16:2078-2088. [PMID: 34388363 PMCID: PMC8452514 DOI: 10.1016/j.stemcr.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Despite these pivotal roles, the role of Sestrins has not been explored in adult stem cells. We show that SESTRIN1,2 loss results in hyperactivation of the mTORC1 complex, increased propensity to enter the cell cycle, and shifts in metabolic flux. Aged SESTRIN1,2 knockout mice exhibited loss of MuSCs and a reduced ability to regenerate injured muscle. These findings demonstrate that Sestrins help maintain metabolic pathways in MuSCs that protect quiescence against aging.
Collapse
Affiliation(s)
- Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paula Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley Cornett
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021; 597:256-262. [PMID: 34381212 PMCID: PMC8721524 DOI: 10.1038/s41586-021-03795-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Owen Marecic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinming Tong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eun Young Seo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel E Brewer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shamik Mascharak
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Oyinkansola Ajanaku
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan
| | | | | | - Debashis Sahoo
- Pediatrics, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Li L, Qiu Y, Miao M, Liu Z, Li W, Zhu Y, Wang Q. Reduction of Tet2 exacerbates early stage Alzheimer's pathology and cognitive impairments in 2×Tg-AD mice. Hum Mol Genet 2021; 29:1833-1852. [PMID: 31943063 DOI: 10.1093/hmg/ddz282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/20/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
Abnormal modification of 5-hydroxymethylcytosine (5hmC) is closely related to the occurrence of Alzheimer's disease (AD). However, the role of 5hmC and its writers, ten-eleven translocation (Tet) proteins, in regulating the pathogenesis of AD remains largely unknown. We detected a significant decrease in 5hmC and Tet2 levels in the hippocampus of aged APPswe/PSEN1 double-transgenic (2×Tg-AD) mice that coincides with abundant amyloid-β (Aβ) plaque accumulation. On this basis, we examined the reduction of Tet2 expression in the hippocampus at early disease stages, which caused a decline of 5hmC levels and led young 2×Tg-AD mice to present with advanced stages of AD-related pathological hallmarks, including Aβ accumulation, GFAP-positive astrogliosis and Iba1-positive microglia overgrowth as well as the overproduction of pro-inflammatory factors. Additionally, the loss of Tet2 in the 2×Tg-AD mice at 5 months of age accelerated hippocampal-dependent learning and memory impairments compared to age-matched control 2×Tg-AD mice. In contrast, restoring Tet2 expression in adult neural stem cells isolated from aged 2×Tg-AD mice hippocampi increased 5hmC levels and increased their regenerative capacity, suggesting that Tet2 might be an exciting target for rejuvenating the brain during aging and AD. Further, hippocampal RNA sequencing data revealed that the expression of altered genes identified in both Tet2 knockdown and control 2×Tg-AD mice was significantly associated with inflammation response. Finally, we demonstrated that Tet2-mediated 5hmC epigenetic modifications regulate AD pathology by interacting with HDAC1. These results suggest a combined approach for the regulation and treatment of AD-related memory impairment and cognitive symptoms by increasing Tet2 via HDAC1 suppression.
Collapse
Affiliation(s)
- Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo 315211, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Yisha Qiu
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo 315211, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Miao Miao
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo 315211, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Zhitao Liu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Wanyi Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Yiyi Zhu
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo 315211, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo 315211, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
39
|
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H, Khan M, Luo L, Xiao R, Chen J, Zeng Q. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021; 69:101349. [PMID: 33984527 DOI: 10.1016/j.arr.2021.101349] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Melanogenesis is a complex process in which melanin is synthesized in melanocytes and transported to keratinocytes, which involves multiple genes and signaling pathways. Epigenetics refers to the potential genetic changes that affect gene expression without involving changes in the original sequence of DNA nucleotides. DNA methylation regulates the expression of key genes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothelin-1 (ET-1) in melanogenesis. Potential DNA methylation sites are present in the genes of melanogenesis-related signaling pathways such as "Wnt", "PI3K/Akt/CREB" and "MAPK". H3K27 acetylation is abundant in melanogenesis-related genes. Both the upstream activation and downstream regulation of MITF depend on histone acetyltransferase CBP/p300, and pH-induced H3K27 acetylation may be the amplifying mechanism of MITF's effect. HDAC1 and HDAC10 catalyze histone deacetylation of melanogenesis-related gene promoters. Chromatin remodelers SWI/SNF complex and ISWI complex use the energy of ATP hydrolysis to rearrange nucleosomes, while their active subunits BRG1, BRM and BPTF, act as activators and cofactors of MITF. MicroRNAs (miRNAs) can directly target a large number of melanogenesis-related genes, while long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) regulate melanogenesis in a variety of ways. Interactions exist among the epigenetic mechanisms of melanogenesis. For example, the methyl CpG binding domain protein 2 (MeCP2) links DNA methylation, histone deacetylation, and histone methylation. Epigenetic-based therapy provides novel opportunities for treating dermatoses that are caused by pigmentation disturbances. This review summarizes the epigenetic regulation mechanisms of melanogenesis, and examines the pathogenesis and treatment of epigenetics in pigmentation disorders.
Collapse
|
40
|
UTX maintains the functional integrity of the murine hematopoietic system by globally regulating aging-associated genes. Blood 2021; 137:908-922. [PMID: 33174606 DOI: 10.1182/blood.2019001044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.
Collapse
|
41
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
42
|
Ho TT, Dellorusso PV, Verovskaya EV, Bakker ST, Flach J, Smith LK, Ventura PB, Lansinger OM, Hérault A, Zhang SY, Kang YA, Mitchell CA, Villeda SA, Passegué E. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J Exp Med 2021; 218:212183. [PMID: 34032859 PMCID: PMC8155813 DOI: 10.1084/jem.20210223] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
While young blood can restore many aged tissues, its effects on the aged blood system itself and old hematopoietic stem cells (HSCs) have not been determined. Here, we used transplantation, parabiosis, plasma transfer, exercise, calorie restriction, and aging mutant mice to understand the effects of age-regulated systemic factors on HSCs and their bone marrow (BM) niche. We found that neither exposure to young blood, nor long-term residence in young niches after parabiont separation, nor direct heterochronic transplantation had any observable rejuvenating effects on old HSCs. Likewise, exercise and calorie restriction did not improve old HSC function, nor old BM niches. Conversely, young HSCs were not affected by systemic pro-aging conditions, and HSC function was not impacted by mutations influencing organismal aging in established long-lived or progeroid genetic models. Therefore, the blood system that carries factors with either rejuvenating or pro-aging properties for many other tissues is itself refractory to those factors.
Collapse
Affiliation(s)
- Theodore T Ho
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Evgenia V Verovskaya
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Sietske T Bakker
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Lucas K Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Patrick B Ventura
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Olivia M Lansinger
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Aurélie Hérault
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Si Yi Zhang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Yoon-A Kang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
43
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
45
|
Tauc HM, Rodriguez-Fernandez IA, Hackney JA, Pawlak M, Ronnen Oron T, Korzelius J, Moussa HF, Chaudhuri S, Modrusan Z, Edgar BA, Jasper H. Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. eLife 2021; 10:62250. [PMID: 33724181 PMCID: PMC7984841 DOI: 10.7554/elife.62250] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single-cell RNA-seq to explore stem-cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.
Collapse
Affiliation(s)
- Helen M Tauc
- Immunology Discovery, Genentech, South San Francisco, United States
| | | | - Jason A Hackney
- OMNI Bioinformatics, Genentech, South San Francisco, United States
| | - Michal Pawlak
- Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | | | - Jerome Korzelius
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Hagar F Moussa
- Department of Biomedical Engineering and Biological Design Center,Boston University, Boston, United States
| | - Subhra Chaudhuri
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, United States
| | - Zora Modrusan
- Immunology Discovery, Genentech, South San Francisco, United States.,Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, United States
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Heinrich Jasper
- Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
46
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
47
|
Ambrosi TH, Chan CKF. Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Curr Top Microbiol Immunol 2021; 434:1-31. [PMID: 34850280 PMCID: PMC8864730 DOI: 10.1007/978-3-030-86016-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skeletal system is a highly complex network of mesenchymal, hematopoietic, and vasculogenic stem cell lineages that coordinate the development and maintenance of defined microenvironments, so-called niches. Technological advancements in recent years have allowed for the dissection of crucial cell types as well as their autocrine and paracrine signals that regulate these niches during development, homeostasis, regeneration, and disease. Ingress of blood vessels and bone marrow hematopoiesis are initiated by skeletal stem cells (SSCs) and their more committed downstream lineage cell types that direct shape and form of skeletal elements. In this chapter, we focus on the role of SSCs as the developmental origin of niches for hematopoietic stem and progenitor cells. We discuss latest updates in the definition of SSCs, cellular processes establishing and maintaining niches, as well as alterations of stem cell microenvironments promoting malignancies. We conclude with an outlook on future studies that could take advantage of SSC-niche engineering as a basis for the development of new therapeutic tools to not only treat bone-related diseases but also maladies stemming from derailed niche dynamics altering hematopoietic output.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
So EY, Jeong EM, Wu KQ, Dubielecka PM, Reginato AM, Quesenberry PJ, Liang OD. Sexual dimorphism in aging hematopoiesis: an earlier decline of hematopoietic stem and progenitor cells in male than female mice. Aging (Albany NY) 2020; 12:25939-25955. [PMID: 33378745 PMCID: PMC7803521 DOI: 10.18632/aging.202167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) ensuring homeostasis of blood production and immune response throughout life. Sex differences in immunocompetence and mortality are well-documented in humans. However, whether HSPCs behave dimorphically between sexes during aging remains unknown. Here, we show that a significant expansion of BM-derived HSPCs occurs in the middle age of female but in the old age of male mice. We then show that a decline of HSPCs in male mice, as indicated by the expression levels of select hematopoietic genes, occurs much earlier in the aging process than that in female mice. Sex-mismatched heterochronic BM transplantations indicate that the middle-aged female BM microenvironment plays a pivotal role in sustaining hematopoietic gene expression during aging. Furthermore, a higher concentration of the pituitary sex hormone follicle-stimulating hormone (FSH) in the serum and a concomitant higher expression of its receptor on HSPCs in the middle-aged and old female mice than age-matched male mice, suggests that FSH may contribute to the sexual dimorphism in aging hematopoiesis. Our study reveals that HSPCs in the BM niches are possibly regulated in a sex-specific manner and influenced differently by sex hormones during aging hematopoiesis.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Euy-Myoung Jeong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Peter J Quesenberry
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
49
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
50
|
Noh JY, Seo H, Lee J, Jung H. Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. Int J Mol Sci 2020; 21:E8000. [PMID: 33121189 PMCID: PMC7663624 DOI: 10.3390/ijms21218000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Korea;
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|