1
|
Li H, Shang Y, Zeng J, Matsusaki M. Technology for the formation of engineered microvascular network models and their biomedical applications. NANO CONVERGENCE 2024; 11:10. [PMID: 38430377 PMCID: PMC10908775 DOI: 10.1186/s40580-024-00416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Tissue engineering and regenerative medicine have made great progress in recent decades, as the fields of bioengineering, materials science, and stem cell biology have converged, allowing tissue engineers to replicate the structure and function of various levels of the vascular tree. Nonetheless, the lack of a fully functional vascular system to efficiently supply oxygen and nutrients has hindered the clinical application of bioengineered tissues for transplantation. To investigate vascular biology, drug transport, disease progression, and vascularization of engineered tissues for regenerative medicine, we have analyzed different approaches for designing microvascular networks to create models. This review discusses recent advances in the field of microvascular tissue engineering, explores potential future challenges, and offers methodological recommendations.
Collapse
Affiliation(s)
- He Li
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Menon R, Petrucci L, Lohrer B, Zhang J, Schulze M, Schichor C, Winner B, Winkler J, Riemenschneider MJ, Kühn R, Falk S, Karow M. Human Induced Pluripotent Stem Cell-Derived Pericytes as Scalable and Editable Source to Study Direct Lineage Reprogramming Into Induced Neurons. Cell Reprogram 2023; 25:212-223. [PMID: 37366790 DOI: 10.1089/cell.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Studying human somatic cell-to-neuron conversion using primary brain-derived cells as starting cell source is hampered by limitations and variations in human biopsy material. Thus, delineating the molecular variables that allow changing the identity of somatic cells, permit adoption of neuronal phenotypes, and foster maturation of induced neurons (iNs) is challenging. Based on our previous results that pericytes derived from the adult human cerebral cortex can be directly converted into iNs (Karow et al., 2018; Karow et al., 2012), we here introduce human induced pluripotent stem cell (hiPSC)-derived pericytes (hiPSC-pericytes) as a versatile and more uniform tool to study the pericyte-to-neuron conversion process. This strategy enables us to derive scalable cell numbers and allows for engineering of the starting cell population such as introducing reporter tools before differentiation into hiPSC-pericytes and subsequent iN conversion. Harvesting the potential of this approach, we established hiPSC-derived human-human neuronal cocultures that not only allow for independent manipulation of each coculture partner but also resulted in morphologically more mature iNs. In summary, we exploit hiPSC-based methods to facilitate the analysis of human somatic cell-to-neuron conversion.
Collapse
Affiliation(s)
- Radhika Menon
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Petrucci
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Lohrer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Genome Engineering and Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Christian Schichor
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Beate Winner
- Department of Stem Cell Biology, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ralf Kühn
- Genome Engineering and Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sven Falk
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Warren E, Gerecht S. BEYOND THE ENDOTHELIUM: THE ROLE OF MURAL CELLS IN VASCULAR BIOLOGY: In vitro systems to study endothelial/pericyte cell interactions. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e220021. [PMID: 36645735 PMCID: PMC9989888 DOI: 10.1530/vb-22-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 04/20/2023]
Abstract
The vasculature is crucial for tissue development and survival, and the stability of blood vessels to perform these functions relies on the interplay between endothelial cells (ECs) and mural cells. Pericytes are a subtype of mural cells found in the microvasculature that extend their processes to wrap around the endothelial monolayer. Pericytes are recruited during vessel growth through the excretion of soluble factors from ECs where they stabilize angiogenic sprouts and induce maturation of the resident cells. Alterations in these interactions between ECs and pericytes are associated with aberrant vessel growth and disrupted vasculature function characteristic of numerous diseases. Therefore, deeper understanding of the cross-talk between these cell types has numerous implications for understanding morphogenesis and elucidating disease mechanisms. In this review, we highlight recent advances and current trends studying the interactions between ECs and pericytes in vitro. We begin by analyzing three-dimensional hydrogel platforms that mimic the tissue extracellular matrix to investigate signaling pathways and altered vascular function in disease-specific cells. We next examine how microfluidic vasculature-on-a-chip platforms have elucidated the interplay of these vascular cells during angiogenesis and vascular network formation under controlled physiochemical cues and interstitial flow. Additionally, studies have utilized microvessels to measure the effect of shear stress on barrier function through the control of luminal flow and the impact of inflammation on these vascular cell interactions. Finally, we briefly highlight self-assembling human blood vessel organoids, an emerging high-throughput platform to study ECs and pericyte interactions.
Collapse
Affiliation(s)
- Emily Warren
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Bulut M, Vila Cuenca M, de Graaf M, van den Hil FE, Mummery CL, Orlova VV. Three-Dimensional Vessels-on-a-Chip Based on hiPSC-derived Vascular Endothelial and Smooth Muscle Cells. Curr Protoc 2022; 2:e564. [PMID: 36250774 DOI: 10.1002/cpz1.564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSC-VSMCs Support Protocol 1: Characterization of hiPSC-NCCs and hiPSC-VSMCs Support Protocol 2: Preparation of cryopreserved hiPSC-VSMCs and hiPSC-ECs for VoC culture Basic Protocol 2: Generation of 3D VoC model composed of hiPSC-ECs and hiPSC-VSMCs Support Protocol 3: Structural characterization of 3D VoC model.
Collapse
Affiliation(s)
- Merve Bulut
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc Vila Cuenca
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mees de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Elliott MB, Matsushita H, Shen J, Yi J, Inoue T, Brady T, Santhanam L, Mao HQ, Hibino N, Gerecht S. Off-the-Shelf, Heparinized Small Diameter Vascular Graft Limits Acute Thrombogenicity in a Porcine Model. Acta Biomater 2022; 151:134-147. [PMID: 35933100 DOI: 10.1016/j.actbio.2022.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
Thrombogenicity poses a challenge to the clinical translation of engineered grafts. Previously, small-diameter vascular grafts (sdVG) composed of fibrin hydrogel microfiber tubes (FMT) with an external poly(ε-caprolactone) (PCL) sheath supported long-term patency in mice. Towards the development of an sdVG with off-the-shelf availability, the FMT's shelf stability, scale-up, and successful conjugation of an antithrombotic drug to the fibrin scaffold are reported here. FMTs maintain mechanical stability and high-water retention after storage for one year in a freezer, in a refrigerator, or at room temperature. Low molecular weight heparin-conjugated fibrin scaffolds enabled local and sustained delivery during two weeks of enzymatic degradation. Upscaled fabrication of sdVGs provides natural biodegradable grafts with size and mechanics suitable for human application. Implantation in a carotid artery interposition porcine model exhibited no rupture with thrombi prevented in all heparinized sdVGs (n=4) over 4-5 weeks. Remodeling of the sdVGs is demonstrated with endothelial cells on the luminal surface and initial formation of the medial layer by 4-5 weeks. However, neointimal hyperplasia at 4-5 weeks led to the stenosis and occlusion of most of the sdVGs, which must be resolved for future long-term in vivo assessments. The off-the-shelf, biodegradable heparinized fibrin sdVG layer limits acute thrombogenicity while mediating extensive neotissue formation as the PCL sheath maintains structural integrity. STATEMENT OF SIGNIFICANCE: : To achieve clinical and commercial utility of small-diameter vascular grafts as arterial conduits, these devices must have off-the-shelf availability for emergency arterial bypass applications and be scaled to a size suitable for human applications. A serious impediment to clinical translation is thrombogenicity. Treatments have focused on long-term systemic drug therapy, which increases the patient's risk of bleeding complications, or coating grafts and stents with anti-coagulants, which minimally improves patient outcomes even when combined with dual anti-platelet therapy. We systematically modified the biomaterial properties to develop anticoagulant embedded, biodegradable grafts that maintain off-the-shelf availability, provide mechanical stability, and prevent clot formation through local drug delivery.
Collapse
Affiliation(s)
- Morgan B Elliott
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Hiroshi Matsushita
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Jessica Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Jaeyoon Yi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Takahiro Inoue
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Travis Brady
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Narutoshi Hibino
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Engineering, Duke University, Durham, NC 27705.
| |
Collapse
|
7
|
Alberico H, Fleischmann Z, Bobbitt T, Takai Y, Ishihara O, Seki H, Anderson RA, Telfer EE, Woods DC, Tilly JL. Workflow Optimization for Identification of Female Germline or Oogonial Stem Cells in Human Ovarian Cortex Using Single-Cell RNA Sequence Analysis. Stem Cells 2022; 40:523-536. [PMID: 35263439 PMCID: PMC9199849 DOI: 10.1093/stmcls/sxac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
In 2004, the identification of female germline or oogonial stem cells (OSCs) that can support post-natal oogenesis in ovaries of adult mice sparked a major paradigm shift in reproductive biology. Although these findings have been independently verified, and further extended to include identification of OSCs in adult ovaries of many species ranging from pigs and cows to non-human primates and humans, a recent study rooted in single-cell RNA sequence analysis (scRNA-seq) of adult human ovarian cortical tissue claimed that OSCs do not exist, and that other groups working with OSCs following isolation by magnetic-assisted or fluorescence-activated cell sorting have mistaken perivascular cells (PVCs) for germ cells. Here we report that rare germ lineage cells with a gene expression profile matched to OSCs but distinct from that of other cells, including oocytes and PVCs, can be identified in adult human ovarian cortical tissue by scRNA-seq after optimization of analytical workflow parameters. Deeper cell-by-cell expression profiling also uncovered evidence of germ cells undergoing meiosis-I in adult human ovaries. Lastly, we show that, if not properly controlled for, PVCs can be inadvertently isolated during flow cytometry protocols designed to sort OSCs because of inherently high cellular autofluorescence. However, human PVCs and human germ cells segregate into distinct clusters following scRNA-seq due to non-overlapping gene expression profiles, which would preclude the mistaken identification and use of PVCs as OSCs during functional characterization studies.
Collapse
Affiliation(s)
- Hannah Alberico
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Zoë Fleischmann
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Tyler Bobbitt
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yasushi Takai
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Hiroyuki Seki
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH14 1DJ, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH14 1DJ, UK
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
9
|
Ando K, Ishii T, Fukuhara S. Zebrafish Vascular Mural Cell Biology: Recent Advances, Development, and Functions. Life (Basel) 2021; 11:1041. [PMID: 34685412 PMCID: PMC8537713 DOI: 10.3390/life11101041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recruitment of mural cells to the vascular wall is essential for forming the vasculature as well as maintaining proper vascular functions. In recent years, zebrafish genetic tools for mural cell biology have improved substantially. Fluorescently labeled zebrafish mural cell reporter lines enable us to study, with higher spatiotemporal resolution than ever, the processes of mural cell development from their progenitors. Furthermore, recent phenotypic analysis of platelet-derived growth factor beta mutant zebrafish revealed well-conserved organotypic mural cell development and functions in vertebrates with the unique features of zebrafish. However, comprehensive reviews of zebrafish mural cells are lacking. Therefore, herein, we highlight recent advances in zebrafish mural cell tools. We also summarize the fundamental features of zebrafish mural cell development, especially at early stages, and functions.
Collapse
Affiliation(s)
- Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Tokyo 113 8602, Japan; (T.I.); (S.F.)
| | | | | |
Collapse
|
10
|
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. NANO-MICRO LETTERS 2021; 13:182. [PMID: 34409511 PMCID: PMC8374027 DOI: 10.1007/s40820-021-00697-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
| | | | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, viale Rinaldo Piaggio 34, 56 025, Pontedera, Pisa, Italy
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Browne S, Gill EL, Schultheiss P, Goswami I, Healy KE. Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 2021; 16:2058-2075. [PMID: 33836144 PMCID: PMC8452487 DOI: 10.1016/j.stemcr.2021.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined: self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Elisabeth L Gill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Paula Schultheiss
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
HIF2A gain-of-function mutation modulates the stiffness of smooth muscle cells and compromises vascular mechanics. iScience 2021; 24:102246. [PMID: 33796838 PMCID: PMC7995528 DOI: 10.1016/j.isci.2021.102246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling. HIF2-SMCs are stiffer than WT-SMCs and differ in contractile SMC marker expression HIF2-SMCs and WT-SMCs differ in EDN1 production and ECM composition HIF- 2α induces EDN1; EDNI subsequently induces SMC stiffening Hif2A GOF mouse arterial SMCs have more disorganized stress fibers and are stiffer
Collapse
|
14
|
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomater 2021; 119:155-168. [PMID: 33130306 PMCID: PMC8168373 DOI: 10.1016/j.actbio.2020.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuyao Lin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiangyu Shi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
15
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
16
|
Jeske R, Albo J, Marzano M, Bejoy J, Li Y. Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:367-382. [PMID: 32571167 PMCID: PMC7462039 DOI: 10.1089/ten.teb.2020.0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-β, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor β signaling promotes PC cell survival, TGF-β signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jonathan Albo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
17
|
Smith Q, Macklin B, Chan XY, Jones H, Trempel M, Yoder MC, Gerecht S. Differential HDAC6 Activity Modulates Ciliogenesis and Subsequent Mechanosensing of Endothelial Cells Derived from Pluripotent Stem Cells. Cell Rep 2020; 24:895-908.e6. [PMID: 30044986 DOI: 10.1016/j.celrep.2018.06.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
The role of primary cilia in mechanosensation is essential in endothelial cell (EC) shear responsiveness. Here, we find that venous, capillary, and progenitor ECs respond to shear stress in vitro in a cilia-dependent manner. We then demonstrate that primary cilia assembly in human induced pluripotent stem cell (hiPSC)-derived ECs varies between different cell lines with marginal influence of differentiation protocol. hiPSC-derived ECs lacking cilia do not align to shear stress, lack stress fiber assembly, have uncoordinated migration during wound closure in vitro, and have aberrant calcium influx upon shear exposure. Transcriptional analysis reveals variation in regulatory genes involved in ciliogenesis among different hiPSC-derived ECs. Moreover, inhibition of histone deacetylase 6 (HDAC6) activity in hiPSC-ECs lacking cilia rescues cilia formation and restores mechanical sensing. Taken together, these results show the importance of primary cilia in hiPSC-EC mechano-responsiveness and its modulation through HDAC6 activity varies among hiPSC-ECs.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bria Macklin
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hannah Jones
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Trempel
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mervin C Yoder
- Department of Pediatrics, Biochemistry, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Stephenson M, Reich DH, Boheler KR. Induced pluripotent stem cell-derived vascular smooth muscle cells. VASCULAR BIOLOGY 2019; 2:R1-R15. [PMID: 32923972 PMCID: PMC7439844 DOI: 10.1530/vb-19-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
The reproducible generation of human-induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (vSMCs) in vitro has been critical to overcoming many limitations of animal and primary cell models of vascular biology and disease. Since this initial advance, research in the field has turned toward recapitulating the naturally occurring subtype specificity found in vSMCs throughout the body, and honing functional models of vascular disease. In this review, we summarize vSMC derivation approaches, including current phenotype and developmental origin-specific methods, and applications of vSMCs in functional disease models and engineered tissues. Further, we discuss the challenges of heterogeneity in hiPSC-derived tissues and propose approaches to identify and isolate vSMC subtype populations.
Collapse
Affiliation(s)
- Makeda Stephenson
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS 2019; 16:15. [PMID: 31167667 PMCID: PMC6551886 DOI: 10.1186/s12987-019-0136-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Background Pericytes of the blood–brain barrier (BBB) are embedded within basement membrane between brain microvascular endothelial cells (BMECs) and astrocyte end-feet. Despite the direct cell–cell contact observed in vivo, most in vitro BBB models introduce an artificial membrane that separates pericytes from BMECs. In this study, we investigated the effects of pericytes on BMEC barrier function across a range of in vitro platforms with varied spatial orientations and levels of cell–cell contact. Methods We differentiated RFP-pericytes and GFP-BMECs from hiPSCs and monitored transendothelial electrical resistance (TEER) across BMECs on transwell inserts while pericytes were either directly co-cultured on the membrane, indirectly co-cultured in the basolateral chamber, or embedded in a collagen I gel formed on the transwell membrane. We then incorporated pericytes into a tissue-engineered microvessel model of the BBB and measured pericyte motility and microvessel permeability. Results We found that BMEC monolayers did not require co-culture with pericytes to achieve physiological TEER values (> 1500 Ω cm2). However, under stressed conditions where TEER values for BMEC monolayers were reduced, indirectly co-cultured hiPSC-derived pericytes restored optimal TEER. Conversely, directly co-cultured pericytes resulted in a decrease in TEER by interfering with BMEC monolayer continuity. In the microvessel model, we observed direct pericyte-BMEC contact, abluminal pericyte localization, and physiologically-low Lucifer yellow permeability comparable to that of BMEC microvessels. In addition, pericyte motility decreased during the first 48 h of co-culture, suggesting progression towards pericyte stabilization. Conclusions We demonstrated that monocultured BMECs do not require co-culture to achieve physiological TEER, but that suboptimal TEER in stressed monolayers can be increased through co-culture with hiPSC-derived pericytes or conditioned media. We also developed the first BBB microvessel model using exclusively hiPSC-derived BMECs and pericytes, which could be used to examine vascular dysfunction in the human CNS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0136-7) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Halaidych OV, Cochrane A, van den Hil FE, Mummery CL, Orlova VV. Quantitative Analysis of Intracellular Ca 2+ Release and Contraction in hiPSC-Derived Vascular Smooth Muscle Cells. Stem Cell Reports 2019; 12:647-656. [PMID: 30853373 PMCID: PMC6449838 DOI: 10.1016/j.stemcr.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) are highly heterogeneous across different vascular beds. This is partly dictated by their developmental origin but also their position in the vascular tree, reflected in their differential responses to vasoactive agonists depending on which arteriolar or venular segment they are located. Functional assays are necessary to capture this heterogeneity in vitro since there are no markers that distinguish subtypes. Here we describe methods for determining real-time intracellular Ca2+ release and contraction in vSMCs of neural crest origin differentiated from human induced pluripotent stem cells using multiple protocols, and compare these with primary human brain vascular pericytes and smooth muscle cells. Open-source software was adapted for automated high-density analysis of Ca2+-release kinetics and contraction by tracking individual cells. Simultaneous measurements on hundreds of cells revealed heterogeneity in responses to vasoconstrictors that would likely be overlooked using manual low-throughput assays or marker expression.
Collapse
Affiliation(s)
- Oleh V Halaidych
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
21
|
He K, Sun H, Zhang J, Zheng R, Gu J, Luo M, Shao Y. Rab7‑mediated autophagy regulates phenotypic transformation and behavior of smooth muscle cells via the Ras/Raf/MEK/ERK signaling pathway in human aortic dissection. Mol Med Rep 2019; 19:3105-3113. [PMID: 30816458 PMCID: PMC6423587 DOI: 10.3892/mmr.2019.9955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy regulates the metabolism, survival and function of numerous types of cell, including cells that comprise the cardiovascular system. The dysfunction of autophagy has been demonstrated in atherosclerosis, restenotic lesions and hypertensive vessels. As a member of the Ras GTPase superfamily, Rab7 serves a significant role in the regulation of autophagy. The present study evaluated how Rab7 affects the proliferation and invasion, and phenotypic transformations of aortic dissection (AD) smooth muscle cells (SMCs) via autophagy. Rab7 was overexpressed in AD tissues and the percentage of synthetic human aortic SMCs (HASMCs) was higher in AD tissues compared with NAD tissues. Downregulation of Rab7 decreased cell growth, reduced the number of invasive cells and decreased the percentage cells in the G1 phase. Autophagy of HASMCs was inhibited following Rab7 knockdown. Inhibition of autophagy with 3‑methyladenine or Rab7 knockdown suppressed the phenotypic conversion of contractile to synthetic HASMCs. The action of Rab7 may be mediated by inhibiting the Ras/Raf/mitogen‑activated protein kinase (MAPK) kinase (MEK)/extracellular signal related kinase (ERK) signaling pathway. In conclusion, the results revealed that Rab7‑mediated autophagy regulated the behavior of SMCs and the phenotypic transformations in AD via activation of the Ras/Raf/MEK/ERK signaling pathway. The findings of the present study may improve understanding of the role Rab7 in the molecular etiology of AD and suggests the application of Rab7 as a novel therapeutic target in the treatment of human AD.
Collapse
Affiliation(s)
- Keshuai He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Haoliang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Rui Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Ming Luo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
22
|
Alderfer L, Wei A, Hanjaya-Putra D. Lymphatic Tissue Engineering and Regeneration. J Biol Eng 2018; 12:32. [PMID: 30564284 PMCID: PMC6296077 DOI: 10.1186/s13036-018-0122-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
23
|
|
24
|
Pericytes Derived from Human Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1109:111-124. [DOI: 10.1007/978-3-030-02601-1_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng 2017; 11:37. [PMID: 29213304 PMCID: PMC5713119 DOI: 10.1186/s13036-017-0076-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is the interface between the vasculature and the brain, regulating molecular and cellular transport into the brain. Endothelial cells (ECs) that form the capillary walls constitute the physical barrier but are dependent on interactions with other cell types. In vitro models are widely used in BBB research for mechanistic studies and drug screening. Current models have both biological and technical limitations. Here we review recent advances in stem cell engineering that have been utilized to create innovative platforms to replicate key features of the BBB. The development of human in vitro models is envisioned to enable new mechanistic investigations of BBB transport in central nervous system diseases.
Collapse
Affiliation(s)
- John J Jamieson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|
26
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
27
|
Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med 2017; 23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a practical source for the de novo generation of cardiac tissues and a unique opportunity to investigate cardiovascular lineage commitment. Numerous strategies have focused on the in vitro production of cardiomyocytes, smooth muscle, and endothelium from hPSCs. However, these differentiation protocols often yield undesired cell types. Thus, establishing a set of stage-specific markers for pure cardiac subpopulations will assist in defining the hierarchy of cardiac differentiation, aid in the development of cellular therapy, and facilitate drug screening and disease modeling. The recent characterization of many such markers is enabling the isolation of major cardiac lineages and subpopulations from differentiating hPSCs. We provide here a comprehensive review detailing the suite of biomarkers used to differentiate cardiac lineages from mixed hPSC-derived populations.
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Eoh JH, Shen N, Burke JA, Hinderer S, Xia Z, Schenke-Layland K, Gerecht S. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater 2017; 52:49-59. [PMID: 28163239 DOI: 10.1016/j.actbio.2017.01.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have become of interest due to their ability to supplement tissue engineered scaffolds. Their ability to differentiate into cells of vascular lineages with defined phenotypes serves as a potential solution to a major cause of graft failure in which phenotypic shifts in smooth muscle cells lead to over proliferation and occlusion of the graft. Herein, we have differentiated human induced-pluripotent stem cells in a pulsatile flow bioreactor, resulting in vascular smooth muscle tissue with robust elastic fibers and enhanced functionality. This study highlights an effective approach to engineering elastic functional vascular smooth muscle tissue for tissue engineering and regenerative medicine applications.
Collapse
|
29
|
Xu J, Gong T, Heng BC, Zhang CF. A systematic review: differentiation of stem cells into functional pericytes. FASEB J 2017; 31:1775-1786. [PMID: 28119398 DOI: 10.1096/fj.201600951rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Pericytes are an integral cellular component of vascular structures. Numerous studies have investigated various stem cell types as potential sources of pericytes for application in cell-based therapy. The diverse stem cell types and variable experimental protocols of these studies make it imperative to evaluate the relevant scientific literature on the basis of a unified standard. The purpose of this systematic review is to rigorously evaluate the relevant scientific literature for conclusive evidence that stem cells can differentiate into functional pericytes. An online literature search was conducted up to July 2016. Eligible papers were evaluated on 4 pertinent criteria: 1) appropriate controls, 2) markers to confirm pericyte phenotype, 3) techniques for assessing pericyte functionality, and 4) differentiation efficiency of the protocol. Our search yielded 20 eligible studies (from 2006 to 2016), 12 of which were published in the past 5 yr. Of these 20 articles, only 1 had positive control, and 5 papers evaluated differentiation efficiency. The most commonly used pericyte markers were neuron-glial antigen 2, platelet-derived growth factor receptor-β, and α-smooth muscle actin. Three articles were associated with adipose stem cells, 4 with mesenchymal stem cells, and 7 with pluripotent stem cells, whereas the remaining 6 articles were based on other miscellaneous stem cell types. Stem cells can serve as a potential source of pericytes, but there should be standardized guidelines in future studies for assessing pericyte differentiation.-Xu, J., Gong, T., Heng, B. C., Zhang, C. F. A systematic review: differentiation of stem cells into functional pericytes.
Collapse
Affiliation(s)
- Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Cheng Fei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Avolio E, Alvino VV, Ghorbel MT, Campagnolo P. Perivascular cells and tissue engineering: Current applications and untapped potential. Pharmacol Ther 2016; 171:83-92. [PMID: 27889329 PMCID: PMC5345698 DOI: 10.1016/j.pharmthera.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom
| | - Valeria V Alvino
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, United Kingdom
| | - Mohamed T Ghorbel
- Division of Congenital Heart Surgery, Bristol Heart Institute, University of Bristol, United Kingdom
| | - Paola Campagnolo
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom.
| |
Collapse
|
31
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
32
|
A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 2016; 6:24403. [PMID: 27109637 PMCID: PMC4842973 DOI: 10.1038/srep24403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
Pericytes (PCs) are endothelium-associated cells that play an important role in normal vascular function and maintenance. We developed a method comparable to GMP quality protocols for deriving self-renewing perivascular progenitors from the human embryonic stem cell (hESC), line ESI-017. We identified a highly scalable, perivascular progenitor cell line that we termed PC-A, which expressed surface markers common to mesenchymal stromal cells. PC-A cells were not osteogenic or adipogenic under standard differentiation conditions and showed minimal angiogenic support function in vitro. PC-A cells were capable of further differentiation to perivascular progenitors with limited differentiation capacity, having osteogenic potential (PC-O) or angiogenic support function (PC-M), while lacking adipogenic potential. Importantly, PC-M cells expressed surface markers associated with pericytes. Moreover, PC-M cells had pericyte-like functionality being capable of co-localizing with human umbilical vein endothelial cells (HUVECs) and enhancing tube stability up to 6 days in vitro. We have thus identified a self-renewing perivascular progenitor cell line that lacks osteogenic, adipogenic and angiogenic potential but is capable of differentiation toward progenitor cell lines with either osteogenic potential or pericyte-like angiogenic function. The hESC-derived perivascular progenitors described here have potential applications in vascular research, drug development and cell therapy.
Collapse
|
33
|
Lowenthal J, Gerecht S. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering. Biochem Biophys Res Commun 2015; 473:733-42. [PMID: 26427871 DOI: 10.1016/j.bbrc.2015.09.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 02/08/2023]
Abstract
Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies.
Collapse
Affiliation(s)
- Justin Lowenthal
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
34
|
Barreto-Ortiz SF, Fradkin J, Eoh J, Trivero J, Davenport M, Ginn B, Mao HQ, Gerecht S. Fabrication of 3-dimensional multicellular microvascular structures. FASEB J 2015; 29:3302-14. [PMID: 25900808 PMCID: PMC4511194 DOI: 10.1096/fj.14-263343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/05/2015] [Indexed: 12/12/2022]
Abstract
Despite current advances in engineering blood vessels over 1 mm in diameter and the existing wealth of knowledge regarding capillary bed formation, studies for the development of microvasculature, the connecting bridge between them, have been extremely limited so far. Here, we evaluate the use of 3-dimensional (3D) microfibers fabricated by hydrogel electrospinning as templates for microvascular structure formation. We hypothesize that 3D microfibers improve extracellular matrix (ECM) deposition from vascular cells, enabling the formation of freestanding luminal multicellular microvasculature. Compared to 2-dimensional cultures, we demonstrate with confocal microscopy and RT-PCR that fibrin microfibers induce an increased ECM protein deposition by vascular cells, specifically endothelial colony-forming cells, pericytes, and vascular smooth muscle cells. These ECM proteins comprise different layers of the vascular wall including collagen types I, III, and IV, as well as elastin, fibronectin, and laminin. We further demonstrate the achievement of multicellular microvascular structures with an organized endothelium and a robust multicellular perivascular tunica media. This, along with the increased ECM deposition, allowed for the creation of self-supporting multilayered microvasculature with a distinct circular lumen following fibrin microfiber core removal. This approach presents an advancement toward the development of human microvasculature for basic and translational studies.
Collapse
Affiliation(s)
- Sebastian F Barreto-Ortiz
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jamie Fradkin
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joon Eoh
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Trivero
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew Davenport
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brian Ginn
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hai-Quan Mao
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sharon Gerecht
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Regenerative Translation of Human Blood-Vessel-Derived MSC Precursors. Stem Cells Int 2015; 2015:375187. [PMID: 26273304 PMCID: PMC4529976 DOI: 10.1155/2015/375187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/27/2015] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising adult progenitor cell source for tissue repair and regeneration. Their mysterious identity in situ has gradually been unveiled by the accumulating evidence indicating an association between adult multipotent stem/progenitor cells and vascular/perivascular niches. Using immunohistochemistry and fluorescence-activated cell sorting, we and other groups have prospectively identified and purified subpopulations of multipotent precursor cells associated with the blood vessels within multiple human organs. The three precursor subsets, myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are located, respectively, in the three structural tiers of typical blood vessels: intima, media, and adventitia. MECs, PCs, and ACs have been extensively characterized in prior studies and are currently under investigation for their therapeutic potentials in preclinical animal models. In this review, we will briefly discuss the identification, isolation, and characterization of these human blood-vessel-derived stem cells (hBVSCs) and summarize the current status of regenerative applications of hBVSC subsets.
Collapse
|
36
|
Kusuma S, Smith Q, Facklam A, Gerecht S. Micropattern size-dependent endothelial differentiation from a human induced pluripotent stem cell line. J Tissue Eng Regen Med 2015; 11:855-861. [PMID: 25641688 DOI: 10.1002/term.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 01/02/2023]
Abstract
The multifaceted extracellular milieu presents biochemical and biophysical stimuli that influence stem cell differentiation. Two-dimensional (2D) micropatterned substrates allow the presentation of these cues in spatially defined geometries that have been demonstrated to guide stem cell fate decisions. Leveraging stem cells to reconstruct microvasculature, made up of an inner lining of endothelial cells (ECs) supported by pericytes, is critical to tissue-engineering advances; thus, methods to improve endothelial differentiation efficiency are vital to these efforts. In this study, we examine the hypothesis that the diameter of micropatterned islands influences endothelial differentiation from human induced pluripotent stem cells (hiPSCs). Comparing island diameters of 80, 140, 225 and 500 µm, we found that co-cultures of control ECs and pericytes did not yield variable ratios of cell types; however, when hiPSCs were differentiated toward a bicellular population of ECs and pericytes on these varying micropattern feature sizes, we found that smaller islands promoted EC differentiation efficiency, yielding a derived population composed of 70% ECs, which exhibited a greater sprouting propensity. Differentiation on the largest feature size exhibited a smaller EC yield, similar to that on non-patterned substrates. Taken together, these data demonstrate that micropatterned islands of varying diameters can be used to modulate EC differentiation efficiency. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sravanti Kusuma
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences, Oncology Center and Institute for NanoBioTechnology, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences, Oncology Center and Institute for NanoBioTechnology, Baltimore, MD, USA
| | - Amanda Facklam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences, Oncology Center and Institute for NanoBioTechnology, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Felty Q, Sakao S, Voelkel NF. Pulmonary Arterial Hypertension: A Stem Cell Hypothesis. LUNG STEM CELLS IN THE EPITHELIUM AND VASCULATURE 2015. [DOI: 10.1007/978-3-319-16232-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Kusuma S, Facklam A, Gerecht S. Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications. Stem Cells Dev 2014; 24:451-8. [PMID: 25233291 DOI: 10.1089/scd.2014.0377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue-engineered constructs are rendered useless without a functional vasculature owing to a lack of nutrients and oxygen. Cell-based approaches to reconstruct blood vessels can yield structures that mimic native vasculature and aid transplantation. Vascular derivatives of human induced pluripotent stem cells (hiPSCs) offer opportunities to generate patient-specific therapies and potentially provide unlimited amounts of vascular cells. To be used in engineered vascular constructs and confer therapeutic benefit, vascular derivatives must exhibit additional key properties, including extracellular matrix (ECM) production to confer structural integrity and growth factor production to facilitate integration. In this study, we examine the hypothesis that vascular cells derived from hiPSCs exhibit these critical properties to facilitate their use in engineered tissues. hiPSCs were codifferentiated toward early vascular cells (EVCs), a bicellular population of endothelial cells (ECs) and pericytes, under varying low-oxygen differentiation conditions; subsequently, ECs were isolated and passaged. We found that EVCs differentiated under low-oxygen conditions produced copious amounts of collagen IV and fibronectin as well as vascular endothelial growth factor and angiopoietin 2. EVCs differentiated under atmospheric conditions did not demonstrate such abundant ECM expression, but exhibited greater expression of angiopoietin 1. Isolated ECs could proliferate up to three passages while maintaining the EC marker vascular endothelial cadherin. Isolated ECs demonstrated an increased propensity to produce ECM compared with their EVC correlates and took on an arterial-like fate. These findings illustrate that hiPSC vascular derivates hold great potential for therapeutic use and should continue to be a preferred cell source for vascular construction.
Collapse
Affiliation(s)
- Sravanti Kusuma
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University , Baltimore, Maryland
| | | | | |
Collapse
|
39
|
Neural-competent cells of adult human dermis belong to the Schwann lineage. Stem Cell Reports 2014; 3:774-88. [PMID: 25418723 PMCID: PMC4235233 DOI: 10.1016/j.stemcr.2014.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/06/2023] Open
Abstract
Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread. Human dermis-derived cultures show two types of SOX2+ cells: Schwann and perivascular p75NTR+CD56+ Schwann cells are responsible for neural progeny SOX2 expression levels regulate the neural competence of dermal precursors p75NTR+CD56+ neural precursor cells similarly arise from human cardiospheres
Collapse
|
40
|
Yao Y, Norris EH, Strickland S. The cellular origin of laminin determines its role in blood pressure regulation. Cell Mol Life Sci 2014; 72:999-1008. [PMID: 25216704 DOI: 10.1007/s00018-014-1732-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/11/2014] [Accepted: 09/08/2014] [Indexed: 11/26/2022]
Abstract
Laminin of different cellular sources has distinct functions. In addition to vascular smooth muscle cells (SMCs), aorta also contains a small population of nestin(+) cells, whose function remains unknown. This study investigates the role of SMC- and nestin(+) cell-derived laminin in blood pressure (BP) regulation and SMC contractibility. Using mice with laminin deficiency in SMCs (SKO) or nestin(+) cells (NKO), we examined laminin-dependent changes in BP. Contractile protein expression was reduced in SKO but not NKO mice, consistent with their, respectively, low and normal baseline BP measurements. At the ultrastructural level, SKO SMCs maintained the contractile phenotype with reduced elasticity, whereas NKO SMCs switched to the synthetic phenotype and showed degeneration. Additionally, angiotensin II (Ang II) significantly increased BP in SKO but not NKO mice. It also enhanced contractile proteins to the same levels and induced SMC degeneration in both knockout mice. These data suggest that SMC laminin regulates BP via modulating contractile protein expression, whereas nestin(+) cell-derived laminin contributes to SMC phenotypic switch.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Ave, Box 169, New York, NY, 10065, USA
| | | | | |
Collapse
|