1
|
Li S, Li J, Chen G, Lin T, Zhang P, Tong K, Chen N, Liu S. Exosomes originating from neural stem cells undergoing necroptosis participate in cellular communication by inducing TSC2 upregulation of recipient cells following spinal cord injury. Neural Regen Res 2025; 20:3273-3286. [PMID: 38993124 DOI: 10.4103/nrr.nrr-d-24-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00030/figure1/v/2024-12-20T164640Z/r/image-tiff We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 ( Tsc2 ), solute carrier family 16 member 3 ( Slc16a3 ), and forkhead box protein P1 ( Foxp1 ). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
Collapse
Affiliation(s)
- Shiming Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Jianfeng Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Orthopedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Penghui Zhang
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ningning Chen
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhang C, Xu H, Tang Q, Duan Y, Xia H, Huang H, Ye D, Bi F. CaMKII suppresses proteotoxicity by phosphorylating BAG3 in response to proteasomal dysfunction. EMBO Rep 2024; 25:4488-4514. [PMID: 39261742 PMCID: PMC11466968 DOI: 10.1038/s44319-024-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca2+/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition. We show that proteasome inhibition activates CaMKII, which phosphorylates B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) at residues S173, S377, and S386. Phosphorylated BAG3 activates the heme-regulated inhibitor (HRI)- eukaryotic initiation factor-2α (eIF2α) signaling pathway, suppressing protein synthesis and the production of aggregated ubiquitinated misfolded proteins, ultimately mitigating the proteotoxic crisis. Inhibition of CaMKII exacerbates the accumulation of aggregated misfolded proteins and paraptosis induced by proteasome inhibitors. Based on these findings, we validate that combined targeting of proteasome and CaMKII accelerates tumor cell death and enhances the efficacy of proteasome inhibitors in tumor treatment. Our data unveil a new proteasomal inhibition-induced misfolded protein quality control mechanism and propose a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huanji Xu
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yichun Duan
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongwei Xia
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huixi Huang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Di Ye
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Feng Bi
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Wang G, Guasp RJ, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Friedman E, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. eLife 2024; 13:RP95443. [PMID: 39255003 PMCID: PMC11386954 DOI: 10.7554/elife.95443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate the extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here, we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Sangeena Salam
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Edward Chuang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Andrés Morera
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Anna J Smart
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - David Jimenez
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Sahana Shekhar
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Emily Friedman
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Ken C Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, United States
| |
Collapse
|
4
|
Pek JW. The idiosyncrasies of oocytes. Trends Cell Biol 2024:S0962-8924(24)00144-2. [PMID: 39142921 DOI: 10.1016/j.tcb.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Animal oocytes face extreme challenges. They remain dormant in the body for long periods of time. To support offspring development and health, they need to store genetic material and maternal factors stably and at the same time manage cellular damage in a reliable manner. Recent studies have provided new insights on how oocytes cope with such challenges. This review discusses the many unusual or idiosyncratic nature of oocytes and how understanding oocyte biology can help us address issues of reproduction and intergenerational inheritance.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore.
| |
Collapse
|
5
|
Samimi K, Pasachhe O, Guzman EC, Riendeau J, Gillette AA, Pham DL, Wiech KJ, Moore DL, Skala MC. Autofluorescence lifetime flow cytometry with time-correlated single photon counting. Cytometry A 2024; 105:607-620. [PMID: 38943226 PMCID: PMC11425855 DOI: 10.1002/cyto.a.24883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375 nm picosecond-pulsed diode laser operating at 50 MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification (i.e., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5 ms integration time per cell, resulting in a light dose of 2.65 J/cm2 that is well below damage thresholds (25 J/cm2 at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent versus activated (CD3/CD28/CD2) primary human T cells, and quiescent versus activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
Collapse
Affiliation(s)
- Kayvan Samimi
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | | | | | | | - Dan L. Pham
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Kasia J. Wiech
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Teng H, Chen S, Liu F, Teng Y, Li Y, Liang D, Wu L, Li Z. O-Sialoglycoprotein Endopeptidase Deficiency Impairs Proteostasis and Induces Autophagy in Human Embryonic Stem Cells. Int J Mol Sci 2024; 25:7889. [PMID: 39063131 PMCID: PMC11277037 DOI: 10.3390/ijms25147889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| |
Collapse
|
7
|
Wang G, Guasp R, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Friedman E, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.565361. [PMID: 38014134 PMCID: PMC10680645 DOI: 10.1101/2023.11.13.565361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ryan Guasp
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sangeena Salam
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Edward Chuang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Andrés Morera
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Anna J Smart
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - David Jimenez
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sahana Shekhar
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Emily Friedman
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ken C Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
8
|
Samimi K, Pasachhe O, Guzman EC, Riendeau J, Gillette AA, Pham DL, Wiech KJ, Moore DL, Skala MC. Autofluorescence lifetime flow cytometry with time-correlated single photon counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594394. [PMID: 38798331 PMCID: PMC11118363 DOI: 10.1101/2024.05.15.594394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375nm picosecond-pulsed diode laser operating at 50MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification ( i.e ., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5ms integration time per cell, resulting in a light dose of 2.65 J/cm 2 that is well below damage thresholds (25 J/cm 2 at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent vs. activated (CD3/CD28/CD2) primary human T cells, and quiescent vs. activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
Collapse
|
9
|
Kobayashi T. Protein homeostasis and degradation in quiescent neural stem cells. J Biochem 2024; 175:481-486. [PMID: 38299708 DOI: 10.1093/jb/mvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Tissue stem cells are maintained in the adult body throughout life and are crucial for tissue homeostasis as they supply newly functional cells. Quiescence is a reversible arrest in the G0/G1 phase of the cell cycle and a strategy to maintain the quality of tissue stem cells. Quiescence maintains stem cells in a self-renewable and differentiable state for a prolonged period by suppressing energy consumption and cell damage and depletion. Most adult neural stem cells in the brain maintain the quiescent state and produce neurons and glial cells through differentiation after activating from the quiescent state to the proliferating state. In this process, proteostasis, including proteolysis, is essential to transition between the quiescent and proliferating states associated with proteome remodeling. Recent reports have demonstrated that quiescent and proliferating neural stem cells have different expression patterns and roles as proteostatic molecules and are affected by age, indicating differing processes for protein homeostasis in these two states in the brain. This review discusses the multiple regulatory stages from protein synthesis (protein birth) to proteolysis (protein death) in quiescent neural stem cells.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Department of Basic Medical Sciences, The Institute of Medical Science, The University of Tokyo, 108-8639, Japan
| |
Collapse
|
10
|
Morrow CS, Tweed K, Farhadova S, Walsh AJ, Lear BP, Roopra A, Risgaard RD, Klosa PC, Arndt ZP, Peterson ER, Chi MM, Harris AG, Skala MC, Moore DL. Autofluorescence is a biomarker of neural stem cell activation state. Cell Stem Cell 2024; 31:570-581.e7. [PMID: 38521057 PMCID: PMC10997463 DOI: 10.1016/j.stem.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey Tweed
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabina Farhadova
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alex J Walsh
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bo P Lear
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan D Risgaard
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Payton C Klosa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella R Peterson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michelle M Chi
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Allison G Harris
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Zhang H, Ishii K, Shibata T, Ishii S, Hirao M, Lu Z, Takamura R, Kitano S, Miyachi H, Kageyama R, Itakura E, Kobayashi T. Fluctuation of lysosomal protein degradation in neural stem cells of the postnatal mouse brain. Development 2024; 151:dev202231. [PMID: 38265146 PMCID: PMC10911176 DOI: 10.1242/dev.202231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Karan Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Tatsuya Shibata
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shunsuke Ishii
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Marika Hirao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Zhou Lu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Risa Takamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Satsuki Kitano
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Eisuke Itakura
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Taeko Kobayashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
12
|
Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation. Curr Opin Cell Biol 2024; 86:102283. [PMID: 37989035 DOI: 10.1016/j.ceb.2023.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040 Madrid, Spain.
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom; Biophysical Sciences Institute, University of Durham, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Sweeney KM, Chantarawong S, Barbieri EM, Cajka G, Liu M, Spruce L, Fazelinia H, Portz B, Copley K, Lapidot T, Duhamel L, Greenwald P, Saida N, Shalgi R, Shorter J, Shalem O. CRISPR screen for protein inclusion formation uncovers a role for SRRD in the regulation of intermediate filament dynamics and aggresome assembly. PLoS Genet 2024; 20:e1011138. [PMID: 38315730 PMCID: PMC10868785 DOI: 10.1371/journal.pgen.1011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.
Collapse
Affiliation(s)
- Katelyn M. Sweeney
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sapanna Chantarawong
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward M. Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg Cajka
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Liu
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lynn Spruce
- Proteomics Core Facility, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Proteomics Core Facility, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tomer Lapidot
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren Duhamel
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phoebe Greenwald
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Naseeb Saida
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Watanabe F, Hollingsworth EW, Bartley JM, Wisehart L, Desai R, Hartlaub AM, Hester ME, Schiapparelli P, Quiñones-Hinojosa A, Imitola J. Patient-derived organoids recapitulate glioma-intrinsic immune program and progenitor populations of glioblastoma. PNAS NEXUS 2024; 3:pgae051. [PMID: 38384384 PMCID: PMC10879747 DOI: 10.1093/pnasnexus/pgae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal human cancer thought to originate from a self-renewing and therapeutically-resistant population of glioblastoma stem cells (GSCs). The intrinsic mechanisms enacted by GSCs during 3D tumor formation, however, remain unclear, especially in the stages prior to angiogenic/immunological infiltration. In this study, we performed a deep characterization of the genetic, immune, and metabolic profiles of GBM organoids from several patient-derived GSCs (GBMO). Despite being devoid of immune cells, transcriptomic analysis across GBMO revealed a surprising immune-like molecular program, enriched in cytokine, antigen presentation and processing, T-cell receptor inhibitors, and interferon genes. We find two important cell populations thought to drive GBM progression, Special AT-rich sequence-binding protein 2 (SATB2+) and homeodomain-only protein homeobox (HOPX+) progenitors, contribute to this immune landscape in GBMO and GBM in vivo. These progenitors, but not other cell types in GBMO, are resistant to conventional GBM therapies, temozolomide and irradiation. Our work defines a novel intrinsic immune-like landscape in GBMO driven, in part, by SATB2+ and HOPX+ progenitors and deepens our understanding of the intrinsic mechanisms utilized by GSCs in early GBM formation.
Collapse
Affiliation(s)
- Fumihiro Watanabe
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology, UConn Health Brain and Spine Institute, 5 Munson Road, Farmington, CT 06030, USA
- Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Ethan W Hollingsworth
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology, UConn Health Brain and Spine Institute, 5 Munson Road, Farmington, CT 06030, USA
- Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | | | - Lauren Wisehart
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology, UConn Health Brain and Spine Institute, 5 Munson Road, Farmington, CT 06030, USA
| | - Rahil Desai
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology, UConn Health Brain and Spine Institute, 5 Munson Road, Farmington, CT 06030, USA
| | - Annalisa M Hartlaub
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Department of Neurology, UConn Health Brain and Spine Institute, 5 Munson Road, Farmington, CT 06030, USA
- Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
15
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Calatayud-Baselga I, Casares-Crespo L, Franch-Ibáñez C, Guijarro-Nuez J, Sanz P, Mira H. Autophagy drives the conversion of developmental neural stem cells to the adult quiescent state. Nat Commun 2023; 14:7541. [PMID: 38001081 PMCID: PMC10673888 DOI: 10.1038/s41467-023-43222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Neurogenesis in the adult mammalian brain relies on the lifelong persistence of quiescent neural stem cell (NSC) reservoirs. Little is known about the mechanisms that lead to the initial establishment of quiescence, the main hallmark of adult stem cells, during development. Here we show that protein aggregates and autophagy machinery components accumulate in developmental radial glia-like NSCs as they enter quiescence and that pharmacological or genetic blockade of autophagy disrupts quiescence acquisition and maintenance. Conversely, increasing autophagy through AMPK/ULK1 activation instructs the acquisition of the quiescent state without affecting BMP signaling, a gatekeeper of NSC quiescence during adulthood. Selective ablation of Atg7, a critical gene for autophagosome formation, in radial glia-like NSCs at early and late postnatal stages compromises the initial acquisition and maintenance of quiescence during the formation of the hippocampal dentate gyrus NSC niche. Therefore, we demonstrate that autophagy is cell-intrinsically required to establish NSC quiescence during hippocampal development. Our results uncover an important role of autophagy in the transition of developmental NSCs into their dormant adult form, paving the way for studies directed at further understanding the mechanisms of stem cell niche formation and maintenance in the mammalian brain.
Collapse
Affiliation(s)
- Isabel Calatayud-Baselga
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Lucía Casares-Crespo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Carmina Franch-Ibáñez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - José Guijarro-Nuez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain.
| |
Collapse
|
17
|
Zhang C, Duan Y, Huang C, Li L. Inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. Cell Mol Biol Lett 2023; 28:85. [PMID: 37872526 PMCID: PMC10594750 DOI: 10.1186/s11658-023-00500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Ubiquitin-proteasome-system-mediated clearance of misfolded proteins is essential for cells to maintain proteostasis and reduce the proteotoxicity caused by these aberrant proteins. When proteasome activity is inadequate, ubiquitinated proteins are sorted into perinuclear aggresomes, which is a significant defense mechanism employed by cells to combat insufficient proteasome activity, hence mitigating the proteotoxic crisis. It has been demonstrated that phosphorylation of SQSTM1 is crucial in regulating misfolded protein aggregation and autophagic degradation. Although SQSTM1 S403 phosphorylation is essential for the autophagic degradation of ubiquitinated proteins, its significance in proteasome inhibition-induced aggresome formation is yet unknown. Herein, we investigated the influence of SQSTM1 S403 phosphorylation on the aggresome production of ubiquitinated proteins during proteasome suppression. METHODS We examined the phosphorylation levels of SQSTM1 S403 or T269/S272 in cells after treated with proteasome inhibitors or/and autophagy inhibitors, by western blot and immunofluorescence. We detected the accumulation and aggresome formation of ubiquitinated misfolded proteins in cells treated with proteasome inhibition by western blot and immunofluorescence. Furthermore, we used SQSTM1 phosphorylation-associated kinase inhibitors and mutant constructs to confirm the regulation of different SQSTM1 phosphorylation in aggresome formation. We examined the cell viability using CCK-8 assay. RESULTS Herein, we ascertained that phosphorylation of SQSTM1 S403 did not enhance the autophagic degradation of ubiquitinated proteins during proteasome inhibition. Proteasome inhibition suppresses the phosphorylation of SQSTM1 S403, which facilitated the aggresome production of polyubiquitinated proteins. Interestingly, we found proteasome inhibition-induced SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation. Suppressing S403 phosphorylation rescues the defective aggresome formation and protects cells from cell death caused by unphosphorylated SQSTM1 (T269/S272). CONCLUSIONS This study shows that inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation, boosting the aggresome formation of ubiquitinated protein and shielding cells from proteotoxic crisis.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - YiChun Duan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chen Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, Sichuan Province, China
| |
Collapse
|
18
|
Vitali T, Sanchez-Alvarez R, Witkos TM, Bantounas I, Cutiongco MFA, Dudek M, Yan G, Mironov AA, Swift J, Lowe M. Vimentin intermediate filaments provide structural stability to the mammalian Golgi complex. J Cell Sci 2023; 136:jcs260577. [PMID: 37732478 PMCID: PMC10617613 DOI: 10.1242/jcs.260577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/18/2023] [Indexed: 09/22/2023] Open
Abstract
The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.
Collapse
Affiliation(s)
- Teresa Vitali
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Rosa Sanchez-Alvarez
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tomasz M. Witkos
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ioannis Bantounas
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Marie F. A. Cutiongco
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Michal Dudek
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Alexander A. Mironov
- Electron Microscopy Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Zhang SQ, Deng Q, Zhu Q, Hu ZL, Long LH, Wu PF, He JG, Chen HS, Yue Z, Lu JH, Wang F, Chen JG. Cell type-specific NRBF2 orchestrates autophagic flux and adult hippocampal neurogenesis in chronic stress-induced depression. Cell Discov 2023; 9:90. [PMID: 37644025 PMCID: PMC10465581 DOI: 10.1038/s41421-023-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China.
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Liu L, Tong H, Sun Y, Chen X, Yang T, Zhou G, Li XJ, Li S. Huntingtin Interacting Proteins and Pathological Implications. Int J Mol Sci 2023; 24:13060. [PMID: 37685866 PMCID: PMC10488016 DOI: 10.3390/ijms241713060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of Central Nervous System Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510623, China; (L.L.); (H.T.); (Y.S.); (X.C.); (T.Y.); (G.Z.); (X.-J.L.)
| |
Collapse
|
21
|
Ding L, Chu W, Xia Y, Shi M, Li T, Zhou FQ, Deng DYB. UCHL1 facilitates protein aggregates clearance to enhance neural stem cell activation in spinal cord injury. Cell Death Dis 2023; 14:479. [PMID: 37507386 PMCID: PMC10382505 DOI: 10.1038/s41419-023-06003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Activation of endogenous neural stem cells (NSCs) is greatly significant for the adult neurogenesis; however, it is extremely limited in the spinal cord after injury. Recent evidence suggests that accumulation of protein aggregates impairs the ability of quiescent NSCs to activate. Ubiquitin c-terminal hydrolase l-1 (UCHL1), an important deubiquitinating enzyme, plays critical roles in protein aggregations clearance, but its effects on NSC activation remains unknown. Here, we show that UCHL1 promotes NSC activation by clearing protein aggregates through ubiquitin-proteasome approach. Upregulation of UCHL1 facilitated the proliferation of spinal cord NSCs after spinal cord injury (SCI). Based on protein microarray analysis of SCI cerebrospinal fluid, it is further revealed that C3+ neurotoxic reactive astrocytes negatively regulated UCHL1 and proteasome activity via C3/C3aR signaling, led to increased abundances of protein aggregations and decreased NSC proliferation. Furthermore, blockade of reactive astrocytes or C3/C3aR pathway enhanced NSC activation post-SCI by reserving UCHL1 and proteasome functions. Together, this study elucidated a mechanism regulating NSC activation in the adult spinal cord involving the UCHL1-proteasome approach, which may provide potential molecular targets and new insights for NSC fate regulation.
Collapse
Affiliation(s)
- Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Chu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Xia
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Shi
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tian Li
- Obstetrics and Gynecology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
22
|
Arnold ML, Cooper J, Androwski R, Ardeshna S, Melentijevic I, Smart J, Guasp RJ, Nguyen KCQ, Bai G, Hall DH, Grant BD, Driscoll M. Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers. Nat Commun 2023; 14:4450. [PMID: 37488107 PMCID: PMC10366101 DOI: 10.1038/s41467-023-39700-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Toxic protein aggregates can spread among neurons to promote human neurodegenerative disease pathology. We found that in C. elegans touch neurons intermediate filament proteins IFD-1 and IFD-2 associate with aggresome-like organelles and are required cell-autonomously for efficient production of neuronal exophers, giant vesicles that can carry aggregates away from the neuron of origin. The C. elegans aggresome-like organelles we identified are juxtanuclear, HttPolyQ aggregate-enriched, and dependent upon orthologs of mammalian aggresome adaptor proteins, dynein motors, and microtubule integrity for localized aggregate collection. These key hallmarks indicate that conserved mechanisms drive aggresome formation. Furthermore, we found that human neurofilament light chain (NFL) can substitute for C. elegans IFD-2 in promoting exopher extrusion. Taken together, our results suggest a conserved influence of intermediate filament association with aggresomes and neuronal extrusions that eject potentially toxic material. Our findings expand understanding of neuronal proteostasis and suggest implications for neurodegenerative disease progression.
Collapse
Affiliation(s)
- Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Rebecca Androwski
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Sohil Ardeshna
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, 10461, USA
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, 10461, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA.
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA.
| |
Collapse
|
23
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
24
|
Ogrodnik M, Gladyshev VN. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. NATURE AGING 2023; 3:766-775. [PMID: 37386259 PMCID: PMC7616215 DOI: 10.1038/s43587-023-00447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
With recent rapid progress in research on aging, there is increasing evidence that many features commonly considered to be mechanisms or drivers of aging in fact represent adaptations. Here, we examine several such features, including cellular senescence, epigenetic aging and stem cell alterations. We draw a distinction between the causes and consequences of aging and define short-term consequences as 'responses' and long-term ones as 'adaptations'. We also discuss 'damaging adaptations', which despite having beneficial effects in the short term, lead to exacerbation of the initial insult and acceleration of aging. Features commonly recognized as 'basic mechanisms of the aging process' are critically examined for the possibility of their adaptation-driven emergence from processes such as cell competition and the wound-like features of the aging body. Finally, we speculate on the meaning of these interactions for the aging process and their relevance for the development of antiaging interventions.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria.
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Workers' Compensation Board Research Center, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Chua BA, Lennan CJ, Sunshine MJ, Dreifke D, Chawla A, Bennett EJ, Signer RAJ. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 2023; 30:460-472.e6. [PMID: 36948186 PMCID: PMC10164413 DOI: 10.1016/j.stem.2023.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate blood cells throughout life. To preserve their fitness, HSCs are particularly dependent on maintaining protein homeostasis (proteostasis). However, how HSCs purge misfolded proteins is unknown. Here, we show that in contrast to most cells that primarily utilize the proteasome to degrade misfolded proteins, HSCs preferentially traffic misfolded proteins to aggresomes in a Bag3-dependent manner and depend on aggrephagy, a selective form of autophagy, to maintain proteostasis in vivo. When autophagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. Bag3-deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity. Furthermore, HSC aging is associated with a severe loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus specifically configured in young adult HSCs to preserve proteostasis and fitness but become dysregulated during aging.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Connor J Lennan
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mary Jean Sunshine
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniela Dreifke
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ashu Chawla
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Wu Y, Bottes S, Fisch R, Zehnder C, Cole JD, Pilz GA, Helmchen F, Simons BD, Jessberger S. Chronic in vivo imaging defines age-dependent alterations of neurogenesis in the mouse hippocampus. NATURE AGING 2023; 3:380-390. [PMID: 37117787 PMCID: PMC10154232 DOI: 10.1038/s43587-023-00370-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian hippocampus1. Advancing age leads to a decline in neurogenesis, which is associated with impaired cognition2,3. The cellular mechanisms causing reduced neurogenesis with advancing age remain largely unknown. We genetically labeled NSCs through conditional recombination driven by the regulatory elements of the stem-cell-expressed gene GLI family zinc finger 1 (Gli1) and used chronic intravital imaging to follow individual NSCs and their daughter cells over months within their hippocampal niche4,5. We show that aging affects multiple steps, from cell cycle entry of quiescent NSCs to determination of the number of surviving cells, ultimately causing reduced clonal output of individual NSCs. Thus, we here define the developmental stages that may be targeted to enhance neurogenesis with the aim of maintaining hippocampal plasticity with advancing age.
Collapse
Affiliation(s)
- Yicheng Wu
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Roberto Fisch
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Cinzia Zehnder
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - John Darby Cole
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Gregor-Alexander Pilz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
- BioMedical Center, Department of Cell Biology and Anatomy, Ludwig Maximilians University, Planegg-Martinsried, Germany
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
29
|
Xu H, Bensalel J, Raju S, Capobianco E, Lu ML, Wei J. Characterization of huntingtin interactomes and their dynamic responses in living cells by proximity proteomics. J Neurochem 2023; 164:512-528. [PMID: 36437609 DOI: 10.1111/jnc.15726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Huntingtin (Htt) is a large protein without clearly defined molecular functions. Mutation in this protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Identification of Htt-interacting proteins by the traditional approaches including yeast two-hybrid systems and affinity purifications has greatly facilitated the understanding of Htt function. However, these methods eliminated the intracellular spatial information of the Htt interactome during sample preparations. Moreover, the temporal changes of the Htt interactome in response to acute cellular stresses cannot be easily resolved with these approaches. Ascorbate peroxidase (APEX2)-based proximity labeling has been used to spatiotemporally investigate protein-protein interactions in living cells. In this study, we generated stable human SH-SY5Y cell lines expressing full-length Htt23Q and Htt145Q with N-terminus tagged Flag-APEX2 to quantitatively map the spatiotemporal changes of Htt interactome to a mild acute proteotoxic stress. Our data revealed that normal and mutant Htt (muHtt) are associated with distinct intracellular microenvironments. Specifically, mutant Htt is preferentially associated with intermediate filaments and myosin complexes. Furthermore, the dynamic changes of Htt interactomes in response to stress are different between normal and mutant Htt. Vimentin is identified as one of the most significant proteins that preferentially interacts with muHtt in situ. Further functional studies demonstrated that mutant Htt affects the vimentin's function of regulating proteostasis in healthy and HD human neural stem cells. Taken together, our data offer important insights into the molecular functions of normal and mutant Htt by providing a list of Htt-interacting proteins in their natural cellular context for further studies in different HD models.
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Johanna Bensalel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sunil Raju
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | | | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
30
|
Roshan SA, Elangovan G, Gunaseelan D, Jayachandran SK, Kandasamy M, Anusuyadevi M. Pathogenomic Signature and Aberrant Neurogenic Events in Experimental Cerebral Ischemic Stroke: A Neurotranscriptomic-Based Implication for Dementia. J Alzheimers Dis 2023; 94:S289-S308. [PMID: 36776051 PMCID: PMC10473090 DOI: 10.3233/jad-220831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is caused due to neurovascular damage or thrombosis, leading to neuronal dysfunction, neuroinflammation, neurodegeneration, and regenerative failure responsible for neurological deficits and dementia. The valid therapeutic targets against cerebral stroke remain obscure. Thus, insight into neuropathomechanisms resulting from the aberrant expression of genes appears to be crucial. OBJECTIVE In this study, we have elucidated how neurogenesis-related genes are altered in experimental stroke brains from the available transcriptome profiles in correlation with transcriptome profiles of human postmortem stroke brain tissues. METHODS The transcriptome datasets available on the middle cerebral artery occlusion (MCAo) rat brains were obtained from the Gene Expression Omnibus, National Center for Biotechnology Information. Of the available datasets, 97 samples were subjected to the meta-analysis using the network analyst tool followed by Cytoscape-based enrichment mapping analysis. The key differentially expressed genes (DEGs) were validated and compared with transcriptome profiling of human stroke brains. RESULTS Results revealed 939 genes are differently expressed in the brains of the MCAo rat model of stroke, in which 30 genes are key markers of neural stem cells, and regulators of neurogenic processes. Its convergence with DEGs from human stroke brains has revealed common targets. CONCLUSION This study has established a panel of highly important DEGs to signify the potential therapeutic targets for neuroregenerative strategy against pathogenic events associated with cerebral stroke. The outcome of the findings can be translated to mitigate neuroregeneration failure seen in various neurological and metabolic disease manifestations with neurocognitive impairments.
Collapse
Affiliation(s)
- Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gayathri Elangovan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharani Gunaseelan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Swaminathan K. Jayachandran
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Program (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
31
|
Chen KZ, Liu SX, Li YW, He T, Zhao J, Wang T, Qiu XX, Wu HF. Vimentin as a potential target for diverse nervous system diseases. Neural Regen Res 2022; 18:969-975. [PMID: 36254976 PMCID: PMC9827761 DOI: 10.4103/1673-5374.355744] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vimentin is a major type III intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout (GFAP-/-VIM-/-) mice. However, attenuated glial scar formation in post-stroke in GFAP-/- VIM-/- mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIM-/- mice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
Collapse
Affiliation(s)
- Kang-Zhen Chen
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Shu-Xian Liu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Yan-Wei Li
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Tao He
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jie Zhao
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Xian-Xiu Qiu
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Hong-Fu Wu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| |
Collapse
|
32
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
33
|
Morrow CS, Arndt ZP, Klosa PC, Peng B, Zewdie EY, Benayoun BA, Moore DL. Adult fibroblasts use aggresomes only in distinct cell-states. Sci Rep 2022; 12:15001. [PMID: 36056070 PMCID: PMC9440096 DOI: 10.1038/s41598-022-19055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The aggresome is a protein turnover system in which proteins are trafficked along microtubules to the centrosome for degradation. Despite extensive focus on aggresomes in immortalized cell lines, it remains unclear if the aggresome is conserved in all primary cells and all cell-states. Here we examined the aggresome in primary adult mouse dermal fibroblasts shifted into four distinct cell-states. We found that in response to proteasome inhibition, quiescent and immortalized fibroblasts formed aggresomes, whereas proliferating and senescent fibroblasts did not. Using this model, we generated a resource to provide a characterization of the proteostasis networks in which the aggresome is used and transcriptomic features associated with the presence or absence of aggresome formation. Using this resource, we validate a previously reported role for p38 MAPK signaling in aggresome formation and identify TAK1 as a novel driver of aggresome formation upstream of p38 MAPKs. Together, our data demonstrate that the aggresome is a non-universal protein degradation system which can be used cell-state specifically and provide a resource for studying aggresome formation and function.
Collapse
Affiliation(s)
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Payton C Klosa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Bo Peng
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Eden Y Zewdie
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
35
|
Pu M, Tai Y, Yuan L, Zhang Y, Guo H, Hao Z, Chen J, Qi X, Wang G, Tao Z, Ren J. The contribution of proteasomal impairment to autophagy activation by C9orf72 poly-GA aggregates. Cell Mol Life Sci 2022; 79:501. [PMID: 36036324 DOI: 10.1007/s00018-022-04518-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated. RESULTS Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells. Mice expressing 150 repeats ploy-GA shows behavioral deficits and activates autophagy in the brain. In vitro findings suggest that the poly-GA aggregates influence proteasomal by directly binding proteasome subunit PSMD2. Subsequently, the poly-GA aggregates activate phosphorylation and ubiquitination of p62 to recruit autophagosomes. Ultimately, the poly-GA aggregates lead to compensatory activation of autophagy. In vivo studies further reveal that rapamycin (autophagy activator) treatment significantly improves the degenerative symptoms and alleviates neuronal injury in mice expressing 150 repeats poly-GA. Meanwhile, rapamycin administration to mice expressing 150 repeats poly-GA reduces neuroinflammation and aggregates in the brain. CONCLUSION In summary, we elucidate the relationship between poly-GA in the proteasome and autophagy: when poly-GA forms complexes with the proteasome, it recruits autophagosomes and affects proteasome function. Our study provides support for further promoting the comprehension of the pathogenesis of C9orf72, which may bring a hint for the exploration of rapamycin for the treatment of ALS/FTD.
Collapse
Affiliation(s)
- Mei Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huijie Guo
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China.
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
36
|
Murley A, Wickham K, Dillin A. Life in lockdown: Orchestrating endoplasmic reticulum and lysosome homeostasis for quiescent cells. Mol Cell 2022; 82:3526-3537. [PMID: 36044901 DOI: 10.1016/j.molcel.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Cellular quiescence-reversible exit from the cell cycle-is an important feature of many cell types important for organismal health. Quiescent cells activate protective mechanisms that allow their persistence in the absence of growth and division for long periods of time. Aging and cellular dysfunction compromise the survival and re-activation of quiescent cells over time. Counteracting this decline are two interconnected organelles that lie at opposite ends of the secretory pathway: the endoplasmic reticulum and lysosomes. In this review, we highlight recent studies exploring the roles of these two organelles in quiescent cells from diverse contexts and speculate on potential other roles they may play, such as through organelle contact sites. Finally, we discuss emerging models of cellular quiescence, utilizing new cell culture systems and model organisms, that are suited to the mechanistic investigation of the functions of these organelles in quiescent cells.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
37
|
Kapuganti RS, Mohanty PP, Alone DP. Quantitative analysis of circulating levels of vimentin, clusterin and fibulin-5 in patients with pseudoexfoliation syndrome and glaucoma. Exp Eye Res 2022; 224:109236. [DOI: 10.1016/j.exer.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
38
|
Hurwitz B, Guzzi N, Gola A, Fiore VF, Sendoel A, Nikolova M, Barrows D, Carroll TS, Pasolli HA, Fuchs E. The integrated stress response remodels the microtubule-organizing center to clear unfolded proteins following proteotoxic stress. eLife 2022; 11:e77780. [PMID: 35758650 PMCID: PMC9299849 DOI: 10.7554/elife.77780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cells encountering stressful situations activate the integrated stress response (ISR) pathway to limit protein synthesis and redirect translation to better cope. The ISR has also been implicated in cancers, but redundancies in the stress-sensing kinases that trigger the ISR have posed hurdles to dissecting physiological relevance. To overcome this challenge, we targeted the regulatory node of these kinases, namely, the S51 phosphorylation site of eukaryotic translation initiation factor eIF2α and genetically replaced eIF2α with eIF2α-S51A in mouse squamous cell carcinoma (SCC) stem cells of skin. While inconsequential under normal growth conditions, the vulnerability of this ISR-null state was unveiled when SCC stem cells experienced proteotoxic stress. Seeking mechanistic insights into the protective roles of the ISR, we combined ribosome profiling and functional approaches to identify and probe the functional importance of translational differences between ISR-competent and ISR-null SCC stem cells when exposed to proteotoxic stress. In doing so, we learned that the ISR redirects translation to centrosomal proteins that orchestrate the microtubule dynamics needed to efficiently concentrate unfolded proteins at the microtubule-organizing center so that they can be cleared by the perinuclear degradation machinery. Thus, rather than merely maintaining survival during proteotoxic stress, the ISR also functions in promoting cellular recovery once the stress has subsided. Remarkably, this molecular program is unique to transformed skin stem cells, hence exposing a vulnerability in cancer that could be exploited therapeutically.
Collapse
Affiliation(s)
- Brian Hurwitz
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Nicola Guzzi
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Anita Gola
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Vincent F Fiore
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Ataman Sendoel
- Institute for Regenerative Medicine, University of ZurichZurichSwitzerland
| | - Maria Nikolova
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
39
|
Wani GA, Sprenger HG, Ndoci K, Chandragiri S, Acton RJ, Schatton D, Kochan SMV, Sakthivelu V, Jevtic M, Seeger JM, Müller S, Giavalisco P, Rugarli EI, Motori E, Langer T, Bergami M. Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L. Cell Rep 2022; 38:110370. [PMID: 35172139 DOI: 10.1016/j.celrep.2022.110370] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 01/17/2023] Open
Abstract
The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.
Collapse
Affiliation(s)
- Gulzar A Wani
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hans-Georg Sprenger
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Kristiano Ndoci
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Srikanth Chandragiri
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Richard James Acton
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Désirée Schatton
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sandra M V Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Vignesh Sakthivelu
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Milica Jevtic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Jens M Seeger
- Institute for Molecular Immunology, CECAD Research Center and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Molecular Medicine, Robert-Koch-Str. 21, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| |
Collapse
|
40
|
Evans CA, Kim HR, Macfarlane SC, Nowicki PIA, Baltes C, Xu L, Widengren J, Lautenschläger F, Corfe BM, Gad AKB. Metastasising Fibroblasts Show an HDAC6-Dependent Increase in Migration Speed and Loss of Directionality Linked to Major Changes in the Vimentin Interactome. Int J Mol Sci 2022; 23:1961. [PMID: 35216078 PMCID: PMC8880509 DOI: 10.3390/ijms23041961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasising cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumours in the clinic. We aimed to clarify how vimentin regulates the motility of metastasising fibroblasts. STED super-resolution microscopy, live-cell imaging and quantitative proteomics revealed that oncogene-expressing and metastasising fibroblasts show a less-elongated cell shape, reduced cell spreading, increased cell migration speed, reduced directionality, and stronger coupling between these migration parameters compared to normal control cells. In total, we identified and compared 555 proteins in the vimentin interactome. In metastasising cells, the levels of keratin 18 and Rab5C were increased, while those of actin and collagen were decreased. Inhibition of HDAC6 reversed the shape, spreading and migration phenotypes of metastasising cells back to normal. Inhibition of HDAC6 also decreased the levels of talin 1, tropomyosin, Rab GDI β, collagen and emilin 1 in the vimentin interactome, and partially reversed the nanoscale vimentin organisation in oncogene-expressing cells. These findings describe the changes in the vimentin interactome and nanoscale distribution that accompany the defective cell shape, spreading and migration of metastasising cells. These results support the hypothesis that oncogenes can act through HDAC6 to regulate the vimentin binding of the cytoskeletal and cell-extracellular matrix adhesion components that contribute to the defective motility of metastasising cells.
Collapse
Affiliation(s)
- Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, UK;
| | - Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.R.K.); (S.C.M.); (P.I.A.N.)
| | - Sarah C. Macfarlane
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.R.K.); (S.C.M.); (P.I.A.N.)
| | - Poppy I. A. Nowicki
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.R.K.); (S.C.M.); (P.I.A.N.)
| | - Carsten Baltes
- Experimental Physics, NT Faculty, D2 2, Saarland University, 66123 Saarbrücken, Germany; (C.B.); (F.L.)
| | - Lei Xu
- Department of Applied Physics/Experimental Biomolecular Physics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (L.X.); (J.W.)
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (L.X.); (J.W.)
| | - Franziska Lautenschläger
- Experimental Physics, NT Faculty, D2 2, Saarland University, 66123 Saarbrücken, Germany; (C.B.); (F.L.)
| | - Bernard M. Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK;
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.R.K.); (S.C.M.); (P.I.A.N.)
- Madeira Chemistry Research Centre, University of Madeira, 9020105 Funchal, Portugal
| |
Collapse
|
41
|
Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, Henpita C, Camell C, Morrow CS, Yeh CY, Richardson CE, Hill CM, Moore DL, Lamming DW, McGregor ER, Simmons HA, Pak HH, Bai H, Denu JM, Clark J, Simcox J, Chittimalli K, Dahlquist K, Lee KA, Calubag M, Bouska M, Yousefzadeh MJ, Sonsalla M, Babygirija R, Yuan R, Tsuji T, Rhoads T, Menon V, Jarajapu YP, Zhu Y. Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49 th Annual Meeting of the American Aging Association. GeroScience 2022; 44:39-52. [PMID: 34714522 PMCID: PMC8554732 DOI: 10.1007/s11357-021-00479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Adrian
- Department of Urology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- U54 George M. O'Brien Center for Benign Urology Research, Madison, WI, 53705, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Carolina Soto-Palma
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Chathurika Henpita
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Claire E Richardson
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Cristal M Hill
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70809, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric R McGregor
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53175, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John M Denu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Korbyn Dahlquist
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Kyoo-A Lee
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew J Yousefzadeh
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rong Yuan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Tadataka Tsuji
- Section On Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Timothy Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Vinal Menon
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Yun Zhu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA.
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA.
| |
Collapse
|
42
|
Cole JD, Sarabia del Castillo J, Gut G, Gonzalez-Bohorquez D, Pelkmans L, Jessberger S. Characterization of the neurogenic niche in the aging dentate gyrus using iterative immunofluorescence imaging. eLife 2022; 11:e68000. [PMID: 35089129 PMCID: PMC8798039 DOI: 10.7554/elife.68000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Advancing age causes reduced hippocampal neurogenesis, associated with age-related cognitive decline. The spatial relationship of age-induced alterations in neural stem cells (NSCs) and surrounding cells within the hippocampal niche remains poorly understood due to limitations of antibody-based cellular phenotyping. We established iterative indirect immunofluorescence imaging (4i) in tissue sections, allowing for simultaneous detection of 18 proteins to characterize NSCs and surrounding cells in 2-, 6-, and 12-month-old mice. We show that reorganization of the dentate gyrus (DG) niche already occurs in middle-aged mice, paralleling the decline in neurogenesis. 4i-based tissue analysis of the DG identifies changes in cell-type contributions to the blood-brain barrier and microenvironments surrounding NSCs to play a pivotal role to preserve neurogenic permissiveness. The data provided represent a resource to characterize the principles causing alterations of stem cell-associated plasticity within the aging DG and provide a blueprint to analyze somatic stem cell niches across lifespan in complex tissues.
Collapse
Affiliation(s)
- John Darby Cole
- Brain Research Institute, University of ZurichZurichSwitzerland
| | | | - Gabriele Gut
- Department of Molecular Life Sciences, University of ZurichZurichSwitzerland
| | | | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of ZurichZurichSwitzerland
| | | |
Collapse
|
43
|
Maybury‐Lewis SY, Brown AK, Yeary M, Sloutskin A, Dhakal S, Juven‐Gershon T, Webb AE. Changing and stable chromatin accessibility supports transcriptional overhaul during neural stem cell activation and is altered with age. Aging Cell 2021; 20:e13499. [PMID: 34687484 PMCID: PMC8590101 DOI: 10.1111/acel.13499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Neural stem cells (NSCs) in the adult and aged brain are largely quiescent, and require transcriptional reprogramming to re-enter the cell cycle. However, the mechanisms underlying these changes and how they are altered with age remain undefined. Here, we identify the chromatin accessibility differences between primary neural stem/progenitor cells in quiescent and activated states. These distinct cellular states exhibit shared and unique chromatin profiles, both associated with gene regulation. Accessible chromatin states specific to activation or quiescence are active enhancers bound by key pro-neurogenic and quiescence factors. In contrast, shared sites are enriched for core promoter elements associated with translation and metabolism. Unexpectedly, through integrated analysis, we find that many sites that become accessible during NSC activation are linked to gene repression and associated with pro-quiescence factors, revealing a novel mechanism that may preserve quiescence re-entry. Furthermore, we report that in aged NSCs, chromatin regions associated with metabolic and transcriptional functions bound by key pro-quiescence transcription factors lose accessibility, suggesting a novel mechanism of age-associated NSC dysfunction. Together, our findings reveal how accessible chromatin states regulate the transcriptional switch between NSC quiescence and activation, and how this switch is affected with age.
Collapse
Affiliation(s)
- Sun Y. Maybury‐Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry Brown University Providence Rhode Island USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry Brown University Providence Rhode Island USA
| | - Mitchell Yeary
- Department of Molecular Biology, Cell Biology, and Biochemistry Brown University Providence Rhode Island USA
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
| | - Shleshma Dhakal
- Department of Molecular Biology, Cell Biology, and Biochemistry Brown University Providence Rhode Island USA
| | - Tamar Juven‐Gershon
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry Brown University Providence Rhode Island USA
- Carney Institute for Brain Science Brown University Providence Rhode Island USA
- Center on the Biology of Aging Brown University Providence Rhode Island USA
| |
Collapse
|
44
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
45
|
Morrow CS, Porter TJ, Moore DL. Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells. STAR Protoc 2021; 2:100744. [PMID: 34430917 PMCID: PMC8369070 DOI: 10.1016/j.xpro.2021.100744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although exogenous overexpression of a protein fused to a fluorescent tag can provide insight for the protein's function, it also can produce artifacts attributed to its upregulation and may not fully report the endogenous regulation of the protein of interest. To circumvent these issues, we adapted a protocol to label endogenous proteins with fluorescent tags in primary adult mouse neural stem cells in vitro. Here, we describe reagent construction, reagent delivery, and a screening strategy to isolate edited cells. For complete details on the use and execution of this protocol, please refer to Morrow et al. (2020).
Collapse
Affiliation(s)
| | - Tiaira J. Porter
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
46
|
Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol 2021; 14:147. [PMID: 34526102 PMCID: PMC8444356 DOI: 10.1186/s13045-021-01161-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Qian
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China. .,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China.
| | - Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
47
|
Hattori K, Takano N, Kazama H, Moriya S, Miyake K, Hiramoto M, Tsukahara K, Miyazawa K. Induction of synergistic non-apoptotic cell death by simultaneously targeting proteasomes with bortezomib and histone deacetylase 6 with ricolinostat in head and neck tumor cells. Oncol Lett 2021; 22:680. [PMID: 34345305 PMCID: PMC8323012 DOI: 10.3892/ol.2021.12941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Following surgery and chemoradiation, ~50% of patients with locally advanced head and neck tumors experience relapse within the first two years, with a poor prognosis. Therefore, a novel therapeutic approach is required. The aim of the present study was to investigate the effect of combination treatment with the proteasome inhibitor bortezomib (BTZ), and ricolinostat (RCS), a specific inhibitor of histone deacetylase 6 (HDAC6), on CAL27 and Detroit562 head and neck cancer cells. BTZ and RCS exhibited cytotoxicity in a dose- and time-dependent manner. Simultaneous treatment with BTZ and RCS resulted in the synergistic enhancement of non-apoptotic cell death and autophagy. The receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitor, necrostatin, but not the autophagy inhibitor, 3-methyladenine, attenuated the cytotoxicity of combined BTZ and RCS treatment. Thus, necroptosis [type-III programmed cell death (PCD)], but not autophagic cell death (type-II PCD), appeared to contribute to the pronounced cytotoxicity. However, no phosphorylation of RIPK1 or mixed lineage kinase domain-like protein was detectable in response to BTZ or RCS. Furthermore, RCS induced α-tubulin acetylation and inhibited BTZ-induced aggresome formation along with endoplasmic reticulum stress loading. Combined treatment with BTZ and RCS enhanced the production of reactive oxygen species (ROS). The ROS scavenger, N-acetyl cysteine, abrogated the increase in cytotoxicity. These results suggest the potential therapeutic value of the dual targeting of the proteasome and HDCA6 for head and neck cancers through the induction of necroptosis-like cell death along with ROS generation.
Collapse
Affiliation(s)
- Kazuhiro Hattori
- Department of Otolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Keitaro Miyake
- Department of Otolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
48
|
Chalar C, Clivio G, Montagne J, Costábile A, Lima A, Papa NG, Berois N, Arezo MJ. Embryonic developmental arrest in the annual killifish Austrolebias charrua: A proteomic approach to diapause III. PLoS One 2021; 16:e0251820. [PMID: 34086690 PMCID: PMC8177498 DOI: 10.1371/journal.pone.0251820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Diapause is a reversible developmental arrest faced by many organisms in harsh environments. Annual killifish present this mechanism in three possible stages of development. Killifish are freshwater teleosts from Africa and America that live in ephemeral ponds, which dry up in the dry season. The juvenile and adult populations die, and the embryos remain buried in the bottom mud until the next rainy season. Thus, species survival is entirely embryo-dependent, and they are perhaps the most remarkable extremophile organisms among vertebrates. The aim of the present study was to gather information about embryonic diapauses with the use of a "shotgun" proteomics approach in diapause III and prehatching Austrolebias charrua embryos. Our results provide insight into the molecular mechanisms of diapause III. Data are available via ProteomeXchange with identifier PXD025196. We detected a diapause-dependent change in a large group of proteins involved in different functions, such as metabolic pathways and stress tolerance, as well as proteins related to DNA repair and epigenetic modifications. Furthermore, we observed a diapause-associated switch in cytoskeletal proteins. This first glance into global protein expression differences between prehatching and diapause III could provide clues regarding the induction/maintenance of this developmental arrest in A. charrua embryos. There appears to be no single mechanism underlying diapause and the present data expand our knowledge of the molecular basis of diapause regulation. This information will be useful for future comparative approaches among different diapauses in annual killifish and/or other organisms that experience developmental arrest.
Collapse
Affiliation(s)
- Cora Chalar
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Graciela Clivio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur Montevideo, Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Nicolás G. Papa
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nibia Berois
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María José Arezo
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
49
|
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S. Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell 2021; 28:967-977.e8. [PMID: 33631115 DOI: 10.1016/j.stem.2021.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus. With advancing age, levels of neurogenesis sharply drop, which has been associated with a decline in hippocampal memory function. However, cell-intrinsic mechanisms mediating age-related changes in NSC activity remain largely unknown. Here, we show that the nuclear lamina protein lamin B1 (LB1) is downregulated with age in mouse hippocampal NSCs, whereas protein levels of SUN-domain containing protein 1 (SUN1), previously implicated in Hutchinson-Gilford progeria syndrome (HGPS), increase. Balancing the levels of LB1 and SUN1 in aged NSCs restores the strength of the endoplasmic reticulum diffusion barrier that is associated with segregation of aging factors in proliferating NSCs. Virus-based restoration of LB1 expression in aged NSCs enhances stem cell activity in vitro and increases progenitor cell proliferation and neurogenesis in vivo. Thus, we here identify a mechanism that mediates age-related decline of neurogenesis in the mammalian hippocampus.
Collapse
Affiliation(s)
- Muhammad Khadeesh Bin Imtiaz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Raquel A C Machado
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Vidmar
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
50
|
Ko S, Kwon J, Shim SH. Enhanced UnaG With Minimal Labeling Artifact for Single-Molecule Localization Microscopy. Front Mol Biosci 2021; 8:647590. [PMID: 33959634 PMCID: PMC8093618 DOI: 10.3389/fmolb.2021.647590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
We introduced enhanced UnaG (eUnaG), a ligand-activatable fluorescent protein, for conventional and super-resolution imaging of subcellular structures in the mammalian cells. eUnaG is a V2L mutant of UnaG with twice brighter bulk fluorescence. We previously discovered the reversible fluorescence switching behavior of UnaG and demonstrated the high photon outputs and high localization numbers in single-molecule localization microscopy (SMLM). In this study, we showed that the fluorescence of eUnaG can be switched off under blue-light illumination, while a high concentration of fluorogenic ligands in the buffer can efficiently restore the fluorescence, as in UnaG. We demonstrated the capacity of eUnaG as an efficient protein label in mammalian cells, as well as for SMLM by utilizing its photoswitchable nature. While cytosolic UnaG proteins showed aggregated patches and fluorescence reduction at high expression levels, eUnaG-labeled protein targets successfully formed their proper structures in mammalian cells without notable distortion from the endogenous structure in the majority of transiently expressing cells. In particular, eUnaG preserved the vimentin filament structures much better than the UnaG. eUnaG provided similarly high single-molecule photon count distribution to UnaG, thus also similarly high resolution in the super-resolution images of various subcellular structures. The sampling coverage analysis of vimentin filaments in SMLM images showed the improvement of labeling efficiency of eUnaG. eUnaG is a high-performance fluorescent protein for fluorescence and single-molecule localization imaging in green emission with minimal labeling artifact.
Collapse
Affiliation(s)
- Sangyoon Ko
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science, Seoul, South Korea.,Department of Chemistry, Korea University, South Korea
| | - Jiwoong Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science, Seoul, South Korea
| | - Sang-Hee Shim
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science, Seoul, South Korea.,Department of Chemistry, Korea University, South Korea
| |
Collapse
|