1
|
Chen X, Sun G, Feng L, Tian E, Shi Y. Human iPSC-derived microglial cells protect neurons from neurodegeneration in long-term cultured adhesion brain organoids. Commun Biol 2025; 8:30. [PMID: 39789340 PMCID: PMC11718079 DOI: 10.1038/s42003-024-07401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture. However, only short-term microglia-organoid co-cultures can be established, and it remains challenging to have long-lasting survival of microglia in organoids to mimic long-term residency of microglia in the brain. In this study, we developed an adhesion brain organoid (ABO) platform that allows prolonged culture of brain organoids (greater than a year). Moreover, the long-term (LT)-ABO system contains abundant astrocytes and can support prolonged survival and ramification of microglia. Furthermore, we showed that microglia in the LT-ABO could protect neurons from neurodegeneration by increasing synaptic density and reducing p-Tau level and cell death in the LT-ABO. Therefore, the microglia-containing LT-ABO platform generated in this study provides a promising human cellular model for studying neuron-glia and glia-glia interactions in brain development and the pathogenesis of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Guoqiang Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - E Tian
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
3
|
Sun GG, Wang C, Mazzarino RC, Perez-Corredor PA, Davtyan H, Blurton-Jones M, Lopera F, Arboleda-Velasquez JF, Shi Y. Microglial APOE3 Christchurch protects neurons from Tau pathology in a human iPSC-based model of Alzheimer's disease. Cell Rep 2024; 43:114982. [PMID: 39612244 DOI: 10.1016/j.celrep.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by extracellular amyloid plaques and neuronal Tau tangles. A recent study found that the APOE3 Christchurch (APOECh) variant could delay AD progression. However, the underlying mechanisms remain unclear. In this study, we established neuron-microglia co-cultures and neuroimmune organoids using isogenic APOE3 and APOECh microglia derived from human induced pluripotent stem cells (hiPSCs) with PSEN1 mutant neurons or brain organoids. We show that APOECh microglia are resistant to Aβ-induced lipid peroxidation and ferroptosis and therefore preserve the phagocytic activity and promote pTau clearance, providing mechanistic insights into the neuroprotective role of APOE3Ch microglia. Moreover, we show that an APOE mimetic peptide can mimic the protective effects of APOECh microglia. These findings demonstrate that the APOECh microglia plays a causal role in microglial neuroprotection, which can be exploited for therapeutic development for AD.
Collapse
Affiliation(s)
- Guoqiang George Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Randall C Mazzarino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Paula Andrea Perez-Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Francisco Lopera
- Grupo de Neurociencias de la Universidad de Antioquia, Medellin 050010, Colombia
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
4
|
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis-From Bench to Clinic. Cells 2024; 13:2086. [PMID: 39768177 PMCID: PMC11674340 DOI: 10.3390/cells13242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with a complex and not fully understood etiopathological background involving inflammatory and neurodegenerative processes. CHI3L1 has been implicated in pathological conditions such as inflammation, injury, and neurodegeneration, and is likely to play a role in the physiological development of the CNS. CHI3L1 is primarily produced by CNS macrophages, microglia, and activated astrocytes. The CHI3L1 expression pattern in MS lesions might support the important role of astrocytes in modulating inflammatory processes in this disease. The potential applications of CHI3L1 as a biomarker in MS are multifactorial. The measurement of CHI3L1 in body fluids might find its role in the early diagnosis of MS. In further stages, the monitoring of CHI3L1 levels might provide information on disease severity and progression, enabling a better adjustment of therapeutic strategies. Importantly, CHI3L1 might potentially serve as a marker of ongoing glial activation, reflecting the dynamic response of the CNS cells to the inflammatory processes in MS. Although preliminary findings have been promising, further research is needed to validate the utility of CHI3L1 measurements in the diagnosis and prediction of the progression of MS. Additionally, comparisons with other biomarkers might be useful in clinical practice.
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Anna Jurewicz
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Małgorzata Domowicz
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Alicja Ewiak-Paszyńska
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| |
Collapse
|
5
|
Xia Z, Jin Q, Long Z, He Y, Liu F, Sun C, Liao J, Wang C, Wang C, Zheng J, Zhao W, Zhang T, Rich JN, Zhang Y, Cao L, Xie Q. Targeting overexpressed antigens in glioblastoma via CAR T cells with computationally designed high-affinity protein binders. Nat Biomed Eng 2024; 8:1634-1650. [PMID: 39420062 DOI: 10.1038/s41551-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cells targeting receptors on tumour cells have had limited success in patients with glioblastoma. Here we report the development and therapeutic performance of CAR constructs leveraging protein binders computationally designed de novo to have high affinity for the epidermal growth factor receptor (EGFR) or the tumour-associated antigen CD276, which are overexpressed in glioblastoma. With respect to T cells with a CAR using an antibody-derived single-chain variable fragment as antigen-binding domain, the designed binders on CAR T cells promoted the proliferation of the cells, the secretion of cytotoxic cytokines and their resistance to cell exhaustion, and improved antitumour performance in vitro and in vivo. Moreover, CARs with the binders exhibited higher surface expression and greater resistance to degradation, as indicated by bulk and single-cell transcriptional profiling of the cells. The de novo design of binding domains for specific tumour antigens may potentiate the antitumour efficacy of CAR T cell therapies for other solid cancers.
Collapse
Affiliation(s)
- Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qihan Jin
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yexuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfang Sun
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyang Liao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chentong Wang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weixi Zhao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianxin Zhang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Longxing Cao
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- Artificial Intelligence Drug Design Core Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
6
|
Kubota Y, Shigetomi E, Saito K, Shinozaki Y, Kobayashi K, Tanaka M, Parajuli B, Tanaka KF, Koizumi S. Establishment and Use of Primary Cultured Astrocytes from Alexander Disease Model Mice. Int J Mol Sci 2024; 25:12100. [PMID: 39596168 PMCID: PMC11595037 DOI: 10.3390/ijms252212100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in glial fibrillary acidic protein (GFAP), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how GFAP mutations affect astrocytes and cause AxD pathology. Three features are characteristic of AxD astrocytes in vivo: (1) Rosenthal fibers (RFs), the hallmark of AxD; (2) aberrant Ca2+ signals (AxCa); and (3) upregulation of disease-associated genes (AxGen). We established a primary culture system for astrocytes from an AxD transgenic mouse model, and used it to analyze the above features of AxD pathogenesis in astrocytes in vitro. We observed the formation of RFs in AxD primary cultures. The abundance of RFs was greater in AxD-transgene-homozygous compared with -hemizygous astrocytes, indicating a gene dosage effect, and this abundance increased with time in culture, indicating a developmental process effect. However, cultured AxD astrocytes did not exhibit changes in either AxCa or AxGen. We therefore conclude that RFs in astrocytes form via a cell-autonomous mechanism, whereas AxCa and AxGen are likely to occur via a non-cell-autonomous mechanism through interactions with other cells, such as neurons, microglia, and vascular cells. Although primary cultured AxD astrocytes are suitable for elucidating the mechanisms of RFs formation and for intervention studies, it should be noted that they cannot reflect the pathophysiology of non-cell-autonomous events in astrocytes.
Collapse
Affiliation(s)
- Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Masayoshi Tanaka
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan;
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
7
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
8
|
Du J, Yin Y, Wu D, Diao C, Zhao T, Peng F, Li N, Wang D, Shi J, Wang L, Kong L, Zhou W, Hao A. SIRT6 modulates lesion microenvironment in LPC induced demyelination by targeting astrocytic CHI3L1. J Neuroinflammation 2024; 21:243. [PMID: 39342313 PMCID: PMC11438192 DOI: 10.1186/s12974-024-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.
Collapse
Affiliation(s)
- Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yue Yin
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Can Diao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Jiaming Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Liyan Wang
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China.
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
9
|
Bu X, Yang L, Han X, Liu S, Lu X, Wan J, Zhang X, Tang P, Zhang W, Zhong L. DHM/SERS reveals cellular morphology and molecular changes during iPSCs-derived activation of astrocytes. BIOMEDICAL OPTICS EXPRESS 2024; 15:4010-4023. [PMID: 38867782 PMCID: PMC11166415 DOI: 10.1364/boe.524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
The activation of astrocytes derived from induced pluripotent stem cells (iPSCs) is of great significance in neuroscience research, and it is crucial to obtain both cellular morphology and biomolecular information non-destructively in situ, which is still complicated by the traditional optical microscopy and biochemical methods such as immunofluorescence and western blot. In this study, we combined digital holographic microscopy (DHM) and surface-enhanced Raman scattering (SERS) to investigate the activation characteristics of iPSCs-derived astrocytes. It was found that the projected area of activated astrocytes decreased by 67%, while the cell dry mass increased by 23%, and the cells changed from a flat polygonal shape to an elongated star-shaped morphology. SERS analysis further revealed an increase in the intensities of protein spectral peaks (phenylalanine 1001 cm-1, proline 1043 cm-1, etc.) and lipid-related peaks (phosphatidylserine 524 cm-1, triglycerides 1264 cm-1, etc.) decreased in intensity. Principal component analysis-linear discriminant analysis (PCA-LDA) modeling based on spectral data distinguished resting and reactive astrocytes with a high accuracy of 96.5%. The increase in dry mass correlated with the increase in protein content, while the decrease in projected area indicated the adjustment of lipid composition and cell membrane remodeling. Importantly, the results not only reveal the cellular morphology and molecular changes during iPSCs-derived astrocytes activation but also reflect their mapping relationship, thereby providing new insights into diagnosing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xianxin Han
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Tang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Nowak I, Paździor M, Sarna R, Madej M. Molecular Mechanisms in the Design of Novel Targeted Therapies for Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:5436-5453. [PMID: 38920997 PMCID: PMC11202845 DOI: 10.3390/cimb46060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Neurodegenerative diseases are a diverse group of diseases characterized by a progressive loss of neurological function due to damage to nerve cells in the central nervous system. In recent years, there has been a worldwide increase in the expanding associated with increasing human life expectancy. Molecular mechanisms control many of the essential life processes of cells, such as replication, transcription, translation, protein synthesis and gene regulation. These are complex interactions that form the basis for understanding numerous processes in the organism and developing new diagnostic and therapeutic approaches. In the context of neurodegenerative diseases, molecular basis refers to changes at the molecular level that cause damage to or degeneration of nerve cells. These may include protein aggregates leading to pathological structures in brain cells, impaired protein transport in nerve cells, mitochondrial dysfunction, inflammatory processes or genetic mutations that impair nerve cell function. New medical therapies are based on these mechanisms and include gene therapies, reduction in inflammation and oxidative stress, and the use of miRNAs and regenerative medicine. The aim of this study was to bring together the current state of knowledge regarding selected neurodegenerative diseases, presenting the underlying molecular mechanisms involved, which could be potential targets for new forms of treatment.
Collapse
Affiliation(s)
- Ilona Nowak
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marlena Paździor
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Robert Sarna
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marcel Madej
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
11
|
Jovanovic VM, Mesch KT, Tristan CA. hPSC-Derived Astrocytes at the Forefront of Translational Applications in Neurological Disorders. Cells 2024; 13:903. [PMID: 38891034 PMCID: PMC11172187 DOI: 10.3390/cells13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA (C.A.T.)
| | | | | |
Collapse
|
12
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
13
|
Nonaka H, Kondo T, Suga M, Yamanaka R, Sagara Y, Tsukita K, Mitsutomi N, Homma K, Saito R, Miyoshi F, Ohzeki H, Okuyama M, Inoue H. Induced pluripotent stem cell-based assays recapture multiple properties of human astrocytes. J Cell Mol Med 2024; 28:e18214. [PMID: 38509731 PMCID: PMC10955154 DOI: 10.1111/jcmm.18214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
The majority of the population of glial cells in the central nervous system consists of astrocytes, and impairment of astrocytes causes various disorders. It is useful to assess the multiple astrocytic properties in order to understand their complex roles in the pathophysiology. Although we can differentiate human astrocytes from induced pluripotent stem cells (iPSCs), it remains unknown how we can analyse and reveal the multiple properties of astrocytes in complexed human disease conditions. For this purpose, we tested astrocytic differentiation protocols from feeder-free iPSCs based on the previous method with some modifications. Then, we set up extra- and intracellular assessments of iPSC-derived astrocytes by testing cytokine release, calcium influx, autophagy induction and migration. The results led us to analytic methods with conditions in which iPSC-derived astrocytes behave as in vivo. Finally, we applied these methods for modelling an astrocyte-related disease, Alexander disease. An analytic system using iPSC-derived astrocytes could be used to recapture complexities in human astrocyte diseases.
Collapse
Affiliation(s)
- Hideki Nonaka
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Takayuki Kondo
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Mika Suga
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Ryu Yamanaka
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Yukako Sagara
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Kayoko Tsukita
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | | | - Kengo Homma
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Ryuta Saito
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | | | | | | | - Haruhisa Inoue
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| |
Collapse
|
14
|
Feng L, Chao J, Zhang M, Pacquing E, Hu W, Shi Y. Developing a human iPSC-derived three-dimensional myelin spheroid platform for modeling myelin diseases. iScience 2023; 26:108037. [PMID: 37867939 PMCID: PMC10589867 DOI: 10.1016/j.isci.2023.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Myelin defects cause a collection of myelin disorders in the brain. The lack of human models has limited us from better understanding pathological mechanisms of myelin diseases. While human induced pluripotent stem cell (hiPSC)-derived spheroids or organoids have been used to study brain development and disorders, it has been difficult to recapitulate mature myelination in these structures. Here, we have developed a method to generate three-dimensional (3D) myelin spheroids from hiPSCs in a robust and reproducible manner. Using this method, we generated myelin spheroids from patient iPSCs to model Canavan disease (CD), a demyelinating disorder. By using CD patient iPSC-derived myelin spheroids treated with N-acetyl-aspartate (NAA), we were able to recapitulate key pathological features of the disease and show that high-level NAA is sufficient to induce toxicity on myelin sheaths. Our study has established a 3D human cellular platform to model human myelin diseases for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mingzi Zhang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Elizabeth Pacquing
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Guo R, Han D, Song X, Gao Y, Li Z, Li X, Yang Z, Xu Z. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. SCIENCE ADVANCES 2023; 9:eadi2167. [PMID: 37948517 PMCID: PMC10637744 DOI: 10.1126/sciadv.adi2167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.
Collapse
Affiliation(s)
| | | | | | - Yanjing Gao
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Cerneckis J, Shi Y. Myelin organoids for the study of Alzheimer's disease. Front Neurosci 2023; 17:1283742. [PMID: 37942133 PMCID: PMC10628225 DOI: 10.3389/fnins.2023.1283742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
17
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
18
|
Anderson NE, Alexander HS, Messing A. Alexander disease: The story behind an eponym. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2023; 32:399-422. [PMID: 37000960 DOI: 10.1080/0964704x.2023.2190354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 1949, William Stewart Alexander (1919-2013), a young pathologist from New Zealand working in London, reported the neuropathological findings in a 15-month-old boy who had developed normally until the age of seven months, but thereafter had progressive enlargement of his head and severe developmental delay. The most striking neuropathological abnormality was the presence of numerous Rosenthal fibers in the brain. The distribution of these fibers suggested to Alexander that the primary pathological change involved astrocytes. In the next 15 years, five similar patients were reported, and in 1964 Friede recognized these cases reflected a single disease process and coined the eponym "Alexander's disease" to describe the disorder. In the 1960s, electron microscopy confirmed that Rosenthal fibers were localized to astrocytes. In 2001, it was shown that Alexander disease is caused by mutations in the gene encoding glial fibrillary acidic protein, the major intermediate filament protein in astrocytes. Although the clinical, imaging, and pathological manifestations of Alexander disease are now well known, few people are familiar with Alexander's career. Although he did not make a further contribution to the literature on Alexander disease, his observations and accurate interpretation of the neuropathology have justified the continued use of the eponym "Alexander disease."
Collapse
Affiliation(s)
- Neil E Anderson
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Hamish S Alexander
- Kenneth G. Jamieson Neurosurgery Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Albee Messing
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Cui Q, Jeyachandran AV, Garcia G, Qin C, Zhou Y, Zhang M, Wang C, Sun G, Liu W, Zhou T, Feng L, Palmer C, Li Z, Aziz A, Gomperts BN, Feng P, Arumugaswami V, Shi Y. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (Beijing) 2023; 4:e400. [PMID: 37822714 PMCID: PMC10563865 DOI: 10.1002/mco2.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection. Preincubation of SARS-CoV-2 with a neutralizing antibody specific to ApoE led to inhibition of SARS-CoV-2 infection. The ApoE neutralizing antibody efficiently blocked SARS-CoV-2 infection of human iPSC-derived astrocytes and air-liquid interface organoid models in addition to human ACE2-expressing HEK293T cells and Calu-3 lung cells. ApoE mediates SARS-CoV-2 entry through binding to its cellular receptors such as the low density lipoprotein receptor (LDLR). LDLR knockout or ApoE mutations at the receptor binding domain or an ApoE mimetic peptide reduced SARS-CoV-2 infection. Furthermore, we detected strong membrane LDLR expression on SARS-CoV-2 Spike-positive cells in human lung tissues, whereas no or low ACE2 expression was detected. This study provides a new paradigm for SARS-CoV-2 cellular entry through binding of ApoE on the lipoviral particles to host cell receptor(s). Moreover, this study suggests that ApoE neutralizing antibodies are promising antiviral therapies for COVID-19 by blocking entry of both parental virus and variants of concern.
Collapse
Affiliation(s)
- Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | | | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
| | - Chao Qin
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yu Zhou
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mingzi Zhang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Cheng Wang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Tao Zhou
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Chance Palmer
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Zhuo Li
- Electron Microscopy and Atomic Force Microscopy CoreBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Adam Aziz
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Brigitte N. Gomperts
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Pinghui Feng
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| |
Collapse
|
20
|
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, Khan Afridi S, Lai S, Qiu X, Liu C, Li H, Long Y, Wang Y, Connolly K, Elias JA, Lee CG, Cui Y, Huang YWA, Qiu W, Tang C. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. SCIENCE ADVANCES 2023; 9:eadg8148. [PMID: 37756391 PMCID: PMC10530095 DOI: 10.1126/sciadv.adg8148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening β-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/β-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huilu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Jack A. Elias
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Chun Geun Lee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
21
|
Tan R, Hong R, Sui C, Yang D, Tian H, Zhu T, Yang Y. The role and potential therapeutic targets of astrocytes in central nervous system demyelinating diseases. Front Cell Neurosci 2023; 17:1233762. [PMID: 37720543 PMCID: PMC10502347 DOI: 10.3389/fncel.2023.1233762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes play vital roles in the central nervous system, contributing significantly to both its normal functioning and pathological conditions. While their involvement in various diseases is increasingly recognized, their exact role in demyelinating lesions remains uncertain. Astrocytes have the potential to influence demyelination positively or negatively. They can produce and release inflammatory molecules that modulate the activation and movement of other immune cells. Moreover, they can aid in the clearance of myelin debris through phagocytosis and facilitate the recruitment and differentiation of oligodendrocyte precursor cells, thereby promoting axonal remyelination. However, excessive or prolonged astrocyte phagocytosis can exacerbate demyelination and lead to neurological impairments. This review provides an overview of the involvement of astrocytes in various demyelinating diseases, emphasizing the underlying mechanisms that contribute to demyelination. Additionally, we discuss the interactions between oligodendrocytes, oligodendrocyte precursor cells and astrocytes as therapeutic options to support myelin regeneration. Furthermore, we explore the role of astrocytes in repairing synaptic dysfunction, which is also a crucial pathological process in these disorders.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Hong
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Liu Z, Chao J, Wang C, Sun G, Roeth D, Liu W, Chen X, Li L, Tian E, Feng L, Davtyan H, Blurton-Jones M, Kalkum M, Shi Y. Astrocytic response mediated by the CLU risk allele inhibits OPC proliferation and myelination in a human iPSC model. Cell Rep 2023; 42:112841. [PMID: 37494190 PMCID: PMC10510531 DOI: 10.1016/j.celrep.2023.112841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
The C allele of rs11136000 variant in the clusterin (CLU) gene represents the third strongest known genetic risk factor for late-onset Alzheimer's disease. However, whether this single-nucleotide polymorphism (SNP) is functional and what the underlying mechanisms are remain unclear. In this study, the CLU rs11136000 SNP is identified as a functional variant by a small-scale CRISPR-Cas9 screen. Astrocytes derived from isogenic induced pluripotent stem cells (iPSCs) carrying the "C" or "T" allele of the CLU rs11136000 SNP exhibit different CLU expression levels. TAR DNA-binding protein-43 (TDP-43) preferentially binds to the "C" allele to promote CLU expression and exacerbate inflammation. The interferon response and CXCL10 expression are elevated in cytokine-treated C/C astrocytes, leading to inhibition of oligodendrocyte progenitor cell (OPC) proliferation and myelination. Accordingly, elevated CLU and CXCL10 but reduced myelin basic protein (MBP) expression are detected in human brains of C/C carriers. Our study uncovers a mechanism underlying reduced white matter integrity observed in the CLU rs11136000 risk "C" allele carriers.
Collapse
Affiliation(s)
- Zhenqing Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Daniel Roeth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Li Li
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - E Tian
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Jovanovic VM, Weber C, Slamecka J, Ryu S, Chu PH, Sen C, Inman J, De Sousa JF, Barnaeva E, Hirst M, Galbraith D, Ormanoglu P, Jethmalani Y, Mercado JC, Michael S, Ward ME, Simeonov A, Voss TC, Tristan CA, Singeç I. A defined roadmap of radial glia and astrocyte differentiation from human pluripotent stem cells. Stem Cell Reports 2023; 18:1701-1720. [PMID: 37451260 PMCID: PMC10444578 DOI: 10.1016/j.stemcr.2023.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Human gliogenesis remains poorly understood, and derivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome. Here, we report controlled glial differentiation from hPSCs that bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro differentiation. hPSCs were first differentiated into radial glial cells (RGCs) resembling resident RGCs of the fetal telencephalon, and modulation of specific cell signaling pathways resulted in direct and stepwise induction of key astroglial markers (NFIA, NFIB, SOX9, CD44, S100B, glial fibrillary acidic protein [GFAP]). Transcriptomic and genome-wide epigenetic mapping and single-cell analysis confirmed RGC-to-astrocyte differentiation, obviating neurogenesis and the gliogenic switch. Detailed molecular and cellular characterization experiments uncovered new mechanisms and markers for human RGCs and astrocytes. In summary, establishment of a glia-exclusive neural lineage progression model serves as a unique serum-free platform of manufacturing large numbers of RGCs and astrocytes for neuroscience, disease modeling (e.g., Alexander disease), and regenerative medicine.
Collapse
Affiliation(s)
- Vukasin M Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA.
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Juliana Ferreira De Sousa
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Yogita Jethmalani
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jennifer Colon Mercado
- Inherited Neurodegenerative Disease Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Michael E Ward
- Inherited Neurodegenerative Disease Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Ty C Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Carlos A Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
24
|
Jeyachandran AV, Irudayam JI, Dubey S, Chakravarty N, Konda B, Shah A, Su B, Wang C, Cui Q, Williams KJ, Srikanth S, Shi Y, Deb A, Damoiseaux R, Stripp BR, Ramaiah A, Arumugaswami V. Comparative Analysis of Molecular Pathogenic Mechanisms and Antiviral Development Targeting Old and New World Hantaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552083. [PMID: 37577539 PMCID: PMC10418258 DOI: 10.1101/2023.08.04.552083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.
Collapse
Affiliation(s)
- Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, CA, USA
| | - Bindu Konda
- Department of Medicine, Lung and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Baolong Su
- Dept. of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Kevin J. Williams
- Dept. of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, CA, USA
| | - Barry R. Stripp
- Department of Medicine, Lung and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
25
|
Feng L, Chao J, Ye P, Luong Q, Sun G, Liu W, Cui Q, Flores S, Jackson N, Shayento ANH, Sun G, Liu Z, Hu W, Shi Y. Developing Hypoimmunogenic Human iPSC-Derived Oligodendrocyte Progenitor Cells as an Off-The-Shelf Cell Therapy for Myelin Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206910. [PMID: 37271923 PMCID: PMC10427412 DOI: 10.1002/advs.202206910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Demyelinating disorders are among the most common and debilitating diseases in neurology. Canavan disease (CD) is a lethal demyelinating disease caused by mutation of the aspartoacylase (ASPA) gene, which leads to the accumulation of its substrate N-acetyl-l-aspartate (NAA), and consequently demyelination and vacuolation in the brain. In this study, hypoimmunogenic human induced pluripotent stem cell (iPSC)-derived oligodendrocyte progenitor cells (OPC) are developed from a healthy donor as an "off-the-shelf" cell therapy. Hypoimmunogenic iPSCs are generated through CRISPR/Cas9 editing of the human leukocyte antigen (HLA) molecules in healthy donor-derived iPSCs and differentiated into OPCs. The OPCs are engrafted into the brains of CD (nur7) mice and exhibit widespread distribution in the brain. The engrafted OPCs mature into oligodendrocytes that express the endogenous wildtype ASPA gene. Consequently, the transplanted mice exhibit elevated human ASPA expression and enzymatic activity and reduced NAA level in the brain. The transplanted OPCs are able to rescue major pathological features of CD, including defective myelination, extensive vacuolation, and motor function deficits. Moreover, the hypoimmunogenic OPCs exhibit low immunogenicity both in vitro and in vivo. The hypoimmunogenic OPCs can be used as "off-the-shelf" universal donor cells to treat various CD patients and many other demyelinating disorders, especially autoimmune demyelinating diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qui Luong
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guoqiang Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Sergio Flores
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Natasha Jackson
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Afm Nazmul Hoque Shayento
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Zhenqing Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Department of Immunology and TheranosticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
26
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
27
|
Vaia Y, Mura E, Tonduti D. Type I Alexander disease: Update and validation of the clinical evolution-based classification. Mol Genet Metab 2023; 138:107540. [PMID: 36804850 DOI: 10.1016/j.ymgme.2023.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Alexander disease (AxD) is a rare progressive leukodystrophy caused by autosomal dominant mutations in the Glial Fibrillary Acidic Protein (GFAP) gene. Three main disease classifications are currently in use, the traditional one defined by the age of onset, and two other based on clinical features at onset and brain MRI findings. Recently, we proposed a new classification, which is based on taking into consideration not only the presenting features, but also data related to the clinical course. In this study, we tried to apply this modified classification system to the cases of pediatric-onset AxD described in literature. METHODS A literature review was conducted in PubMed for articles published between 1949 to date. Articles that reported no patient's medical history and the articles about Adult-onset AxD were excluded. We included patients with a confirmed diagnosis of pediatric-onset AxD and of whom information about age and symptoms at onset, developmental milestones and loss of motor and language skills was available. RESULTS Clinical data from 205 patients affected with pediatric-onset AxD were retrospectively reviewed. Among these, we identified 65 patients, of whom we had enough information about the clinical course and developmental milestones, and we assessed their disease evolutionary trajectories over time. DISCUSSION Our results confirm that patients with Type I AxD might be classified into four subgroups (Ia, Ib, Ic, Id) basing on follow up data. In fact, despite the great variability of phenotypes in AxD, there are some shared trajectories of the disease evolution over time.
Collapse
Affiliation(s)
- Ylenia Vaia
- Unit of Pediatric Neurology, C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Via Castelvetro 32, 20154 Milan, Italy; University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Eleonora Mura
- Unit of Pediatric Neurology, C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Via Castelvetro 32, 20154 Milan, Italy; University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for diagnosis and treatment of leukodystrophies), V. Buzzi Children's Hospital, Via Castelvetro 32, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi, 74, 20157 Milan, Italy.
| |
Collapse
|
28
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
29
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules 2022; 12:biom12091191. [PMID: 36139030 PMCID: PMC9496237 DOI: 10.3390/biom12091191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Università Giustino Fortunato, 82100 Benevento, Italy
- Correspondence: (L.S.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Correspondence: (L.S.); (C.S.)
| |
Collapse
|
30
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
31
|
Kawabe Y, Tanaka T, Isonishi A, Nakahara K, Tatsumi K, Wanaka A. Characterization of Glial Populations in the Aging and Remyelinating Mouse Corpus Callosum. Neurochem Res 2022; 47:2826-2838. [PMID: 35859078 DOI: 10.1007/s11064-022-03676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Cells in the white matter of the adult brain have a characteristic distribution pattern in which several cells are contiguously connected to each other, making a linear array (LA) resembling pearls-on-a-string parallel to the axon axis. We have been interested in how this pattern of cell distribution changes during aging and remyelination after demyelination. In the present study, with a multiplex staining method, semi-quantitative analysis of the localization of oligodendrocyte lineage cells (oligodendrocyte progenitors, premyelinating oligodendrocytes, and mature oligodendrocytes), astrocytes, and microglia in 8-week-old (young adult) and 32-week-old (aged) corpus callosum showed that young adult cells still include immature oligodendrocytes and that LAs contain a higher proportion of microglia than isolated cells. In aged mice, premyelinating oligodendrocytes were decreased, but microglia continued to be present in the LAs. These results suggest that the presence of microglia is important for the characteristic cell localization pattern of LAs. In a cuprizone-induced demyelination model, we observed re-formation of LAs after completion of cuprizone treatment, concurrent with remyelination. These re-formed LAs again contained more microglia than the isolated cells. This finding supports the hypothesis that microglia contribute to the formation and maintenance of LAs. In addition, regardless of the distribution of cells (LAs or isolated cells), astrocytes were found to be more abundant than in the normal corpus callosum at 24 weeks after cuprizone treatment when remyelination is completed. This suggests that astrocytes are involved in maintaining the functions of remyelinated white matter.
Collapse
Affiliation(s)
- Yoshie Kawabe
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Kazuki Nakahara
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan.
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| |
Collapse
|
32
|
Smith MD, Chamling X, Gill AJ, Martinez H, Li W, Fitzgerald KC, Sotirchos ES, Moroziewicz D, Bauer L, Paull D, Gharagozloo M, Bhargava P, Zack DJ, Fossati V, Calabresi PA. Reactive Astrocytes Derived From Human Induced Pluripotent Stem Cells Suppress Oligodendrocyte Precursor Cell Differentiation. Front Mol Neurosci 2022; 15:874299. [PMID: 35600072 PMCID: PMC9120968 DOI: 10.3389/fnmol.2022.874299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Astrocytes are instrumental in maintaining central nervous system (CNS) homeostasis and responding to injury. A major limitation of studying neurodegenerative diseases like multiple sclerosis (MS) is lack of human pathological specimens obtained during the acute stages, thereby relegating research to post-mortem specimens obtained years after the initiation of pathology. Rodent reactive astrocytes have been shown to be cytotoxic to neurons and oligodendrocytes but may differ from human cells, especially in diseases with genetic susceptibility. Herein, we purified human CD49f+ astrocytes from induced pluripotent stem cells derived from individual patient and control peripheral leukocytes. We compared TNF and IL1α stimulated human reactive astrocytes from seven persons with MS and six non-MS controls and show their transcriptomes are remarkably similar to those described in rodents. The functional effect of astrocyte conditioned media (ACM) was examined in a human oligodendrocyte precursor cell (OPC) line differentiation assay. ACM was not cytotoxic to the OPCs but robustly inhibited the myelin basic protein (MBP) reporter. No differences were seen between MS and control stimulated astrocytes at either the transcript level or in ACM mediated OPC suppression assays. We next used RNAseq to interrogate differentially expressed genes in the OPC lines that had suppressed differentiation from the human ACM. Remarkably, not only was OPC differentiation and myelin gene expression suppressed, but we observed induction of several immune pathways in OPCs exposed to the ACM. These data support the notion that reactive astrocytes can inhibit OPC differentiation thereby limiting their remyelination capacity, and that OPCs take on an immune profile in the context of inflammatory cues.
Collapse
Affiliation(s)
- Matthew D. Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander J. Gill
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hector Martinez
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Weifeng Li
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elias S. Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Lauren Bauer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Labib D, Wang Z, Prakash P, Zimmer M, Smith MD, Frazel PW, Barbar L, Sapar ML, Calabresi PA, Peng J, Liddelow SA, Fossati V. Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Front Mol Neurosci 2022; 15:870085. [PMID: 35592112 PMCID: PMC9113221 DOI: 10.3389/fnmol.2022.870085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Astrocytes respond to injury, infection, and inflammation in the central nervous system by acquiring reactive states in which they may become dysfunctional and contribute to disease pathology. A sub-state of reactive astrocytes induced by proinflammatory factors TNF, IL-1α, and C1q ("TIC") has been implicated in many neurodegenerative diseases as a source of neurotoxicity. Here, we used an established human induced pluripotent stem cell (hiPSC) model to investigate the surface marker profile and proteome of TIC-induced reactive astrocytes. We propose VCAM1, BST2, ICOSL, HLA-E, PD-L1, and PDPN as putative, novel markers of this reactive sub-state. We found that several of these markers colocalize with GFAP+ cells in post-mortem samples from people with Alzheimer's disease. Moreover, our whole-cells proteomic analysis of TIC-induced reactive astrocytes identified proteins and related pathways primarily linked to potential engagement with peripheral immune cells. Taken together, our findings will serve as new tools to purify reactive astrocyte subtypes and to further explore their involvement in immune responses associated with injury and disease.
Collapse
Affiliation(s)
- David Labib
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Priya Prakash
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Paul W. Frazel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
| | - Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Maria L. Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| |
Collapse
|
34
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
35
|
Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. NATURE CANCER 2022; 2:932-949. [PMID: 35121864 PMCID: PMC8809511 DOI: 10.1038/s43018-021-00238-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Pseudouridine is the most frequent epitranscriptomic modification. However, its cellular functions remain largely unknown. Here we show that the pseudouridine synthase PUS7 is highly expressed in glioblastoma versus normal brain tissues, and high PUS7 expression levels are associated with worse survival in glioblastoma patients. The PUS7 expression and catalytic activity are required for glioblastoma stem cell (GSC) tumorigenesis. Mechanistically, we identified PUS7 targets in GSCs through small RNA pseudouridine sequencing, and showed that pseudouridylation of PUS7-regulated tRNA is critical for codon-specific translational control of key regulators of GSCs. Moreover, we identified chemical inhibitors for PUS7, and showed that these compounds prevented PUS7-mediated pseudouridine modification, suppressed tumorigenesis, and extended lifespan of tumor-bearing mice. Overall, we identified an epitranscriptomic regulatory mechanism in glioblastoma and provided preclinical evidence of a potential therapeutic strategy for glioblastoma.
Collapse
|
36
|
Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022; 29:189-208. [PMID: 35120619 DOI: 10.1016/j.stem.2022.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been 15 years since the birth of human induced pluripotent stem cell (iPSC) technology in 2007, and the scope of its application has been expanding. In addition to the development of cell therapies using iPSC-derived cells, pathological analyses using disease-specific iPSCs and clinical trials to confirm the safety and efficacy of drugs developed using iPSCs are progressing. With the innovation of related technologies, iPSC applications are about to enter a new stage. This review outlines advances in iPSC modeling and therapeutic development for cardinal neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
37
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
38
|
Hagemann TL. Alexander disease: models, mechanisms, and medicine. Curr Opin Neurobiol 2022; 72:140-147. [PMID: 34826654 PMCID: PMC8901527 DOI: 10.1016/j.conb.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Alexander disease is a primary disorder of astrocytes caused by gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), which lead to protein aggregation and a reactive astrocyte response, with devastating effects on the central nervous system. Over the past two decades since the discovery of GFAP as the culprit, several cellular and animal models have been generated, and much has been learned about underlying mechanisms contributing to the disease. Despite these efforts, many aspects of Alexander disease have remained enigmatic, particularly the initiating events in GFAP accumulation and astrocyte pathology, the relation between astrocyte dysfunction and myelin deficits, and the variability in age of onset and disease severity. More recent work in both old and new models has begun to address these complex questions and identify new therapeutics that finally offer the promise of effective treatment.
Collapse
Affiliation(s)
- Tracy L. Hagemann
- Waisman Center, University of Wisconsin – Madison, 1500 Highland Ave, Madison, WI 53705
| |
Collapse
|
39
|
Basak A, Basak S. Protein Aggregation and Self Assembly in Health and Disease. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210223160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Self-attachment of proteins leading to the formation of highly insoluble protein oligomers and aggregates has become an important focus of research owing to its diverse implications in pathophysiology and diseases. This has become a more frequent phenomenon in most neurological and neurodegenerative diseases as well as in dementia. In recent years such event of protein aggregation has linked to other disease conditions, disorders or adverse health conditions. Interestingly, aggregation of protein also plays role in development, growth or metabolism. Most often physiological proteins are initially bio-synthesised in native or nascent geometrical forms or conformations but later they undergo specific folding pattern and thereby acquire a stable configuration that is biologically relevant and active. It is highly important that these proteins remain in their biologically active configuration in order to exert their functional properties. Any alteration or change to this structural configuration can be detrimental to their specific functions and may cause pathological consequences leading to the onset of diseases or disorders. Several factors such as the action of chaperones, binding partners, physiological metal ions, pH level, temperature, ionic strength, interfacial exposure (solid-liquid, liquid-liquid, gas-liquid), mutation and post translational modification, chemical changes, interaction with small molecules such as lipids, hormones, etc. and solvent environment have been either identified or proposed as important factors in conferring the ultimate status of protein structure and configuration.
Among many misfolding protein conformations, self-assembly or aggregation is the most significant. It leads to the formation of highly oligomeric self-aggregates that precipitate and interfere with many biochemical processes with serious pathological consequences. The most common implication of protein aggregation leading to the formation of deposits / plaques of various morphological types is the onset of neurological and neurodegenerative diseases that include Alzheimer’s, Parkinson’s, Huntington, ALS (Amyotrophic Lateral Sclerosis), CJD (Creutzfeldt Jakob Dementia), Prion diseases, Amyloidosis and other forms of dementia. However increasingly studies revealed that protein aggregation may also be associated with other diseases such as cancer, type 2 diabetes, renal, corneal and cardiovascular diseases. Protein aggregation diseases are now considered as part of “Proteinopathy” which refers to conditions where proteins become structurally abnormal or fail to fold into stable normal configurations. In this review, we reflect on various aspects of protein self-aggregation, potential underlying causes, mechanism, role of secondary structures, pathological consequences and possible intervention strategies as reported in published literatures.
Collapse
Affiliation(s)
- Ajoy Basak
- Pathology and Laboratory Medicine, Faculty of Medicine, U Ottawa, Canada
- Ottawa Hospital Research Institute,
The Ottawa Hospital, U Ottawa, Canada
| | - Sarmistha Basak
- Formerly of Kidney Research Center, Ottawa Hospital Research Institute, U Ottawa, Canada
| |
Collapse
|
40
|
Cui Q, Garcia G, Zhang M, Wang C, Li H, Zhou T, Sun G, Arumugaswami V, Shi Y. Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. iScience 2022; 25:103684. [PMID: 34977495 PMCID: PMC8704726 DOI: 10.1016/j.isci.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 outbreak poses a serious threat to global public health. Effective countermeasures and approved therapeutics are desperately needed. In this study, we screened a small molecule library containing the NCI-DTP compounds to identify molecules that can prevent SARS-CoV-2 cellular entry. By applying a luciferase assay-based screening using a pseudotyped SARS-CoV-2-mediated cell entry assay, we identified a small molecule compound Q34 that can efficiently block cellular entry of the pseudotyped SARS-CoV-2 into human ACE2-expressing HEK293T cells, and inhibit the infection of the authentic SARS-CoV-2 in human ACE2-expressing HEK293T cells, human iPSC-derived neurons and astrocytes, and human lung Calu-3 cells. Importantly, the safety profile of the compound is favorable. There is no obvious toxicity observed in uninfected cells treated with the compound. Thus, this compound holds great potential as both prophylactics and therapeutics for COVID-19 and future pandemics by blocking the entry of SARS-CoV-2 and related viruses into human cells. A compound library was screened to identify inhibitors of SARS-CoV-2 cellular entry Small molecule Q34 is a potent inhibitor of cellular entry of pseudotyped SARS-CoV-2 Compound Q34 inhibits authentic SARS-CoV-2 infection of human cells Compound Q34 is non-toxic to human cells without SARS-CoV-2 infection
Collapse
Affiliation(s)
- Qi Cui
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingzi Zhang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cheng Wang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Tao Zhou
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Diabetes and Metabolism Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
41
|
Barber HM, Ali MF, Kucenas S. Glial Patchwork: Oligodendrocyte Progenitor Cells and Astrocytes Blanket the Central Nervous System. Front Cell Neurosci 2022; 15:803057. [PMID: 35069117 PMCID: PMC8766310 DOI: 10.3389/fncel.2021.803057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tiling is a developmental process where cell populations become evenly distributed throughout a tissue. In this review, we discuss the developmental cellular tiling behaviors of the two major glial populations in the central nervous system (CNS)—oligodendrocyte progenitor cells (OPCs) and astrocytes. First, we discuss OPC tiling in the spinal cord, which is comprised of the three cellular behaviors of migration, proliferation, and contact-mediated repulsion (CMR). These cellular behaviors occur simultaneously during OPC development and converge to produce the emergent behavior of tiling which results in OPCs being evenly dispersed and occupying non-overlapping domains throughout the CNS. We next discuss astrocyte tiling in the cortex and hippocampus, where astrocytes migrate, proliferate, then ultimately determine their exclusive domains by gradual removal of overlap rather than sustained CMR. This results in domains that slightly overlap, allowing for both exclusive control of “synaptic islands” and astrocyte-astrocyte communication. We finally discuss the similarities and differences in the tiling behaviors of these glial populations and what remains unknown regarding glial tiling and how perturbations to this process may impact injury and disease.
Collapse
Affiliation(s)
- Heather M. Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Maria F. Ali
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Sarah Kucenas
| |
Collapse
|
42
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
43
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
44
|
Hagemann TL, Powers B, Lin NH, Mohamed AF, Dague KL, Hannah SC, Bachmann G, Mazur C, Rigo F, Olsen AL, Feany MB, Perng MD, Berman RF, Messing A. Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci Transl Med 2021; 13:eabg4711. [PMID: 34788075 DOI: 10.1126/scitranslmed.abg4711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ahmed F Mohamed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katerina L Dague
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seth C Hannah
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Curt Mazur
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Robert F Berman
- Department of Neurological Surgery and M.I.N.D Institute, University of California, Davis, Davis, CA 95616, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
45
|
Meneghini V, Peviani M, Luciani M, Zambonini G, Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front Genome Ed 2021; 3:644319. [PMID: 34713256 PMCID: PMC8525379 DOI: 10.3389/fgeed.2021.644319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting.
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Zambonini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Wang HQ, Yang SW, Gao Y, Liu YJ, Li X, Ai QD, Lin MY, Yang YT, Zeng Q, Zhang Y, Wang ZZ, Chen NH. Novel antidepressant mechanism of ginsenoside Rg1: Regulating biosynthesis and degradation of connexin43. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114212. [PMID: 34087399 DOI: 10.1016/j.jep.2021.114212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer is a valuable medicinal herb and "alternative" remedy for the prevention and treatment of depression. Dysfunction of connexin43 (Cx43)-gap junction in astrocytes is predisposed to the precipitation of depression. Ginsenoside Rg1 (Rg1), the main bioactive constituent extracted from ginseng, is efficacious in the management of depression by upregulating the content of Cx43. Our previous results indicated that pretreatment with Rg1 significantly improved Cx43-gap junction in corticosterone (CORT)-treated astrocytes. However, the antidepressant mechanism underlying how Rg1 upregulates Cx43-gap junction in astrocytes hasn't been proposed. AIM OF THE STUDY To dissect the mechanisms of Rg1 controlling Cx43 levels in primary astrocytes. METHODS We examined the changes of the level of Cx43 mRNA, the degradation of Cx43, as well as the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43 followed by Rg1 prior to CORT in rat primary astrocytes isolated from prefrontal cortex and hippocampus. Furthermore, the recognized method of scrape loading/dye transfer was performed to detect Cx43-gap junctional function, an essencial indicator of the antidepressant effect. RESULTS Pretreatment with Rg1 could reverse CORT-induced downregulation of Cx43 biosynthesis, acceleration of Cx43 degradation, and upregulation of two Cx43 degradation pathways in primary astrocytes. CONCLUSION The findings in the present study provide the first evidence highlighting that Rg1 increases Cx43 protein levels through the upregulation of Cx43 mRNA and downregulation of Cx43 degradation, which may be attributed to the effect of Rg1 on the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Song-Wei Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Jiao Liu
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Xun Li
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi-Di Ai
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Mei-Yu Lin
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan-Tao Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi Zeng
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
47
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
48
|
Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, Reiman EM, Blurton‐Jones M, Holtzman DM, Shi Y. Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101462. [PMID: 34337898 PMCID: PMC8456220 DOI: 10.1002/advs.202101462] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure. Huge efforts have been made to develop anti-AD drugs in the past decades. However, all drug development programs for disease-modifying therapies have failed. Possible reasons for the high failure rate include incomplete understanding of complex pathophysiology of AD, especially sporadic AD (sAD), and species difference between humans and animal models used in preclinical studies. In this study, sAD is modeled using human induced pluripotent stem cell (hiPSC)-derived 3D brain organoids. Because the blood-brain barrier (BBB) leakage is a well-known risk factor for AD, brain organoids are exposed to human serum to mimic the serum exposure consequence of BBB breakdown in AD patient brains. The serum-exposed brain organoids are able to recapitulate AD-like pathologies, including increased amyloid beta (Aβ) aggregates and phosphorylated microtubule-associated tau protein (p-Tau) level, synaptic loss, and impaired neural network. Serum exposure increases Aβ and p-Tau levels through inducing beta-secretase 1 (BACE) and glycogen synthase kinase-3 alpha / beta (GSK3α/β) levels, respectively. In addition, single-cell transcriptomic analysis of brain organoids reveals that serum exposure reduced synaptic function in both neurons and astrocytes and induced immune response in astrocytes. The human brain organoid-based sAD model established in this study can provide a powerful platform for both mechanistic study and therapeutic development in the future.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Guoqiang Sun
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - E Tian
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Mingzi Zhang
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Hayk Davtyan
- Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute105015 West Santa Fe DriveSun CityAZ85351USA
| | - Eric M. Reiman
- Banner Alzheimer Institute901 East Willetta StreetPhoenixAZ95006USA
| | - Mathew Blurton‐Jones
- Department of Neurobiology & BehaviorInstitute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University in St. LouisSt. LouisMO63110USA
| | - Yanhong Shi
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| |
Collapse
|
49
|
Zhang C, Guan Q, Shi H, Cao L, Liu J, Gao Z, Zhu W, Yang Y, Luan Z, Yao R. A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res Ther 2021; 12:462. [PMID: 34407865 PMCID: PMC8375070 DOI: 10.1186/s13287-021-02532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 01/27/2023] Open
Abstract
Background The dual inhibitors of receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) play an important role in cell death processes and inflammatory responses. White matter injury (WMI), a leading cause of neurodevelopmental disabilities in preterm infants, which is characterized by extensive myelination disturbances and demyelination. Neuroinflammation, leads to the loss and differentiation-inhibition of oligodendrocyte precursor cells (OPCs), represents a major barrier to myelin repair. Whether the novel RIP1/RIP3 dual inhibitor ZJU-37 can promote transplanted OPCs derived from human neural stem cells (hOPCs) survival, differentiation and myelination remains unclear. In this study, we investigated the effect of ZJU-37 on myelination and neurobehavioral function in a neonatal rat WMI model induced by hypoxia and ischemia. Methods In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia, and then treated with ZJU-37 or/and hOPCs, then OPCs apoptosis, myelination, glial cell and NLRP3 inflammasome activation together with cognitive outcome were evaluated at 12 weeks after transplantation. In vitro, the effect of ZJU-37 on NLRP3 inflammasome activation in astrocytes induced by oxygen–glucose deprivation (OGD) were examined by western blot and immunofluorescence. The effect of ZJU-37 on OPCs apoptosis induced by the conditioned medium from OGD-injured astrocytes (OGD-astrocyte-CM) was analyzed by flow cytometry and immunofluorescence. Results ZJU-37 combined with hOPCs more effectively decreased OPC apoptosis, promoted myelination in the corpus callosum and improved behavioral function compared to ZJU-37 or hOPCs treatment. In addition, the activation of glial cells and NLRP3 inflammasome was reduced by ZJU-37 or/and hOPCs treatment in the neonatal rat WMI model. In vitro, it was also confirmed that ZJU-37 can suppress NLRP3 inflammasome activation in astrocytes induced by OGD. Not only that, the OGD-astrocyte-CM treated with ZJU-37 obviously attenuated OPC apoptosis and dysdifferentiation caused by the OGD-astrocyte-CM. Conclusions The novel RIP1/RIP3 dual inhibitor ZJU-37 may promote OPC survival, differentiation and myelination by inhibiting NLRP3 inflammasome activation in a neonatal rat model of WMI with hOPC graft.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qian Guan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Hao Shi
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lingsheng Cao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zixuan Gao
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wenxi Zhu
- Class ten, Grade two, Xuzhou Senior School, Xuzhou, 221003, People's Republic of China
| | - Yinxiang Yang
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
50
|
Saito K, Shigetomi E, Koizumi S. [Alexander disease: diversity of cell population and interactions between neuron and glia]. Nihon Yakurigaku Zasshi 2021; 156:239-243. [PMID: 34193704 DOI: 10.1254/fpj.21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder caused by the mutations in glial fibrillary acidic protein (GFAP) gene. Rosenthal fiber formations in astrocytes are the pathological hallmarks of AxD. Astrocyte dysfunction in the AxD brain is considered to be involved in its pathogenesis. We have previously reported that in AxD model mice aberrant Ca2+ signals in astrocytes were associated with the upregulation of reactive phenotype. Reactive astrocytes are conditions that lead to morphological, functional, and molecular changes by responding to various pathological insults (trauma, inflammation, ischemia), and environmental stimuli. Recent technological advances in single-cell gene expression analysis have revealed that astrocytes have heterogeneity by indicating that they form sub population with different characteristics depending on the brain region, the growth development, aging stage, and the pathological condition. AxD astrocytes are also thought to constitute a heterogeneous population with diverse properties and functions. Moreover, it is presumed that AxD pathogenesis occur due to interactions with neurons and other glial cells, as well as the microenvironment in tissues. Research strategies based on these perspectives will help us understand AxD pathology better and may lead to the elucidation of disease modifiers and clinical diversity.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Eiji Shigetomi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Schuichi Koizumi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| |
Collapse
|