1
|
Kang X, Wang G, Liu B, Wang Z. Knowledge mapping of Guillain-Barré syndrome from January 2013 to October 2023: A bibliometric analysis. Medicine (Baltimore) 2025; 104:e41830. [PMID: 40101082 PMCID: PMC11922404 DOI: 10.1097/md.0000000000041830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND With the COVID-19 pandemic and the serious sequelae, foreign factor-induced Guillain-Barré syndrome (GBS) has become a research focus in autoimmune peripheral neuropathies. The study employs a bibliometric system to illustrate the research hotspots and trends in GBS based on pertinent literature from January 2013 to October 2023. METHODS The Web of Science Core Collection retrieved articles on GBS from January 1, 2013, to October 28, 2023. These articles were then visualized and statistically evaluated using VOSviewer, CiteSpace software, R version 4.2.1, and Microsoft Office Excel 2019. RESULTS A total of 4269 articles on GBS were gathered. The United States of America produced the most publications (28.55%, 1219/4269), followed by China (14.22%, 607/4269). The world's leading country was the United States of America, with the most publications, the most substantial international cooperation, and the highest centrality (0.17). Union of French Research Universities (UDICE)-French Research Universities in France was the most productive organization (189 articles). Lancet was the highest cocited journal (2428), and Professor Jacobs, Bart C., was the most prolific author (93). The most significant increases were shown for the keywords coronavirus, respiratory failure, and coronavirus disease 2019. The novel coronavirus is an emerging virus that may cause GBS, indicating a promising area of research. CONCLUSIONS The study on GBS was illustrated using bibliometrics, and it covers trends in international collaboration, publications, and research hotspots. These findings allow the scientific community to pinpoint the novel ideas and directions that will drive future GBS research.
Collapse
Affiliation(s)
- Xue Kang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Guowei Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing, China
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China
| | - Zhenhai Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
dos Santos ALS, Rosolen BB, Ferreira FC, Chiancone IS, Pereira SS, Pontes KFM, Traina E, Werner H, Granese R, Araujo Júnior E. Intrauterine Zika Virus Infection: An Overview of the Current Findings. J Pers Med 2025; 15:98. [PMID: 40137414 PMCID: PMC11943202 DOI: 10.3390/jpm15030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus of the family Flaviviridae. The association between ZIKV and microcephaly was first described in Brazil in 2015. The risk of vertical transmission occurs in pregnant women with or without symptoms, and the risk of malformation appears to be worse when infection occurs in the first and second trimesters of pregnancy. The rate of vertical transmission varies from 26 to 65%, and not all fetuses develop malformations. The incidence of malformations resulting from transmission is uncertain, ranging from 6-8% in the US to 40% in Brazil. Congenital ZIKV syndrome is a set of clinical manifestations that can affect the fetus of a mother infected with ZIKV. The manifestations are broad and nonspecific, including microcephaly, subcortical calcifications, ocular changes, congenital contractures, early hypertension, and pyramidal and extrapyramidal signs. Other findings such as growth restriction and fetal miscarriage/death may also occur. Our aim in this article is to review the literature on mosquito transmission, clinical presentation, serologic diagnosis, intrauterine transmission, pre- and postnatal imaging diagnostic findings, and short- and long-term follow-up.
Collapse
Affiliation(s)
- Ana Luiza Soares dos Santos
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Beatriz Bussi Rosolen
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Fernanda Curvelo Ferreira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Isabella Samões Chiancone
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Stefany Silva Pereira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Karina Felippe Monezi Pontes
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
- Service of Gynecology and Obstetrics, Ipiranga Hospital, São Paulo 04262-000, SP, Brazil
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| |
Collapse
|
3
|
Rubio AD, Hamilton L, Bausch M, Jin M, Papetti A, Jiang P, Yelamanchili SV. A Comprehensive Review on Utilizing Human Brain Organoids to Study Neuroinflammation in Neurological Disorders. J Neuroimmune Pharmacol 2025; 20:23. [PMID: 39987404 PMCID: PMC11846768 DOI: 10.1007/s11481-025-10181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Most current information about neurological disorders and diseases is derived from direct patient and animal studies. However, patient studies in many cases do not allow replication of the early stages of the disease and, therefore, offer limited opportunities to understand disease progression. On the other hand, although the use of animal models allows us to study the mechanisms of the disease, they present significant limitations in developing drugs for humans. Recently, 3D-cultured in vitro models derived from human pluripotent stem cells have surfaced as a promising system. They offer the potential to connect findings from patient studies with those from animal models. In this comprehensive review, we discuss their application in modeling neurodevelopmental conditions such as Down Syndrome or Autism, neurodegenerative diseases such as Alzheimer's or Parkinson's, and viral diseases like Zika virus or HIV. Furthermore, we will discuss the different models used to study prenatal exposure to drugs of abuse, as well as the limitations and challenges that must be met to transform the landscape of research on human brain disorders.
Collapse
Affiliation(s)
- Adrian Domene Rubio
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Luke Hamilton
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Mark Bausch
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ava Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Ribeiro JH, Etlioglu E, Buset J, Janssen A, Puype H, Berden L, Mbouombouo Mfossa AC, De Vos WH, Vermeirssen V, Baatout S, Rajan N, Quintens R. A human-specific, concerted repression of microcephaly genes contributes to radiation-induced growth defects in cortical organoids. iScience 2025; 28:111853. [PMID: 39967878 PMCID: PMC11834077 DOI: 10.1016/j.isci.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Prenatal radiation-induced DNA damage poses a significant threat to neurodevelopment, resulting in microcephaly which primarily affects the cerebral cortex. So far, mechanistic studies were done in rodents. Here, we leveraged human cortical organoids to model fetal corticogenesis. Organoids were X-irradiated with moderate or high doses at different time points. Irradiation caused a dose- and time-dependent reduction in organoid size, which was more prominent in younger organoids. This coincided with a delayed and attenuated DNA damage response (DDR) in older organoids. Besides the DDR, radiation induced premature differentiation of neural progenitor cells (NPCs). Our transcriptomic analysis demonstrated a concerted p53-E2F4/DREAM-dependent repression of primary microcephaly genes, which was independently confirmed in cultured human NPCs and neurons. This was a human-specific feature, as it was not observed in mouse embryonic brains or primary NPCs. Thus, human cortical organoids are an excellent model for DNA damage-induced microcephaly and to uncover potentially targetable human-specific pathways.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Hanne Puype
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lisa Berden
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Wilrijk, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Nicholas Rajan
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
5
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
6
|
Martins MM, Medronho RDA, Raymundo CE, Prata-Barbosa A, da Cunha AJLA. Neonatal Microcephaly and Central Nervous System Abnormalities During the Zika Outbreak in Rio de Janeiro. Viruses 2025; 17:208. [PMID: 40006962 PMCID: PMC11860663 DOI: 10.3390/v17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
This retrospective cohort study analyzed 7870 pregnant women, including 2269 with confirmed Zika virus (ZIKV) infection and 5601 without Zika infection, along with their fetuses and newborns. Data were sourced from multiple databases in the state of Rio de Janeiro, Brazil. A propensity score model was employed to control confounding factors and stratify outcomes by pregnancy trimester. Among ZIKV+ pregnant women, 49 cases of congenital microcephaly or congenital nervous system (CNS) abnormalities were identified (2.16%, or 193.9 cases in 10,000 live births), whereas 44 cases were identified among ZIKV- women (0.78%, or 71.4 cases in 10,000 live births). Multivariable analysis yielded an odds ratio of 2.46 (95% CI 1.30-4.64) overall, with 4.29 (95% CI 1.93-9.53) in the first trimester, 5.29 (95% CI 1.08-25.95) in the second trimester, and 0.68 (95% CI 0.21-2.14) in the third trimester. The most frequent findings among ZIKV+ cases included intracranial calcifications, ventriculomegaly, posterior fossa malformations, reduced brain volume, corpus callosum malformations, cortex dysplasia, lissencephaly, and pachygyria. Ophthalmologic abnormalities were detected in 55.5% of cases, and brainstem auditory evoked potential anomalies were reported in 33.3%. ZIKV infection can result in structural or functional anomalies. Given the absence of specific treatment for congenital Zika syndrome (CZS), clinical care should prioritize monitoring and managing neurological, motor, auditory, visual, and orthopedic disorders in all children with in utero ZIKV exposure, especially during the first and second trimesters of pregnancy.
Collapse
Affiliation(s)
- Marlos Melo Martins
- Division of Pediatric Neurology, Martagão Gesteira Institute of Childcare and Pediatrics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil;
| | - Roberto de Andrade Medronho
- Department of Epidemiology and Public Health, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-592, Brazil; (R.d.A.M.); (C.E.R.)
| | - Carlos Eduardo Raymundo
- Department of Epidemiology and Public Health, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-592, Brazil; (R.d.A.M.); (C.E.R.)
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 2281-100, Brazil
| | | |
Collapse
|
7
|
Yu J, Zheng YM, Sheridan MA, Ezashi T, Roberts RM, Liu SL. Autophagy-Mediated Downregulation of AXL and TIM-1 Promotes Sustained Zika Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630961. [PMID: 39803534 PMCID: PMC11722360 DOI: 10.1101/2024.12.31.630961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV in vitro. However, it remains unclear if and how ZIKV regulates these receptors during infection. In this study, we investigated AXL and TIM-1 expression in human alveolar basal epithelial A549 cells, glioblastoma U87 cells, and embryonic stem cells-derived trophoblast following ZIKV infection. We found that both the Asian strain FSS13025 and the African strain MR766 of ZIKV downregulate AXL, with a milder effect on TIM-1. We identified several ZIKV proteins, notably envelope (E), NS2A, NS3, and NS4B, that contribute to this downregulation. Notably, treatment with lysosomal inhibitor NH4Cl or the autophagy inhibitor 3-Methyladenine (3-MA) mitigated the AXL/TIM-1 downregulation, indicating autophagy's involvement in the process. Importantly, this downregulation facilitates sustained viral replication and promotes viral spread by preventing superinfection and limiting cell death, which is also associated with impaired innate immune signaling. Our findings uncover a mechanism by which ZIKV downregulates entry factors to enhance prolonged viral replication and spread.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Megan A. Sheridan
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Toshihiko Ezashi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Division of Animal Sciences, College of Agriculture, Food, & Natural Resources, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Division of Animal Sciences, College of Agriculture, Food, & Natural Resources, University of Missouri, Columbia, MO 65211
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Dave R, Pandey K, Patel R, Gour N, Bhatia D. Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery. Stem Cell Rev Rep 2025; 21:147-166. [PMID: 39388081 DOI: 10.1007/s12015-024-10800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India.
| | - Dhiraj Bhatia
- Department of Biological Engineering Discipline, Indian Institute of Technology, Palaj, 382355, Gujarat, India.
| |
Collapse
|
9
|
Lee YS, Cheong MS, Lee J, Bang EK, Park SI, Park HJ, Bae SH, Yoon S, Roh G, Lee S, Cho Y, Ha D, Oh A, Lee SY, Choi EJ, Choi H, Jo S, Lee Y, Kim J, Kwak HW, Bang YJ, Lee D, Shim H, Park YK, Keum G, Nam JH, Kim W. Immunogenicity and protection of a triple repeat domain III mRNA vaccine against Zika virus. Vaccine 2025; 43:126518. [PMID: 39547049 DOI: 10.1016/j.vaccine.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Zika virus (ZIKV) infection is primarily transmitted by mosquitoes and often asymptomatic in most individuals. Infection during pregnancy can lead to severe birth defects such as congenital microcephaly, and currently, there is no approved vaccine for ZIKV. Several studies are investigating the development of ZIKV vaccine using DNA and RNA as well as recombinant protein technologies; however, the outcomes thus far have not been consistently noteworthy. In this study, we designed an mRNA vaccine for ZIKV and evaluated its immunogenicity using a mouse model. Our vaccine, termed 3xEIII, encodes a triple repeat of domain III from the ZIKV E protein. We effectively encapsulated the mRNA within lipid nanoparticles (LNPs), administered 3xEIII to mice via two intramuscular injections, and assessed the induced humoral and cellular immune responses. Specifically, the vaccine elicited neutralizing antibodies that effectively eliminated ZIKV from the organs of challenged mice. Notably, 3xEIII conferred both protective effects and long-term immunity. In subsequent challenges conducted 40 weeks after boosting, immunized mice experienced temporary weight loss but showed significantly reduced viral titers in target organs by the 9th day post-infection. Conclusively from these findings, 3xEIII stands out as a promising noteworthy mRNA vaccine candidate for Zika virus.
Collapse
MESH Headings
- Animals
- Zika Virus Infection/prevention & control
- Zika Virus Infection/immunology
- Zika Virus/immunology
- Zika Virus/genetics
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Female
- mRNA Vaccines
- Nanoparticles
- Disease Models, Animal
- Mice, Inbred BALB C
- Immunity, Humoral
- Immunogenicity, Vaccine
- Immunity, Cellular
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Injections, Intramuscular
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Liposomes
Collapse
Affiliation(s)
- Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Mi Sun Cheong
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sang In Park
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Dahyeon Ha
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayoung Oh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Eun-Jin Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Huijeong Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sohee Jo
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yeeun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jungmin Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Yoo-Jin Bang
- SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Dabin Lee
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Heeyoun Shim
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Young Kun Park
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea.
| | - Wonil Kim
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea..
| |
Collapse
|
10
|
Castro-Trujillo S, Mejía WR, Segura K, Castro-Meneses J, Vega R, Salgado D, Fonseca CE, Ortiz ÁM, Perdomo-Celis F, Bosch I, Narváez CF. A low pre-existing anti-NS1 humoral immunity to DENV is associated with microcephaly development after gestational ZIKV exposure. PLoS Negl Trop Dis 2025; 19:e0012193. [PMID: 39761322 PMCID: PMC11723597 DOI: 10.1371/journal.pntd.0012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/10/2025] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined. In addition, considering that most of the at-risk population lives in dengue virus (DENV)-endemic areas, it is not clear what is the association between pre-existing DENV NS1-specific humoral immunity and CZS. METHODS Here, we studied 328 mothers and children with a clinical diagnosis and seropositivity for ZIKV infection during pregnancy, included during the 2015-2016 ZIKV epidemic in Colombia. We also performed clinical evaluation and pediatric neurological follow-up. The relative levels of circulating NS1-specific IgM and IgG against ZIKV and DENV were evaluated in mothers and children, and the association with the development of microcephaly was analyzed. RESULTS DENV and ZIKV IgG-NS1 antibodies in pregnant women were placentally transferred, and this passage and its duration in children depended on the maternal levels of the antibodies. We reported that higher concentrations of pre-existing DENV, but not ZIKV IgG-NS1 antibodies, were associated with a reduced risk of CZS-related microcephaly. Also, we observed that the IgM-NS1 response in infants is long-term and has a minor association with poor outcomes. CONCLUSIONS The development of microcephaly in children prenatally exposed to ZIKV is associated with low plasma levels of placentally transferred, pre-existing DENV IgG-NS1 antibodies. These data are compatible with a protective role of anti-NS1 IgG antibodies against ZIKV infection during pregnancy and highlight the promising role of NS1 as an orthoflavivirus vaccine target in high-risk populations.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - William R. Mejía
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Katherine Segura
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Rocío Vega
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Doris Salgado
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Carlos E. Fonseca
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Ángela M. Ortiz
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
11
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
da Silva Siqueira L, Rodrigues FVF, Zanatta Â, Gonçalves JIB, Ghilardi IM, Alcará AM, Becker NB, Pinzetta G, Zanirati G, Becker BMA, Erwig HS, da Costa JC, Marinowic DR. Evaluation of the effects of the Zika Virus-Immunoglobulin G + complex on murine microglial cells. J Neurovirol 2024; 30:477-488. [PMID: 38935226 DOI: 10.1007/s13365-024-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta. Because of limited understanding regarding the long term consequences of ZIKV infection and the involvement of maternal antibodies, this study sought to assess the impact of the ZIKV + IgG⁺complex on murine microglial cells. The cells were exposed to ZIKV, IgG antibodies, and the ZIKV + IgG⁺complex for 24 and 72 h. Treatment-induced cytotoxic effects were evaluated using the cell viability assay, oxidative stress, and mitochondrial membrane potential. The findings indicated that IgG antibodies exhibit cytotoxic effects on microglia, whether alone or in the presence of ZIKV, leading to compromised cell viability, disrupted mitochondrial membrane potential, and heightened oxidative damage. Our conclusion is that IgG antibodies exert detrimental effects on microglia, triggering their activation and potentially disrupting the creation of a neurotoxic environment. Moreover, the presence of antibodies may correlate with an elevated risk of ZIKV-induced neuroinflammation, contributing to long-term CNS damage.
Collapse
Affiliation(s)
- Laura da Silva Siqueira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Felipe Valle Fortes Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Nicole Bernd Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Bruno Maestri Abrianos Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil.
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil.
| |
Collapse
|
13
|
Hassaan NA, Xing L. The mechanisms of Zika virus-induced neuropathogenesis. Braz J Microbiol 2024; 55:3933-3943. [PMID: 39422868 PMCID: PMC11711583 DOI: 10.1007/s42770-024-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Zika virus (ZIKV), a flavivirus, is one of the most serious re-emerging pathogens. Growing outbreaks in the Americas have linked ZIKV to significant clinical symptoms including Guillain-Barré syndrome in adults and congenital anomalies in newborns. ZIKV affects brain cells in a variety of ways, mostly apoptosis and cell cycle delays. Modulation of the host's immune reaction and the inflammatory process has also been shown to be involved in ZIKV-induced neurological disorders. This review summarized and discussed the latest advances in ZIKV research to shed fresh light on the multiple mechanisms incolved in ZIKV-induced neuropathogenesis.
Collapse
Affiliation(s)
- Nahla Ahmed Hassaan
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi province, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi province, 030006, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
14
|
Bindu, Pandey HS, Seth P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol Neurobiol 2024; 61:9927-9944. [PMID: 37910284 DOI: 10.1007/s12035-023-03704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Bindu
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
15
|
Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med 2024; 27:e1. [PMID: 39587735 PMCID: PMC11707831 DOI: 10.1017/erm.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human neurodevelopment is a complex process vulnerable to disruptions, particularly during the prenatal period. Maternal viral infections represent a significant environmental factor contributing to a spectrum of congenital defects with profound and enduring impacts on affected offspring. The advent of induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) human brain organoids has revolutionised our ability to model prenatal viral infections and associated neurodevelopmental disorders. Notably, human brain organoids provide a distinct advantage over traditional animal models, whose brain structures and developmental processes differ markedly from those of humans. These organoids offer a sophisticated platform for investigating viral pathogenesis, infection mechanisms and potential therapeutic interventions, as demonstrated by their pivotal role during the 2016 Zika virus outbreak. This review critically examines the utilisation of brain organoids in elucidating the mechanisms of TORCH viral infections, their impact on human brain development and contribution to associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriella Crawford
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Olivia Soper
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eunchai Kang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel A. Berg
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
16
|
Wang YT, Hsieh YC, Wu TY. In silico validation of allosteric inhibitors targeting Zika virus NS2B-NS3 protease. Phys Chem Chem Phys 2024; 26:27684-27693. [PMID: 39469836 DOI: 10.1039/d4cp02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, poses a major threat to human health because of the lack of effective antiviral drugs. Although the NS2B-NS3 protease of ZIKV (NS2B-NS3pro) is regarded as a major target for antiviral inhibitors, viral mutations can lead to ineffective competitive inhibitors. Allosteric inhibitors bind to highly conserved nonprotease active sites, induce conformational changes in the protease active site, and prevent substrate binding. Currently, no molecular simulation techniques are available for accurately predicting and analysing conformational changes in the protease catalytic domain. In this study, we developed a combined approach that involves blind docking, Gaussian accelerated molecular dynamics, two-dimensional potential of mean force profiling, density functional theory (DFT) calculations, and interaction region indicator (IRI) analysis and employed it to examine the allosteric inhibitor-01 molecule and its interaction with ZIKV NS2B-NS3pro. Our results indicated that the binding of inhibitor-01 to NS2B-NS3pro resulted in two major conformational states, state I and state II, which in turn changed the volume of the protease active site from 1014 Å3 to 710 and 820 Å3, respectively. These two states had an inactive catalytic domain (residues His116, Asp140, and Ser200). DFT and IRI analyses revealed that, in state I, Lys138 and Gln139 formed hydrogen bonds with inhibitor-01, whereas Lys138, Leu214, Asn217, Val220, and Ile221 engaged in van der Waals interactions with inhibitor-01. Advancements in computational techniques and power are expected to facilitate further progress in overcoming challenges associated with designing allosteric inhibitors for viral proteases.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, ROC.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Tin-Yu Wu
- Department of Management Information Systems, National Pingtung University of Science and Technology, Taiwan, ROC
| |
Collapse
|
17
|
Zhang L, Wang H, Han C, Dong Q, Yan J, Guo W, Shan C, Zhao W, Chen P, Huang R, Wu Y, Chen Y, Qin Y, Chen M. AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity. Nat Commun 2024; 15:9578. [PMID: 39505910 PMCID: PMC11541587 DOI: 10.1038/s41467-024-54010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
Flaviviruses strategically utilize the endoplasmic reticulum (ER) in their replication cycles. However, the role of ER autophagy (ER-phagy) in viral replication process remains poorly understood. Here, we reveal that prolonged Zika virus (ZIKV) infection results from the degradation of ER-phagy receptor FAM134B, facilitated by viral NS2A protein. Mechanistically, ER-localized NS2A undergoes K48-linked polyubiquitination at lysine (K) 56 by E3 ligase AMFR. Ubiquitinated NS2A binds to FAM134B and AMFR orchestrates the degradation of NS2A-FAM134B complexes. AMFR-catalyzed NS2A ubiquitination not only targets FAM134B degradation but also hinders the FAM134B-AMFR axis. Notably, a recombinant ZIKV mutant (ZIKV-NS2AK56R), lacking ubiquitination and ER-phagy inhibition, exhibits attenuation in ZIKV-induced microcephalic phenotypes in human brain organoids and replicates less efficiently, resulting in weakened pathogenesis in mouse models. In this work, our mechanistic insights propose that flaviviruses manipulate ER-phagy to modulate ER turnover, driving viral infection. Furthermore, AMFR-mediated flavivirus NS2A ubiquitination emerges as a potential determinant of viral pathogenecity.
Collapse
Affiliation(s)
- Linliang Zhang
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hongyun Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chao Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430072, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430072, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Mingzhou Chen
- School of Life Sciences, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Taufer NP, Santos-Souza C, Larentis LT, Santos CND, Creuzet SE, Garcez RC. Integrative analysis of molecular pathways and morphological anomalies associated with congenital Zika syndrome. J Neurol Sci 2024; 465:123190. [PMID: 39182423 DOI: 10.1016/j.jns.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Congenital Zika syndrome (CZS) comprises a set of clinical manifestations that can be presented by neonates born to mothers infected by the Zika virus (ZIKV). CZS-associated phenotypes include neurological, skeletal, and systemic alterations and long-term developmental sequelae. One of the most frequently reported clinical conditions is microcephaly characterized by a reduction in head circumference and cognitive complications. Nevertheless, the associations among the diverse signaling pathways underlying CZS phenotypes remain to be elucidated. To shed light on CZS, we have extensively reviewed the morphological anomalies resulting from ZIKV infection, as well as genes and proteins of interest obtained from the published literature. With this list of genes or proteins, we performed computational analyses to explore the cellular processes, molecular mechanisms, and molecular pathways related to ZIKV infection. Therefore, in this review, we comprehensively describe the morphological abnormalities caused by congenital ZIKV infection and, through the analysis noted above, propose common molecular pathways altered by ZIKV that could explain both central nervous system and craniofacial skeletal alterations.
Collapse
Affiliation(s)
- Nathali Parise Taufer
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Camila Santos-Souza
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lucas Trentin Larentis
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Sophie Emmanuelle Creuzet
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique UMR 9197, Saclay, France.
| | - Ricardo Castilho Garcez
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
19
|
Stokes C, Whitmore LS, Moreno D, Malhotra K, Tisoncik-Go J, Tran E, Wren N, Glass I, Young JE, Gale M. The Human Neural Cell Atlas of Zika Infection in developing human brain tissue: viral pathogenesis, innate immunity, and lineage reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615512. [PMID: 39386476 PMCID: PMC11463344 DOI: 10.1101/2024.09.27.615512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Zika virus (ZIKV) infection during pregnancy can lead to fetal brain infection and developmental anomalies collectively known as congenital Zika syndrome (CZS). To define the molecular features underlying CZS in a relevant human cell model, we evaluated ZIKV infection and neurodevelopment in primary fetal brain explants and induced pluripotent stem cell-derived mixed neural cultures at single cell resolution. We identified astrocytes as key innate immune sentinel cells detecting ZIKV and producing IFN-β. In contrast, neural progenitor cells displayed impaired innate immunity and supported high levels of viral replication. ZIKV infection of neurons suppressed differentiation and synaptic signaling networks and programmed a molecular switch from neurogenesis to astrogliogenesis. We identified a universal ZIKV-driven cellular stress response linked to intrinsic apoptosis and regulated by IFN-β. These findings reveal how innate immune signaling intersects with ZIKV-driven perturbations in cellular function to influence CZS outcomes including neuron developmental dysfunction and apoptotic cell death.
Collapse
Affiliation(s)
- Caleb Stokes
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Dante Moreno
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | | | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
| | - Emily Tran
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Nick Wren
- School of Medicine, University of Washington, Seattle WA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
| | - Jessica E Young
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN
- Institute on Infectious Diseases, University of Minnesota, Minneapolis MN
| |
Collapse
|
20
|
Sultana T, Zheng C, Morton G, Megraw TL. Zika virus NS3 drives the assembly of a viroplasm-like structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613201. [PMID: 39345390 PMCID: PMC11429906 DOI: 10.1101/2024.09.16.613201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused an epidemic in 2015-2016 in the Americas and raised serious global health concerns due to its association with congenital brain developmental defects in infected pregnancies. Upon infection, ZIKV assembles virus particles in a virus-generated toroidal compartment next to the nucleus called the replication factory, or viroplasm, which forms by remodeling the host cell endoplasmic reticulum (ER). How the viral proteins control viroplasm assembly remains unknown. Here we show that the ZIKV non-structural protein 3 (NS3) is sufficient to drive the assembly of a viroplasm-like structure (VLS) in human cells. NS3 encodes a dual-function protease and RNA helicase. The VLS is similar to the ZIKV viroplasm in its assembly near centrosomes at the nuclear periphery, its deformation of the nuclear membrane, its recruitment of ER, Golgi, and dsRNA, and its association with microtubules at its surface. While sufficient to generate a VLS, NS3 is less efficient in several aspects compared to viroplasm formation upon ZIKV infection. We further show that the helicase domain and not the protease domain is required for optimal VLS assembly and dsRNA recruitment. Overall, this work advances our understanding of the mechanism of viroplasm assembly by ZIKV and likely will extend to other flaviviruses.
Collapse
Affiliation(s)
- Tania Sultana
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Chunfeng Zheng
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Garret Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
21
|
Bird IM, Cavener V, Surendran Nair M, Nissly RH, Chothe SK, Jacob J, Kuchipudi SV. Distinct Replication Kinetics, Cytopathogenicity, and Immune Gene Regulation in Human Microglia Cells Infected with Asian and African Lineages of Zika Virus. Microorganisms 2024; 12:1840. [PMID: 39338514 PMCID: PMC11433722 DOI: 10.3390/microorganisms12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a significant global health concern due to its association with neurodevelopmental disorders such as congenital Zika syndrome (CZS). This study aimed to compare the replication kinetics, viral persistence, cytopathogenic effects, and immune gene expression in human microglia cells (CHME-3) infected with an Asian lineage ZIKV (PRVABC59, referred to as ZIKV-PRV) and an African lineage ZIKV (IBH30656, referred to as ZIKV-IBH). We found that ZIKV-PRV replicated more efficiently and persisted longer while inducing lower levels of cell death and inflammatory gene activation compared with ZIKV-IBH. These findings suggest that the enhanced replication and persistence of ZIKV-PRV, along with its ability to evade innate immune responses, may underlie its increased neuropathogenic potential, especially in the context of CZS. In contrast, ZIKV-IBH, with its stronger immune gene activation and higher cytopathogenicity, may lead to more acute infections with faster viral clearance, thereby reducing the likelihood of chronic central nervous system (CNS) infection. This study provides crucial insights into the molecular and cellular mechanisms driving the differential pathogenicity of ZIKV lineages and highlights the need for further research to pinpoint the viral factors responsible for these distinct clinical outcomes.
Collapse
Affiliation(s)
- Ian M. Bird
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Victoria Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30329, USA;
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| |
Collapse
|
22
|
Kim D, Jeong S, Park SM. Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:403-411. [PMID: 39198221 PMCID: PMC11362000 DOI: 10.4196/kjpp.2024.28.5.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 09/01/2024]
Abstract
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
Collapse
Affiliation(s)
- Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Seonghun Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
23
|
Partiot E, Brychka D, Gaudin R. Investigating human monocyte adhesion, migration and transmigration and their modulation by Zika virus. Eur J Cell Biol 2024; 103:151453. [PMID: 39182312 DOI: 10.1016/j.ejcb.2024.151453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Human circulating monocytes are established targets for Zika virus (ZIKV) infection. Because of their important migratory properties toward any tissues, including the central nervous system (CNS), a better understanding of the mechanisms underlying monocyte transmigration upon ZIKV infection is required. Here, we monitored adhesion, migration and transmigration properties of monocytes exposed to ZIKV. We found that ZIKV enhanced monocyte adhesion on collagen compared to mock-exposed samples, and that pharmacological inhibition of mDia and Cdc42 function induced a significant decrease of adhesion in both mock- and ZIKV-exposed monocytes. In contrast, monocyte migration through collagen was inhibited by most of the tested small molecules targeting regulators of actin polymerization, including Rac1, ROCK, Cdc42, mDia, Arp2/3, Myosin-II and LFA-1. ZIKV-exposed monocyte migration showed a very similar profile to that of their mock-exposed counterparts. Finally, assessment of monocyte transmigration through human cerebral microvascular endothelial cells (hCMEC/D3) showed dependency on Rac1, ROCK, and Cdc42, independently of their infection status. In contrast, we identified that BIRT377, an antagonist of LFA-1, significantly inhibited transmigration of ZIKV-exposed but not mock-exposed monocytes. As BIRT377 increased adhesion of ZIKV-exposed monocytes, we propose that LFA-1 might be involved in a post-adhesion step to enhance viro-induced transmigration. These data suggest that ZIKV exposure triggers specific migratory properties of monocytes that are not exploited under physiological conditions. This work provides further insights on virus-host interactions important for viral neuroinvasion and offers novel targets to specifically inhibit the infiltration of infected cells to the CNS. SUMMARY SENTENCE: Monocyte transmigration involves massive actin cytoskeleton reorganization regulated by small Rho GTPases and integrins, which can be subverted by viruses.
Collapse
Affiliation(s)
- Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France
| | - Diana Brychka
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France.
| |
Collapse
|
24
|
Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J, Ding Q. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci U S A 2024; 121:e2403235121. [PMID: 39145933 PMCID: PMC11348293 DOI: 10.1073/pnas.2403235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The ZIKA virus (ZIKV) evades the host immune response by degrading STAT2 through its NS5 protein, thereby inhibiting type I interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism underlying this process has remained elusive. In this study, we performed a genome-wide CRISPR/Cas9 screen, revealing that ZSWIM8 as the substrate receptor of Cullin3-RING E3 ligase is required for NS5-mediated STAT2 degradation. Genetic depletion of ZSWIM8 and CUL3 substantially impeded NS5-mediated STAT2 degradation. Biochemical analysis illuminated that NS5 enhances the interaction between STAT2 and the ZSWIM8-CUL3 E3 ligase complex, thereby facilitating STAT2 ubiquitination. Moreover, ZSWIM8 knockout endowed A549 and Huh7 cells with partial resistance to ZIKV infection and protected cells from the cytopathic effects induced by ZIKV, which was attributed to the restoration of STAT2 levels and the activation of IFN signaling. Subsequent studies in a physiologically relevant model, utilizing human neural progenitor cells, demonstrated that ZSWIM8 depletion reduced ZIKV infection, resulting from enhanced IFN signaling attributed to the sustained levels of STAT2. Our findings shed light on the role of ZIKV NS5, serving as the scaffold protein, reprograms the ZSWIM8-CUL3 E3 ligase complex to orchestrate STAT2 proteasome-dependent degradation, thereby facilitating evasion of IFN antiviral signaling. Our study provides unique insights into ZIKV-host interactions and holds promise for the development of antivirals and prophylactic vaccines.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Chonglei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaohui Ju
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jingwei Song
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Mingli Gong
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Zhuoyang Li
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
- School of Management, Shanxi Medical University, Taiyuan030001, China
| | - Wenchun Fan
- Life Science Institute, Zhejiang University, Hangzhou31008, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
| |
Collapse
|
25
|
Kousa YA, Singh S, Horvath A, Tomasso F, Nazarian J, Henderson L, Mansour TA. Transcriptomic Meta-analysis Identifies Long Non-Coding RNAs Mediating Zika's Oncolytic Impact in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.605859. [PMID: 39372798 PMCID: PMC11452190 DOI: 10.1101/2024.08.04.605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal form of brain cancer with few effective treatments. In this context, Zika virus has emerged as a promising therapeutic agent due to its ability to selectively infect and kill GBM cells. To elucidate these mechanisms and expand the landscape of oncolytic virotherapy, we pursued a transcriptomic meta-analysis comparing the molecular signatures of Zika infection in GBM and neuroblastoma (NBM). Over-representation analysis of dysregulated coding genes showed significant enrichment of tumor necrosis factor (TNF), NF-κB, and p53 signaling pathways. A refined list of long non-coding RNAs consistently dysregulated in Zika-infected GBMs was also developed. Functional review of these candidates revealed their potential regulatory role in Zika-mediated oncolysis. We performed validation of the less-researched targets in adult and pediatric GBM cell lines and found significant differential regulation, as predicted. Altogether, our results provide novel insights into the molecular mechanisms underlying the effect of Zika on GBM. We highlight potential therapeutic targets that could be further interrogated to improve the efficacy of tumor cell death and the utility of Zika as an adjuvant virotherapy for GBM and other related cancers.
Collapse
|
26
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604365. [PMID: 39091761 PMCID: PMC11291105 DOI: 10.1101/2024.07.19.604365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
27
|
Berglund G, Lennon CD, Badu P, Berglund JA, Pager CT. Transcriptomic Signatures of Zika Virus Infection in Patients and a Cell Culture Model. Microorganisms 2024; 12:1499. [PMID: 39065267 PMCID: PMC11278784 DOI: 10.3390/microorganisms12071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a re-emerging flavivirus, is associated with devasting developmental and neurological disease outcomes particularly in infants infected in utero. Towards understanding the molecular underpinnings of the unique ZIKV disease pathologies, numerous transcriptome-wide studies have been undertaken. Notably, these studies have overlooked the assimilation of RNA-seq analysis from ZIKV-infected patients with cell culture model systems. In this study we find that ZIKV-infection of human lung adenocarcinoma A549 cells, mirrored both the transcriptional and alternative splicing profiles from previously published RNA-seq data of peripheral blood mononuclear cells collected from pediatric patients during early acute, late acute, and convalescent phases of ZIKV infection. Our analyses show that ZIKV infection in cultured cells correlates with transcriptional changes in patients, while the overlap in alternative splicing profiles was not as extensive. Overall, our data indicate that cell culture model systems support dissection of select molecular changes detected in patients and establishes the groundwork for future studies elucidating the biological implications of alternative splicing during ZIKV infection.
Collapse
Affiliation(s)
- Gillian Berglund
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Claudia D. Lennon
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Pheonah Badu
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - John Andrew Berglund
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T. Pager
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
28
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
29
|
Zhang S, Li N, Wu S, Xie T, Chen Q, Wu J, Zeng S, Zhu L, Bai S, Zha H, Tian W, Wu N, Zou X, Fang S, Luo C, Shi M, Sun C, Shu Y, Luo H. c-FLIP facilitates ZIKV infection by mediating caspase-8/3-dependent apoptosis. PLoS Pathog 2024; 20:e1012408. [PMID: 39038037 PMCID: PMC11293698 DOI: 10.1371/journal.ppat.1012408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
c-FLIP functions as a dual regulator of apoptosis and inflammation, yet its implications in Zika virus (ZIKV) infection remain partially understood, especially in the context of ZIKV-induced congenital Zika syndrome (CZS) where both apoptosis and inflammation play pivotal roles. Our findings demonstrate that c-FLIP promotes ZIKV infection in placental cells and myeloid-derived macrophages, involving inflammation and caspase-8/3-mediated apoptosis. Moreover, our observations reveal that c-FLIP augments ZIKV infection in multiple tissues, including blood cell, spleen, uterus, testis, and the brain of mice. Notably, the partial deficiency of c-FLIP provides protection to embryos against ZIKV-induced CZS, accompanied by a reduction in caspase-3-mediated apoptosis. Additionally, we have found a distinctive parental effect of c-FLIP influencing ZIKV replication in fetal heads. In summary, our study reveals the critical role of c-FLIP as a positive regulator in caspase-8/3-mediated apoptosis during ZIKV infection, significantly contributing to the development of CZS.
Collapse
Affiliation(s)
- Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
30
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Adams Waldorf KM, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun 2024; 15:5173. [PMID: 38890352 PMCID: PMC11189406 DOI: 10.1038/s41467-024-49524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Borba R, Freitas T, Marques C, Nóbrega L, Higino T, Rocha C, Ventura CV, Sallum J, Ventura LO. Long-term visual and neurodevelopmental outcomes in children with Congenital Zika Syndrome after undergoing strabismus surgery. Strabismus 2024; 32:91-101. [PMID: 38773721 PMCID: PMC11208075 DOI: 10.1080/09273972.2024.2346551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Purpose: To assess long-term visual and neurodevelopmental outcomes in children with congenital Zika syndrome (CZS) after strabismus surgery. Methods: A consecutive sample of five children with CZS who underwent strabismus surgery was enrolled. All children underwent a standardized pre- and postoperative protocol including binocular best-corrected visual acuity (BCVA) using the Teller Acuity Cards II (TAC II), ocular alignment, functional vision using the functional vision developmental milestones test (FVDMT), and neurodevelopmental milestone evaluation using the Bayley Scales of Infant Development-Third Edition (BSID-III). Scores of the FVDMT outcomes considering the child's developmental age based on the BSID-III score were compared with scores from postoperative assessment. Results: Five children with CZS (3 girls, 2 boys) were enrolled with a mean age at baseline (preoperative) of 35.0 ± 0.7 months (range, 34-36 months) and at final assessment of 64.4 ± 0.5 months (range, 64-65 months). Preoperative BCVA was 1.2 ± 0.5 logMAR and at final assessment 0.7 ± 0.1 logMAR. Successful strabismus surgery outcome was maintained in 4/5 (80.0%) of children at final assessment. The children's BSID-III scores showed significant neurodevelopment delay at the initial assessment (corresponding developmental mean age was 4.7 months) and at their final assessment (corresponding developmental mean age was 5.1 months). There was improvement or stability in 34/46 items evaluated in the FVDMT (73.9%) when comparing baseline with 2-year follow-up. Conclusions: Strabismus surgery resulted in long-term ocular alignment in the majority of children with CZS. All the children showed improvement or stability in more than 70.0% of the functional vision items assessed. Visual and neurodevelopmental dysfunction may be related to complex condition and associated disorders seen in CZS including ocular, neurological, and skeletal abnormalities.
Collapse
Affiliation(s)
- Raíne Borba
- Rehabilitation Center, Altino Ventura Foundation, Recife, PE, Brazil
| | - Tatiane Freitas
- Rehabilitation Center, Altino Ventura Foundation, Recife, PE, Brazil
| | - Cláudia Marques
- Rehabilitation Center, Altino Ventura Foundation, Recife, PE, Brazil
| | - Lucélia Nóbrega
- Rehabilitation Center, Altino Ventura Foundation, Recife, PE, Brazil
| | - Taciana Higino
- Department of Research, Altino Ventura Foundation, Recife, PE, Brazil
| | - Camilla Rocha
- Department of Research, Altino Ventura Foundation, Recife, PE, Brazil
| | - Camila V. Ventura
- Department of Research, Altino Ventura Foundation, Recife, PE, Brazil
- Department of Ophthalmology, HOPE Eye Hospital, Recife, PE, Brazil
| | - Juliana Sallum
- Department of Ophthalmology, Federal University of São Paulo, SP, Brazil
| | - Liana O. Ventura
- Department of Ophthalmology, Altino Ventura Foundation, Recife, PE, Brazil
| |
Collapse
|
32
|
Berglund G, Lennon CD, Badu P, Berglund JA, Pager CT. Zika virus infection in a cell culture model reflects the transcriptomic signatures in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595842. [PMID: 38826459 PMCID: PMC11142252 DOI: 10.1101/2024.05.25.595842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Zika virus (ZIKV), a re-emerging flavivirus, is associated with devasting developmental and neurological disease outcomes particularly in infants infected in utero. Towards understanding the molecular underpinnings of the unique ZIKV disease pathologies, numerous transcriptome-wide studies have been undertaken. Notably, these studies have overlooked the assimilation of RNA-seq analysis from ZIKV-infected patients with cell culture model systems. In this study we find that ZIKV-infection of human lung adenocarcinoma A549 cells, mirrored both the transcriptional and alternative splicing profiles from previously published RNA-seq data of peripheral blood mononuclear cells collected from pediatric patients during early acute, late acute, and convalescent phases of ZIKV infection. Our analyses show that ZIKV infection in cultured cells correlates with transcriptional changes in patients, while the overlap in alternative splicing profiles was not as extensive. Overall, our data indicate that cell culture model systems support dissection of select molecular changes detected in patients and establishes the groundwork for future studies elucidating the biological implications of alternative splicing during ZIKV infection.
Collapse
Affiliation(s)
- Gillian Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Claudia D. Lennon
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Pheonah Badu
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - J. Andrew Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T. Pager
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
33
|
Sherwood M, Zhou Y, Sui Y, Wang Y, Skipp P, Kaid C, Gray J, Okamoto K, Ewing RM. Integrated re-analysis of transcriptomic and proteomic datasets reveals potential mechanisms for Zika viral-based oncolytic therapy in neuroblastoma. F1000Res 2024; 12:719. [PMID: 38903860 PMCID: PMC11187533 DOI: 10.12688/f1000research.132627.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) can access the nervous system and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. Methods Here, we perform extensive data mining, integration and re-analysis of ZIKV infection datasets to highlight molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We collate infection data of multiple neuroblastoma cell lines by different ZIKV strains from a body of published literature to inform the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating published transcriptomics, interaction proteomics, dependency factor and compound datasets we propose the involvement of multiple host systems during ZIKV infection. Results Through data mining of published literature, we observed most paediatric neuroblastoma cell lines to be highly susceptible to ZIKV infection and propose the PRVABC59 ZIKV strain to be the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV infection is dependent on sterol regulatory element binding protein (SREBP)-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV non-structural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. Conclusions Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials.
Collapse
Affiliation(s)
- Matt Sherwood
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yilu Zhou
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yi Sui
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yihua Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Carolini Kaid
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Juliet Gray
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, England, UK
| | - Keith Okamoto
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Rob M. Ewing
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| |
Collapse
|
34
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
35
|
Harding AT, Ocwieja K, Jeong M, Zhang Y, Leger V, Jhala N, Stankovic KM, Gehrke L. Human otic progenitor cell models of congenital hearing loss reveal potential pathophysiologic mechanisms of Zika virus and cytomegalovirus infections. mBio 2024; 15:e0019924. [PMID: 38440980 PMCID: PMC11005345 DOI: 10.1128/mbio.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Ocwieja
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Childrens’ Hospital, Boston, Massachusetts, USA
| | - Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yichen Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nairuti Jhala
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Calderón-Peláez MA, Maradei Anaya SJ, Bedoya-Rodríguez IJ, González-Ipuz KG, Vera-Palacios D, Buitrago IV, Castellanos JE, Velandia-Romero ML. Zika Virus: A Neurotropic Warrior against High-Grade Gliomas-Unveiling Its Potential for Oncolytic Virotherapy. Viruses 2024; 16:561. [PMID: 38675903 PMCID: PMC11055012 DOI: 10.3390/v16040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.
Collapse
Affiliation(s)
- María-Angélica Calderón-Peláez
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Silvia Juliana Maradei Anaya
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | | | - Karol Gabriela González-Ipuz
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Daniela Vera-Palacios
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Isabella Victoria Buitrago
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Jaime E. Castellanos
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Myriam L. Velandia-Romero
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| |
Collapse
|
37
|
Marinowic DR, Zanirati GG, Azevedo PN, Zanatta Â, Plentz I, Alcará AM, Morrone FB, Scheffel TB, Cappellari AR, Roehe PM, Muterle Varela AP, Machado DC, Spillari Viola F, Da Costa JC. Influence of Zika virus on the cytotoxicity, cell adhesion, apoptosis and inflammatory markers of glioblastoma cells. Oncol Lett 2024; 27:176. [PMID: 38464338 PMCID: PMC10921266 DOI: 10.3892/ol.2024.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2023] [Indexed: 03/12/2024] Open
Abstract
Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Gabriele Goulart Zanirati
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Pamella Nunes Azevedo
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ismael Plentz
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Thamiris Becker Scheffel
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Angélica Regina Cappellari
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Paulo Michel Roehe
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Ana Paula Muterle Varela
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Fabiana Spillari Viola
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| |
Collapse
|
38
|
Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis 2024; 18:e0012053. [PMID: 38557981 PMCID: PMC10984552 DOI: 10.1371/journal.pntd.0012053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.
Collapse
Affiliation(s)
- Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Gang Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Rodrigues MMDS, Júnior AMP, Fukutani ER, Bergamaschi KB, Araújo-Pereira M, Salgado VR, de Queiroz ATL. The impact of ZIKV infection on gene expression in neural cells over time. PLoS One 2024; 19:e0290209. [PMID: 38512822 PMCID: PMC10956780 DOI: 10.1371/journal.pone.0290209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.
Collapse
Affiliation(s)
| | | | - Eduardo Rocha Fukutani
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| |
Collapse
|
40
|
Sharma S, Majumdar A, Basu A. Regulation of Onecut2 by miR-9-5p in Japanese encephalitis virus infected neural stem/progenitor cells. Microbiol Spectr 2024; 12:e0323823. [PMID: 38319106 PMCID: PMC10913399 DOI: 10.1128/spectrum.03238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Japanese encephalitis virus (JEV) is one of the major neurotropic viral infections that is known to dysregulate the homeostasis of neural stem/progenitor cells (NSPCs) and depletes the stem cell pool. NSPCs are multipotent stem cell population of the central nervous system (CNS) which are known to play an important role in the repair of the CNS during insults/injury caused by several factors such as ischemia, neurological disorders, CNS infections, and so on. Viruses have evolved to utilize host factors for their own benefit and during JEV infection, host factors, including the non-coding RNAs such as miRNAs, are reported to be affected, thereby cellular processes regulated by the miRNAs exhibit perturbed functionality. Previous studies from our laboratory have demonstrated the role of JEV infection in dysregulating the function of neural stem cells (NSCs) by altering the cell fate and depleting the stem cell pool leading to a decline in stem cell function in CNS repair mechanism post-infection. JEV-induced alteration in miRNA expression in the NSCs is one of the major interest to us. In prior studies, we have observed an altered expression pattern of certain miRNAs following JEV infection. In this study, we have validated the role of JEV infection in NSCs in altering the expression of miR-9-5p, which is a known regulator of neurogenesis in NSCs. Furthermore, we have validated the interaction of this miRNA with its target, Onecut2 (OC2), in primary NSCs utilizing miRNA mimic and inhibitor transfection experiments. Our findings indicate a possible role of JEV mediated dysregulated interaction between miR-9-5p and its putative target OC2 in NSPCs. IMPORTANCE MicroRNAs have emerged as key disease pathogenic markers and potential therapeutic targets. In this study, we solidify this concept by studying a key miRNA, miR-9-5p, in Japanese encephalitis virus infection of neural stem/progenitor cells. miRNA target Onecut2 has a possible role in stem cell pool biology. Here, we show a possible mechanistic axis worth investing in neurotropic viral biology.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
41
|
Zhang K, Liang J, Zhang B, Huang L, Yu J, Xiao X, He Z, Tao H, Yuan J. A Marine Natural Product, Harzianopyridone, as an Anti-ZIKV Agent by Targeting RNA-Dependent RNA Polymerase. Molecules 2024; 29:978. [PMID: 38474490 DOI: 10.3390/molecules29050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne virus that already poses a danger to worldwide human health. Patients infected with ZIKV generally have mild symptoms like a low-grade fever and joint pain. However, severe symptoms can also occur, such as Guillain-Barré syndrome, neuropathy, and myelitis. Pregnant women infected with ZIKV may also cause microcephaly in newborns. To date, we still lack conventional antiviral drugs to treat ZIKV infections. Marine natural products have novel structures and diverse biological activities. They have been discovered to have antibacterial, antiviral, anticancer, and other therapeutic effects. Therefore, marine products are important resources for compounds for innovative medicines. In this study, we identified a marine natural product, harzianopyridone (HAR), that could inhibit ZIKV replication with EC50 values from 0.46 to 2.63 µM while not showing obvious cytotoxicity in multiple cellular models (CC50 > 45 µM). Further, it also reduced the expression of viral proteins and protected cells from viral infection. More importantly, we found that HAR directly bound to the ZIKV RNA-dependent RNA polymerase (RdRp) and suppressed its polymerase activity. Collectively, our findings provide HAR as an option for the development of anti-ZIKV drugs.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bingzhi Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
42
|
Chen X, Li RT, Chen RY, Shi PD, Liu ZX, Lou YN, Wu M, Zhang RR, Tang W, Li XF, Qin CF. The subgenomic flaviviral RNA suppresses RNA interference through competing with siRNAs for binding RISC components. J Virol 2024; 98:e0195423. [PMID: 38289102 PMCID: PMC10878275 DOI: 10.1128/jvi.01954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ru-Yi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-Deng Shi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Xin Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Tang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
44
|
Novaes GM, Lima C, Longo C, Machado PH, Silva TP, Olberg GGDO, Módolo DG, Pereira MCL, Santos TG, Zatz M, Lagares D, de Franco M, Ho PL, Bulstrode H, Okamoto OK, Kaid C. Genetically modified ZIKA virus as a microRNA-sensitive oncolytic virus against central nervous system tumors. Mol Ther 2024; 32:440-456. [PMID: 38213031 PMCID: PMC10861990 DOI: 10.1016/j.ymthe.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tiago Goss Santos
- International Research Center/CIPE, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Paulo Lee Ho
- Butantan Institute, BioIndustrial Center, Sao Paulo 05503-900, Brazil
| | - Harry Bulstrode
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Oswaldo Keith Okamoto
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | | |
Collapse
|
45
|
Victorio CBL, Novera W, Ganasarajah A, Ong J, Thomas M, Wu J, Toh HSY, Sun AX, Ooi EE, Chacko AM. Repurposing of Zika virus live-attenuated vaccine (ZIKV-LAV) strains as oncolytic viruses targeting human glioblastoma multiforme cells. J Transl Med 2024; 22:126. [PMID: 38308299 PMCID: PMC10835997 DOI: 10.1186/s12967-024-04930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain cancer affecting the adult population. Median overall survival for GBM patients is poor (15 months), primarily due to high rates of tumour recurrence and the paucity of treatment options. Oncolytic virotherapy is a promising treatment alternative for GBM patients, where engineered viruses selectively infect and eradicate cancer cells by inducing cell lysis and eliciting robust anti-tumour immune response. In this study, we evaluated the oncolytic potency of live-attenuated vaccine strains of Zika virus (ZIKV-LAV) against human GBM cells in vitro. Our findings revealed that Axl and integrin αvβ5 function as cellular receptors mediating ZIKV-LAV infection in GBM cells. ZIKV-LAV strains productively infected and lysed human GBM cells but not primary endothelia and terminally differentiated neurons. Upon infection, ZIKV-LAV mediated GBM cell death via apoptosis and pyroptosis. This is the first in-depth molecular dissection of how oncolytic ZIKV infects and induces death in tumour cells.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857.
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Arun Ganasarajah
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Melisyaa Thomas
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Jonas Wu
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Hilary Si Yin Toh
- Laboratory of Human Neural Models, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Alfred Xuyang Sun
- Laboratory of Human Neural Models, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Eng Eong Ooi
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857.
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore, 169610.
| |
Collapse
|
46
|
da Costa Castilho M, de Filippis AMB, Machado LC, de Lima Calvanti TYV, Lima MC, Fonseca V, Giovanetti M, Docena C, Neto AM, Bôtto-Menezes CHA, Kara EO, de La Barrera R, Modjarrad K, Giozza SP, Pereira GF, Alcantara LCJ, Broutet NJN, Calvet GA, Wallau GL, Franca RFO. Evidence of Zika Virus Reinfection by Genome Diversity and Antibody Response Analysis, Brazil. Emerg Infect Dis 2024; 30:310-320. [PMID: 38270216 PMCID: PMC10826783 DOI: 10.3201/eid3002.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
We generated 238 Zika virus (ZIKV) genomes from 135 persons in Brazil who had samples collected over 1 year to evaluate virus persistence. Phylogenetic inference clustered the genomes together with previously reported ZIKV strains from northern Brazil, showing that ZIKV has been remained relatively stable over time. Temporal phylogenetic analysis revealed limited within-host diversity among most ZIKV-persistent infected associated samples. However, we detected unusual virus temporal diversity from >5 persons, uncovering the existence of divergent genomes within the same patient. All those patients showed an increase in neutralizing antibody levels, followed by a decline at the convalescent phase of ZIKV infection. Of interest, in 3 of those patients, titers of neutralizing antibodies increased again after 6 months of ZIKV infection, concomitantly with real-time reverse transcription PCR re-positivity, supporting ZIKV reinfection events. Altogether, our findings provide evidence for the existence of ZIKV reinfection events.
Collapse
|
47
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Ferreira JCCG, Christoff RR, Rabello T, Ferreira RO, Batista C, Mourão PJP, Rossi ÁD, Higa LM, Bellio M, Tanuri A, Garcez PP. Postnatal Zika virus infection leads to morphological and cellular alterations within the neurogenic niche. Dis Model Mech 2024; 17:dmm050375. [PMID: 38415826 PMCID: PMC10924234 DOI: 10.1242/dmm.050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system. Here, we investigated the development of the dentate gyrus of wild-type mice following intracranial injection of the virus at birth (postnatal day 0). Through this approach, we found that Zika virus infection affected the development of neurogenic regions within the dentate gyrus and caused reactive gliosis, cell death and a decrease in cell proliferation. Such infection also altered volumetric features of the postnatal dentate gyrus. Thus, we found that Zika virus exposure to newborn mice is detrimental to the subgranular zone of the dentate gyrus. These observations offer insight into the cellular mechanisms that underlie the neurological features of congenital Zika syndrome in children.
Collapse
Affiliation(s)
- Jéssica C. C. G. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raissa R. Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Tailene Rabello
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raiane O. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Carolina Batista
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Pedro Junior Pinheiro Mourão
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Átila D. Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiza M. Higa
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria Bellio
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Patricia P. Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
49
|
Zhang H, Xiao W, Zhao M, Zhang Y, Lu D, Lu S, Zhang Q, Peng W, Shu L, Zhang J, Liu S, Zong K, Wang P, Ye B, Zhang D, Li S, Tan S, Liu P, Zhao Y, Zhang F, Wang H, Lu X, Gao GF, Liu J. Characterization of CD8 + T cells in immune-privileged organs of ZIKV-infected Ifnar1-/- mice. J Virol 2024; 98:e0078923. [PMID: 38168677 PMCID: PMC10805016 DOI: 10.1128/jvi.00789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαβs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αβ paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/β clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/β clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.
Collapse
Affiliation(s)
- Hangjie Zhang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wenling Xiao
- Shunde Hospital, Guangzhou Medical University (The Lecong Hospital of Shunde, Foshan), Foshan, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yongli Zhang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Dan Lu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Shuangshuang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qingxu Zhang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Weiyu Peng
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Liumei Shu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jie Zhang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Sai Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Kexin Zong
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Pengyan Wang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Beiwei Ye
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Danni Zhang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Huanyu Wang
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Liu
- NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|