1
|
Abidi SNF, Chan S, Seidel K, Lafkas D, Vermeulen L, Peale F, Siebel CW. The Jag2/Notch1 signaling axis promotes sebaceous gland differentiation and controls progenitor proliferation. eLife 2024; 13:RP98747. [PMID: 39585329 PMCID: PMC11588336 DOI: 10.7554/elife.98747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The sebaceous gland (SG) is a vital appendage of the epidermis, and its normal homeostasis and function is crucial for effective maintenance of the skin barrier. Notch signaling is a well-known regulator of epidermal differentiation, and has also been shown to be involved in postnatal maintenance of SGs. However, the precise role of Notch signaling in regulating SG differentiation in the adult homeostatic skin remains unclear. While there is evidence to suggest that Notch1 is the primary Notch receptor involved in regulating the differentiation process, the ligand remains unknown. Using monoclonal therapeutic antibodies designed to specifically inhibit of each of the Notch ligands or receptors, we have identified the Jag2/Notch1 signaling axis as the primary regulator of sebocyte differentiation in mouse homeostatic skin. Mature sebocytes are lost upon specific inhibition of the Jag2 ligand or Notch1 receptor, resulting in the accumulation of proliferative stem/progenitor cells in the SG. Strikingly, this phenotype is reversible, as these stem/progenitor cells re-enter differentiation when the inhibition of Notch activity is lifted. Thus, Notch activity promotes correct sebocyte differentiation, and is required to restrict progenitor proliferation.
Collapse
Affiliation(s)
| | - Sara Chan
- Department of Research Pathology, GenentechSan FranciscoUnited States
| | - Kerstin Seidel
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Daniel Lafkas
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Louis Vermeulen
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Frank Peale
- Department of Research Pathology, GenentechSan FranciscoUnited States
| | | |
Collapse
|
2
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Kim DH, Yoon JY, Lee JH, Suh DH. Alterations in epidermal stem cells within the pilosebaceous unit in atrophic acne scars. Australas J Dermatol 2024; 65:311-318. [PMID: 38419202 DOI: 10.1111/ajd.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/01/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Atrophic acne scarring is a common sequela of inflammatory acne, causing significant problems for affected patients. Although prolonged inflammation and subsequent aberrant tissue regeneration are considered the underlying pathogenesis, the role of epidermal stem cells, which are crucial to the regeneration of pilosebaceous units, remains unknown. OBJECTIVES To examine the changes occurring in epidermal stem cells in atrophic acne scars. METHODS Changes in collagen, elastic fibre and human leukocyte antigen (HLA)-DR expression were analysed in normal skin and inflammatory acne lesions at days 1, 3 and 7 after development. The expression of epidermal stem cell markers and proliferation markers was compared between normal skin and mature atrophic acne scar tissue. RESULTS In acne lesions, inflammation had invaded into pilosebaceous units over time. Their normal structure had been destructed and replaced with a reduced amount of collagen and elastic fibre. Expression of stem cell markers including CD34, p63, leucine-rich repeat-containing G protein-coupled receptor (LGR)6 and LGR5, which are expressed in the interfollicular epidermis, isthmus and bulge of hair follicles, significantly decreased in atrophic acne scar tissue compared to normal skin. Epidermal proliferation was significantly reduced in scar tissue. CONCLUSIONS These findings suggest that as inflammatory acne lesions progress, inflammation gradually infiltrates the pilosebaceous unit and affects the resident stem cells. This disruption impedes the normal regeneration of the interfollicular epidermis and adnexal structures, resulting in atrophic acne scars.
Collapse
Affiliation(s)
- Dong Hyo Kim
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Ji Young Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Jun Hyo Lee
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| |
Collapse
|
4
|
Tang T, Xu Y, Wang L, Zhang P. In vitro acne disease model from inertial focusing effect for studying the interactions between sebocyte glands and macrophages. Biotechnol J 2023; 18:e2300108. [PMID: 37477791 DOI: 10.1002/biot.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Acne is one of the most widespread skin diseases. The acne mechanism is intricate, involving interactions between different types of cells (i.e., sebocytes and macrophages). One of the challenges in studying the mechanism of acne is that current in vitro culture methods cannot reflect the 3D cellular environment in the tissue, including inflammatory stimuli and cellular interactions especially the interactions between sebocytes and immune cells. To solve this issue, we generated an in vitro acne disease model consisting of 3D artificial sebocyte glands and macrophages through the inertial focusing effect method. Using this model, we produced a controllable inflammatory environment similar to the acne pathogenetic process in the skin. The 3D artificial sebocyte glands and macrophages can be separated for analyzing each cell type, assisting the in-depth understanding of the acne mechanism. This study indicates that proinflammatory macrophages promote lipid accumulation and induce oxidative stress in sebocyte glands. Additionally, in an inflammatory environment, sebocyte glands induce macrophage polarization into the M1 phenotype. Employing this model for drug screening, we also demonstrated that, cannabidiol (CBD), a clinically investigated drug, is effective in restoring lipid accumulation, oxidative stress, inflammatory cytokines and macrophage polarization in the acne disease.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Ye Xu
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing, China
| | - Lelin Wang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Peipei Zhang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| |
Collapse
|
5
|
Bernabé-Rubio M, Ali S, Bhosale PG, Goss G, Mobasseri SA, Tapia-Rojo R, Zhu T, Hiratsuka T, Battilocchi M, Tomás IM, Ganier C, Garcia-Manyes S, Watt FM. Myc-dependent dedifferentiation of Gata6 + epidermal cells resembles reversal of terminal differentiation. Nat Cell Biol 2023; 25:1426-1438. [PMID: 37735598 PMCID: PMC10567550 DOI: 10.1038/s41556-023-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Dedifferentiation is the process by which terminally differentiated cells acquire the properties of stem cells. During mouse skin wound healing, the differentiated Gata6-lineage positive cells of the sebaceous duct are able to dedifferentiate. Here we have integrated lineage tracing and single-cell mRNA sequencing to uncover the underlying mechanism. Gata6-lineage positive and negative epidermal stem cells in wounds are transcriptionally indistinguishable. Furthermore, in contrast to reprogramming of induced pluripotent stem cells, the same genes are expressed in the epidermal dedifferentiation and differentiation trajectories, indicating that dedifferentiation does not involve adoption of a new cell state. We demonstrate that dedifferentiation is not only induced by wounding, but also by retinoic acid treatment or mechanical expansion of the epidermis. In all three cases, dedifferentiation is dependent on the master transcription factor c-Myc. Mechanotransduction and actin-cytoskeleton remodelling are key features of dedifferentiation. Our study elucidates the molecular basis of epidermal dedifferentiation, which may be generally applicable to adult tissues.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Shahnawaz Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Toru Hiratsuka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Japan
| | - Matteo Battilocchi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Inês M Tomás
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Directors' Unit, EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Veniaminova NA, Jia YY, Hartigan AM, Huyge TJ, Tsai SY, Grachtchouk M, Nakagawa S, Dlugosz AA, Atwood SX, Wong SY. Distinct mechanisms for sebaceous gland self-renewal and regeneration provide durability in response to injury. Cell Rep 2023; 42:113121. [PMID: 37715952 PMCID: PMC10591672 DOI: 10.1016/j.celrep.2023.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/01/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023] Open
Abstract
Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single-cell RNA sequencing, we uncovered both direct and indirect paths by which resident SG progenitors ordinarily differentiate into sebocytes, including transit through a Krt5+PPARγ+ transitional basal cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair-follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR2 signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.
Collapse
Affiliation(s)
- Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunlong Y Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Adrien M Hartigan
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas J Huyge
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Grachtchouk
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seitaro Nakagawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, Department of Cutaneous Immunology and Microbiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Andrzej A Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Tang T, Wei Y, Jia H, Wang L, Xu Y, Zhang P. 3D artificial sebocyte glands from inertial focusing effect for facile and flexible analysis of light damage and drug screening. Biotechnol J 2023; 18:e2200634. [PMID: 37191095 DOI: 10.1002/biot.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
The sebaceous gland is a neuro-immuno-endocrine organ responsible for maintaining regular skin functions. Overdose exposure of UV and visible light (e.g., blue light) can cause sebocyte gland function disorders or even different diseases (e.g., chronic actinic dermatitis). Studying the mechanism of light-induced damage in sebaceous glands has been challenging, since ex vivo culture of sebaceous glands is difficult due to its short life in culture medium. To address this issue, a versatile 3D artificial sebocyte gland model was established using the inertial focusing effect for studying the impact of light damage and screening potential drugs. The artificial sebocyte gland exhibited specific biological function and structure similar to natural sebocyte glands. Using this artificial sebocyte gland, the interactions between the artificial organ and blue light or UV were studied. The results indicated that UV and blue light upregulated lipid secretion and downregulated cell viability within the sebocytes. Light damage intensified oxidative stress and promoted pro-inflammation cytokines (i.e., IL-1β and TNF-α) production in the artificial sebocytes. Additionally, the therapeutic effects of cannabidiol, a clinically tested drug for treating acne, was also indicated on restoring light damaged sebaceous gland functions. These results indicate that the 3D artificial sebocyte gland could be a versatile, fast, and low-cost platform for skincare studies or drug screening.
Collapse
Affiliation(s)
- Tan Tang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yanran Wei
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Hongxing Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lelin Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing, China
| | - Peipei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
8
|
Yang X, Reneker LW, Zhong X, Huang AJW, Jester JV. Meibomian gland stem/progenitor cells: The hunt for gland renewal. Ocul Surf 2023; 29:497-507. [PMID: 37422152 PMCID: PMC10528929 DOI: 10.1016/j.jtos.2023.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Meibomian glands (MGs) secrete lipid (meibum) onto the ocular surface to form the outermost layer of the tear film. Proper meibum secretion is essential for stabilizing the tear film, reducing aqueous tear evaporation, and maintaining the homeostasis of the ocular surface. Atrophy of MG as occurs with aging, leads to reduction of meibum secretion, loss of ocular surface homeostasis and evaporative dry eye disease (EDED). Since MGs are holocrine glands, secretion of meibum requires continuous self-renewal of lipid-secreting acinar meibocytes by stem/progenitor cells, whose proliferative potential is dramatically reduced with age leading to MG atrophy and an age-related meibomian gland dysfunction (ARMGD). Understanding the cellular and molecular mechanisms regulating meibocyte stem/progenitor cell maintenance and renewal may provide novel approaches to regenerating MG and treating EDED. Towards that end, recent label retaining cell and lineage-tracing experiments as well as knock-out transgenic mouse studies have begun to identify the location and identities of meibocyte progenitor cells and potential growth and transcription factors that may regulate meibocyte renewal. In addition, recent reports have shown that ARMGD may be reversed by novel therapeutics in mice. Herein, we discuss our current understanding of meibocyte stem/progenitor cells and the hunt for gland renewal.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lixing W Reneker
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan, China
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Veniaminova NA, Jia Y, Hartigan AM, Huyge TJ, Tsai SY, Grachtchouk M, Nakagawa S, Dlugosz AA, Atwood SX, Wong SY. Distinct mechanisms for sebaceous gland self-renewal and regeneration provide durability in response to injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539454. [PMID: 37205445 PMCID: PMC10187279 DOI: 10.1101/2023.05.05.539454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single cell RNA-sequencing, we uncovered both direct and indirect paths by which these resident SG progenitors ordinarily differentiate into sebocytes, including transit through a PPARγ+Krt5+ transitional cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.
Collapse
Affiliation(s)
- Natalia A. Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunlong Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Adrien M. Hartigan
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas J. Huyge
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Grachtchouk
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seitaro Nakagawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott X. Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sunny Y. Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Lead Contact:
| |
Collapse
|
10
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Hou X, Wei Z, Zouboulis CC, Ju Q. Aging in the sebaceous gland. Front Cell Dev Biol 2022; 10:909694. [PMID: 36060807 PMCID: PMC9428133 DOI: 10.3389/fcell.2022.909694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sebaceous glands (SGs) originate from hair follicular stem cells and secrete lipids to lubricate the skin. The coordinated effects of intrinsic and extrinsic aging factors generate degradation of SGs at a late age. Senescence of SGs could be a mirror of the late aging of both the human body and skin. The procedure of SG aging goes over an initial SG hyperplasia at light-exposed skin areas to end with SG atrophy, decreased sebum secretion, and altered sebum composition, which is related to skin dryness, lack of brightness, xerosis, roughness, desquamation, and pruritus. During differentiation and aging of SGs, many signaling pathways, such as Wnt/β-catenin, c-Myc, aryl hydrocarbon receptor (AhR), and p53 pathways, are involved. Random processes lead to random cell and DNA damage due to the production of free radicals during the lifespan and neuroendocrine system alterations. Extrinsic factors include sunlight exposure (photoaging), environmental pollution, and cigarette smoking, which can directly activate signaling pathways, such as Wnt/β-catenin, Notch, AhR, and p53 pathways, and are probably associated with the de-differentiation and hyperplasia of SGs, or indirectly activate the abovementioned signaling pathways by elevating the inflammation level. The production of ROS during intrinsic SG aging is less, the signaling pathways are activated slowly and mildly, and sebocytes are still differentiated, yet terminal differentiation is not completed. With extrinsic factors, relevant signaling pathways are activated rapidly and fiercely, thus inhibiting the differentiation of progenitor sebocytes and even inducing the differentiation of progenitor sebocytes into keratinocytes. The management of SG aging is also mentioned.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Ziyu Wei
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- *Correspondence: Christos C Zouboulis, ; Qiang Ju,
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Christos C Zouboulis, ; Qiang Ju,
| |
Collapse
|
12
|
Kretzschmar K, Boonekamp KE, Bleijs M, Asra P, Koomen M, Chuva de Sousa Lopes SM, Giovannone B, Clevers H. Troy/Tnfrsf19 marks epidermal cells that govern interfollicular epidermal renewal and cornification. Stem Cell Reports 2021; 16:2379-2394. [PMID: 34358453 PMCID: PMC8452520 DOI: 10.1016/j.stemcr.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
The skin epidermis is a highly compartmentalized tissue consisting of a cornifying epithelium called the interfollicular epidermis (IFE) and associated hair follicles (HFs). Several stem cell populations have been described that mark specific compartments in the skin but none of them is specific to the IFE. Here, we identify Troy as a marker of IFE and HF infundibulum basal layer cells in developing and adult human and mouse epidermis. Genetic lineage-tracing experiments demonstrate that Troy-expressing basal cells contribute to long-term renewal of all layers of the cornifying epithelium. Single-cell transcriptomics and organoid assays of Troy-expressing cells, as well as their progeny, confirmed stem cell identity as well as the ability to generate differentiating daughter cells. In conclusion, we define Troy as a marker of epidermal basal cells that govern interfollicular epidermal renewal and cornification.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Kim E Boonekamp
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Margit Bleijs
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Priyanca Asra
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Mandy Koomen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
13
|
Bhuju J, Olesen KM, Muenyi CS, Patel TS, Read RW, Thompson L, Skalli O, Zheng Q, Grice EA, Sutter CH, Sutter TR. Cutaneous Effects of In Utero and Lactational Exposure of C57BL/6J Mice to 2,3,7,8-Tetrachlorodibenzo- p-dioxin. TOXICS 2021; 9:toxics9080192. [PMID: 34437510 PMCID: PMC8402454 DOI: 10.3390/toxics9080192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
To determine the cutaneous effects of in utero and lactational exposure to the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), pregnant C57BL/6J mice were exposed by gavage to a vehicle or 5 μg TCDD/kg body weight at embryonic day 12 and epidermal barrier formation and function were studied in their offspring from postnatal day 1 (P1) through adulthood. TCDD-exposed pups were born with acanthosis. This effect was AHR-dependent and subsided by P6 with no evidence of subsequent inflammatory dermatitis. The challenge of adult mice with MC903 showed similar inflammatory responses in control and treated animals, indicating no long-term immunosuppression to this chemical. Chloracne-like sebaceous gland hypoplasia and cyst formation were observed in TCDD-exposed P21 mice, with concomitant microbiome dysbiosis. These effects were reversed by P35. CYP1A1 and CYP1B1 expression in the skin was increased in the exposed mice until P21, then declined. Both CYP proteins co-localized with LRIG1-expressing progenitor cells at the infundibulum. CYP1B1 protein also co-localized with a second stem cell niche in the isthmus. These results indicate that this exposure to TCDD causes a chloracne-like effect without inflammation. Transient activation of the AhR, due to the shorter half-life of TCDD in mice, likely contributes to the reversibility of these effects.
Collapse
Affiliation(s)
- Jyoti Bhuju
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Kristin M Olesen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Clarisse S Muenyi
- Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN 38104, USA
| | - Tejesh S Patel
- Kaplan-Amonette Department of Dermatology, University of Tennessee Health Sciences Center, Memphis, TN 38104, USA
| | - Robert W Read
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Lauren Thompson
- Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
14
|
Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol 2021; 30:588-597. [PMID: 33599012 DOI: 10.1111/exd.14303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Sebaceous glands (SGs), typically associated with hair follicles, are critical for the homeostasis and function of mammalian skin. The main physiological function of SGs is the production and holocrine secretion of sebum to lubricate and protect the skin. Defective SGs have been linked to a variety of skin disorders, including acne, seborrheic dermatitis and formation of sebaceous tumors. Thus, a better understanding how SGs are formed and maintained is important to unravel the underlying molecular and cellular mechanisms of SG pathologies and to find better and effective therapies. Over the last two decades, research has come a long way from the initial identification of skin epithelial stem cells to the isolation and functional characterization of multiple stem cell pools as well as a better understanding of their unique and complex activities that drive skin homeostasis and operate in skin pathologies. Here, we discuss recent progress in unravelling cellular mechanisms underlying SG development, homeostasis and sebaceous tumor formation and assess the role of stem and progenitor cells in controlling SG physiology and disease processes. The development of elegant in vivo imaging as well as various in vitro and ex vivo stem cell and SG tissue models will advance mechanistic studies on SG function and allow drug screening and testing for efficient and successful targeting SG pathologies.
Collapse
Affiliation(s)
- Anna Geueke
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa. Int J Mol Sci 2020; 21:ijms21249736. [PMID: 33419358 PMCID: PMC7766199 DOI: 10.3390/ijms21249736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs.
Collapse
|
16
|
Horsley V. Lifting Each Other Up: Epidermal Stem Cells in Tissue Homeostasis. Dev Cell 2020; 51:296-298. [PMID: 31689385 DOI: 10.1016/j.devcel.2019.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple stem cells maintain and repair tissues, yet how they communicate is not well understood. In this issue of Developmental Cell, Veniaminova et al. (2019) report that each sebaceous gland is maintained by local stem cells and that Notch signaling regulates multiple aspects of their function, revealing tissue homeostasis mechanisms.
Collapse
Affiliation(s)
- Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology and Department of Dermatology, Yale University, 219 Prospect Street, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
18
|
Niche-Specific Factors Dynamically Regulate Sebaceous Gland Stem Cells in the Skin. Dev Cell 2019; 51:326-340.e4. [PMID: 31564613 DOI: 10.1016/j.devcel.2019.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Abstract
Oil-secreting sebaceous glands (SGs) are critical for proper skin function; however, it remains unclear how different factors act together to modulate SG stem cells. Here, we provide functional evidence that each SG lobe is serviced by its own dedicated stem cell population. Upon ablating Notch signaling in different skin subcompartments, we find that this pathway exerts dual counteracting effects on SGs. Suppressing Notch in SG progenitors traps them in a hybrid state where stem and differentiation features become intermingled. In contrast, ablating Notch outside of the SG stem cell compartment indirectly drives SG expansion. Finally, we report that a K14:K5→K14:K79 keratin shift occurs during SG differentiation. Deleting K79 destabilizes K14 in sebocytes, and attenuates SGs and eyelid meibomian glands, leading to corneal ulceration. Altogether, our findings demonstrate that SGs integrate diverse signals from different niches and suggest that mutations incurred within one stem cell compartment can indirectly influence another.
Collapse
|
19
|
Nie Q, Plikus MV. Equal opportunities in stemness. Nat Cell Biol 2019; 21:921-923. [PMID: 31358967 DOI: 10.1038/s41556-019-0366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Mathematics, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
20
|
Currie JD, Grosser L, Murawala P, Schuez M, Michel M, Tanaka EM, Sandoval-Guzmán T. The Prrx1 limb enhancer marks an adult subpopulation of injury-responsive dermal fibroblasts. Biol Open 2019; 8:bio.043711. [PMID: 31278164 PMCID: PMC6679413 DOI: 10.1242/bio.043711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The heterogeneous properties of dermal cell populations have been posited to contribute toward fibrotic, imperfect wound healing in mammals. Here we characterize an adult population of dermal fibroblasts that maintain an active Prrx1 enhancer which originally marked mesenchymal limb progenitors. In contrast to their abundance in limb development, postnatal Prrx1 enhancer-positive cells (Prrx1enh+) make up a small subset of adult dermal cells (∼0.2%) and reside mainly within dermal perivascular and hair follicle niches. Lineage tracing of adult Prrx1enh+ cells shows that they remain in their niches and in small numbers over a long period of time. Upon injury however, Prrx1enh+ cells readily migrate into the wound bed and amplify, on average, 16-fold beyond their uninjured numbers. Additionally, following wounding dermal Prrx1enh+ cells are found out of their dermal niches and contribute to subcutaneous tissue. Postnatal Prrx1enh+ cells are uniquely injury-responsive despite being a meager minority in the adult skin. Summary: Dermal Prrx1-enhancer cells are injury-responsive fibroblasts. Prrx1enh+ cells readily migrate into the wound bed and amplify on average 16-fold beyond their uninjured numbers.
Collapse
Affiliation(s)
- Joshua D Currie
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany .,Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, M5S 3G5 Toronto, Canada
| | - Lidia Grosser
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Prayag Murawala
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Maritta Schuez
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Martin Michel
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Elly M Tanaka
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tatiana Sandoval-Guzmán
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
21
|
Feldman A, Mukha D, Maor II, Sedov E, Koren E, Yosefzon Y, Shlomi T, Fuchs Y. Blimp1 + cells generate functional mouse sebaceous gland organoids in vitro. Nat Commun 2019; 10:2348. [PMID: 31138796 PMCID: PMC6538623 DOI: 10.1038/s41467-019-10261-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 11/17/2022] Open
Abstract
Most studies on the skin focus primarily on the hair follicle and interfollicular epidermis, whereas little is known regarding the homeostasis of the sebaceous gland (SG). The SG has been proposed to be replenished by different pools of hair follicle stem cells and cells that resides in the SG base, marked by Blimp1. Here, we demonstrate that single Blimp1+ cells isolated from mice have the potential to generate SG organoids in vitro. Mimicking SG homeostasis, the outer layer of these organoids is composed of proliferating cells that migrate inward, undergo terminal differentiation and generating lipid-filled sebocytes. Performing confocal microscopy and mass-spectrometry, we report that these organoids exhibit known markers and a lipidomic profile similar to SGs in vivo. Furthermore, we identify a role for c-Myc in sebocyte proliferation and differentiation, and determine that SG organoids can serve as a platform for studying initial stages of acne vulgaris, making this a useful platform to identify potential therapeutic targets. The sebaceous gland (SG) has been proposed to be replenished by pools of cells, including a population in the SG base, marked by Blimp1. Here, the authors show that Blimp1+ cells can establish an organoid model of the SG, which is regulated by c-Myc and can recapitulate the early stages of acne vulgaris.
Collapse
Affiliation(s)
- Alona Feldman
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dzmitry Mukha
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Department of Computer Science, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Itzhak I Maor
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Tomer Shlomi
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel.,Department of Computer Science, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, 3200003, Haifa, Israel. .,Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel. .,Technion Integrated Cancer Center, Technion Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
22
|
Clayton R, Göbel K, Niessen C, Paus R, Steensel M, Lim X. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol 2019; 181:677-690. [DOI: 10.1111/bjd.17981] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- R.W. Clayton
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
| | - K. Göbel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - C.M. Niessen
- Department of Dermatology Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne The University of Cologne Germany
| | - R. Paus
- Centre for Dermatology Research University of Manchester, and NIHR Manchester Biomedical Research Centre Manchester U.K
- Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| | - M.A.M. Steensel
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| | - X. Lim
- Skin Research Institute of Singapore Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To give an overview of recently published articles addressing the mechanisms underlying sex bias in autoimmune disease. RECENT FINDINGS Recent studies investigating the origins of sex bias in autoimmune disease have revealed an extensive and interconnected network of genetic, hormonal, microbial, and environmental influences. Investigation of sex hormones has moved beyond profiling the effects of hormones on activity and prevalence of immune cell types to defining the specific immunity-related genes driving these changes. Deeper examination of the genetic content of the X and Y chromosomes and genetic escapees of X chromosome inactivation has revealed some key drivers of female-biased autoimmunity. Animal studies are offering further insights into the connections among microbiota, particularly that of the gut, and the immune system. SUMMARY Sex bias in autoimmune disease is the manifestation of a complex interplay of the sex chromosomes, sex hormones, the microbiota, and additional environmental and sociological factors.
Collapse
|
24
|
Abstract
A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.
Collapse
|
25
|
Chang HC, Huang DY, Wu NL, Kannagi R, Wang LF, Lin WW. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J Dermatol Sci 2018; 92:151-161. [DOI: 10.1016/j.jdermsci.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
|
26
|
Reichenbach B, Classon J, Aida T, Tanaka K, Genander M, Göritz C. Glutamate transporter Slc1a3 mediates inter-niche stem cell activation during skin growth. EMBO J 2018; 37:embj.201798280. [PMID: 29615452 DOI: 10.15252/embj.201798280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Tissues contain distinct stem cell niches, but whether cell turnover is coordinated between niches during growth is unknown. Here, we report that in mouse skin, hair growth is accompanied by sebaceous gland and interfollicular epidermis expansion. During hair growth, cells in the bulge and outer root sheath temporarily upregulate the glutamate transporter SLC1A3, and the number of SLC1A3+ basal cells in interfollicular epidermis and sebaceous gland increases. Fate mapping of SLC1A3+ cells in mice revealed transient expression in proliferating stem/progenitor cells in all three niches. Deletion of slc1a3 delays hair follicle anagen entry, uncouples interfollicular epidermis and sebaceous gland expansion from the hair cycle, and leads to reduced fur density in aged mice, indicating a role of SLC1A3 in stem/progenitor cell activation. Modulation of metabotropic glutamate receptor 5 activity mimics the effects of SLC1A3 deletion or inhibition. These data reveal that stem/progenitor cell activation is synchronized over distinct niches during growth and identify SLC1A3 as a general marker and effector of activated epithelial stem/progenitor cells throughout the skin.
Collapse
Affiliation(s)
- Bettina Reichenbach
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Classon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Shi Y, Kuai Y, Lei L, Weng Y, Berberich-Siebelt F, Zhang X, Wang J, Zhou Y, Jiang X, Ren G, Pan H, Mao Z, Zhou R. The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma. Oncotarget 2018; 7:77444-77456. [PMID: 27764808 PMCID: PMC5363597 DOI: 10.18632/oncotarget.12680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (-87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets ( PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Kuai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Lei
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Jinjie Wang
- Department of Pathology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yuan Zhou
- Postgraduate School in Medical School of Ningbo University, Ningbo, China
| | - Xin Jiang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci 2018; 1412:21-32. [PMID: 29291257 DOI: 10.1111/nyas.13529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Women are more susceptible to autoimmune diseases than men. Autoimmunity results from tolerance breakdown toward self-components. Recently, three transcription modulators were identified in medullary thymic epithelial cells that orchestrate immune central tolerance processes: the autoimmune regulator (AIRE), FEZ family zinc finger 2 (FEZF2 or FEZ1), and PR domain zinc finger protein 1 (PRDM1). Interestingly, these three transcription modulators regulate nonredundant tissue-specific antigen subsets and thus cover broad antigen diversity. Recent data from different groups demonstrated that sex hormones (estrogen and testosterone) are involved in the regulation of thymic AIRE expression in humans and mice through direct transcriptional modulation and epigenetic changes. As a consequence, AIRE displays gender-biased thymic expression, with females showing a lower expression compared with males, a finding that could explain the female susceptibility to autoimmune diseases. So far, FEZF2 has not been related to an increased gender bias in autoimmune disease. PRDM1 expression has not been shown to display gender-differential thymic expression, but its expression level and its gene polymorphisms are associated with female-dependent autoimmune disease risk. Altogether, various studies have demonstrated that increased female susceptibility to autoimmune diseases is in part a consequence of hormone-driven reduced thymic AIRE expression.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Nadine Dragin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
- Inovarion, Paris, France
| |
Collapse
|
29
|
Karmouch J, Zhou QQ, Miyake CY, Lombardi R, Kretzschmar K, Bannier-Hélaouët M, Clevers H, Wehrens XHT, Willerson JT, Marian AJ. Distinct Cellular Basis for Early Cardiac Arrhythmias, the Cardinal Manifestation of Arrhythmogenic Cardiomyopathy, and the Skin Phenotype of Cardiocutaneous Syndromes. Circ Res 2017; 121:1346-1359. [PMID: 29018034 PMCID: PMC5722680 DOI: 10.1161/circresaha.117.311876] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Arrhythmogenic cardiomyopathy is caused primarily by mutations in genes encoding desmosome proteins. Ventricular arrhythmias are the cardinal and typically early manifestations, whereas myocardial fibroadiposis is the pathological hallmark. Homozygous DSP (desmoplakin) and JUP (junction protein plakoglobin) mutations are responsible for a subset of patients with arrhythmogenic cardiomyopathy who exhibit cardiac arrhythmias and dysfunction, palmoplanter keratosis, and hair abnormalities (cardiocutaneous syndromes). OBJECTIVE To determine phenotypic consequences of deletion of Dsp in a subset of cells common to the heart and skin. METHODS AND RESULTS Expression of CSPG4 (chondroitin sulfate proteoglycan 4) was detected in epidermal keratinocytes and the cardiac conduction system. CSPG4pos cells constituted ≈5.6±3.3% of the nonmyocyte cells in the mouse heart. Inducible postnatal deletion of Dsp under the transcriptional control of the Cspg4 locus led to ventricular arrhythmias, atrial fibrillation, atrioventricular conduction defects, and death by 4 months of age. Cardiac arrhythmias occurred early and in the absence of cardiac dysfunction and excess cardiac fibroadipocytes, as in human arrhythmogenic cardiomyopathy. The mice exhibited palmoplantar keratosis and progressive alopecia, leading to alopecia totalis, associated with accelerated proliferation and impaired terminal differentiation of keratinocytes. The phenotype is similar to human cardiocutaneous syndromes caused by homozygous mutations in DSP. CONCLUSIONS Deletion of Dsp under the transcriptional regulation of the CSPG4 locus led to lethal cardiac arrhythmias in the absence of cardiac dysfunction or fibroadiposis, palmoplantar keratosis, and alopecia, resembling the human cardiocutaneous syndromes. The findings offer a cellular basis for early cardiac arrhythmias in patients with arrhythmogenic cardiomyopathy and cardiocutaneous syndromes.
Collapse
Affiliation(s)
- Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Qiong Q Zhou
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Christina Y Miyake
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Kai Kretzschmar
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Marie Bannier-Hélaouët
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Hans Clevers
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Xander H T Wehrens
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston (J.K., Q.Q.Z., R.L., J.T.W., A.J.M.); Texas Heart Institute, Houston (J.T.W., A.J.M.); Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (C.Y.M., X.H.T.W.); Department of Pediatrics, Texas Children Hospital, Houston (C.Y.M.); Hubrecht Institute, University Medical Center, Utrecht, The Netherlands (K.K., M.B.-H., H.C.); Royal Netherlands Academy of Arts and Sciences and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (H.C.); and École Normale Supérieure de Lyon, France (M.B.-H.).
| |
Collapse
|
30
|
Long-lived unipotent Blimp1-positive luminal stem cells drive mammary gland organogenesis throughout adult life. Nat Commun 2017; 8:1714. [PMID: 29158490 PMCID: PMC5696348 DOI: 10.1038/s41467-017-01971-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
The hierarchical relationships between various stem and progenitor cell subpopulations driving mammary gland morphogenesis and homoeostasis are poorly understood. Conditional inactivation experiments previously demonstrated that expression of the zinc finger transcriptional repressor Blimp1/PRDM1 is essential for the establishment of epithelial cell polarity and functional maturation of alveolar cells. Here we exploit a Prdm1.CreERT2-LacZ reporter allele for lineage tracing experiments. Blimp1 expression marks a rare subpopulation of unipotent luminal stem cells that initially appear in the embryonic mammary gland at around E17.5 coincident with the segregation of the luminal and basal compartments. Fate mapping at multiple time points in combination with whole-mount confocal imaging revealed these long-lived unipotent luminal stem cells survive consecutive involutions and retain their identity throughout adult life. Blimp1+ luminal stem cells give rise to Blimp1− progeny that are invariably Elf5+ERα−PR−. Thus, Blimp1 expression defines a mammary stem cell subpopulation with unique functional characteristics. The role of stem/progenitor cell populations in mammary gland morphogenesis is not well understood. Here, the authors show that a transcriptional repressor, Blimp1, is expressed in a rare luminal stem cell population, which contribute to duct formation, and survive multiple rounds of pregnancy and involution.
Collapse
|
31
|
Makrantonaki E, Wlaschek M, Scharffetter-Kochanek K. Pathogenesis of wound healing disorders in the elderly. J Dtsch Dermatol Ges 2017; 15:255-275. [PMID: 28252848 DOI: 10.1111/ddg.13199] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
The elderly constitute the age group most susceptible to wound healing disorders and chronic wounds, the most prevalent being venous leg ulcers, pressure ulcers, and diabetic foot ulcers. However, other age-associated diseases should also be taken into consideration in the diagnostic workup of chronic wounds, and not be underestimated. A better understanding of the pathomechanisms involved in the wound healing process is of key importance in combatting the difficulties associated with the treatment of chronic wounds. In recent decades, considerable progress has been made in the development of pioneering therapeutic strategies for chronic wounds. In this context, the use of growth factors and cytokines, tissue engineering, and cell therapy - including stem cells - have proven very promising. Nevertheless, prior to their introduction into routine clinical practice, large controlled clinical trials are required to assess the safety of these techniques.
Collapse
Affiliation(s)
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University Medical Center Ulm
| | | |
Collapse
|
32
|
Abstract
This review based on translational research predicts that the transcription factor p53 is the key effector of all anti-acne therapies. All-trans retinoic acid (ATRA) and isotretinoin (13-cis retinoic acid) enhance p53 expression. Tetracyclines and macrolides via inhibiting p450 enzymes attenuate ATRA degradation, thereby increase p53. Benzoyl peroxide and hydrogen peroxide elicit oxidative stress, which upregulates p53. Azelaic acid leads to mitochondrial damage associated with increased release of reactive oxygen species inducing p53. p53 inhibits the expression of androgen receptor and IGF-1 receptor, and induces the expression of IGF binding protein 3. p53 induces FoxO1, FoxO3, p21 and sestrin 1, sestrin 2, and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the key inducer of isotretinoin-mediated sebocyte apoptosis explaining isotretinoin's sebum-suppressive effect. Anti-androgens attenuate the expression of miRNA-125b, a key negative regulator of p53. It can thus be concluded that all anti-acne therapies have a common mode of action, i.e., upregulation of the guardian of the genome p53. Immortalized p53-inactivated sebocyte cultures are unfortunate models for studying acne pathogenesis and treatment.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, 49076, Osnabrück, Germany.
| |
Collapse
|
33
|
Ahmed MI, Elias S, Mould AW, Bikoff EK, Robertson EJ. The transcriptional repressor Blimp1 is expressed in rare luminal progenitors and is essential for mammary gland development. Development 2017; 143:1663-73. [PMID: 27190036 PMCID: PMC4874485 DOI: 10.1242/dev.136358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/11/2016] [Indexed: 01/26/2023]
Abstract
Mammary gland morphogenesis depends on a tight balance between cell proliferation, differentiation and apoptosis, to create a defined functional hierarchy within the epithelia. The limited availability of stem cell/progenitor markers has made it challenging to decipher lineage relationships. Here, we identify a rare subset of luminal progenitors that express the zinc finger transcriptional repressor Blimp1, and demonstrate that this subset of highly clonogenic luminal progenitors is required for mammary gland development. Conditional inactivation experiments using K14-Cre and WAPi-Cre deleter strains revealed essential functions at multiple developmental stages. Thus, Blimp1 regulates proliferation, apoptosis and alveolar cell maturation during puberty and pregnancy. Loss of Blimp1 disrupts epithelial architecture and lumen formation both in vivo and in three-dimensional (3D) primary cell cultures. Collectively, these results demonstrate that Blimp1 is required to maintain a highly proliferative luminal subset necessary for mammary gland development and homeostasis. Highlighted article: In the mouse mammary gland, Blimp1 marks a rare progenitor population, and is required for cell proliferation and polarity as well as efficient milk production.
Collapse
Affiliation(s)
- Mohammed I Ahmed
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Salah Elias
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
34
|
Roberts NA, Adams BD, McCarthy NI, Tooze RM, Parnell SM, Anderson G, Kaech SM, Horsley V. Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1250-1260. [PMID: 28701508 PMCID: PMC5544928 DOI: 10.4049/jimmunol.1600941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/10/2017] [Indexed: 01/10/2023]
Abstract
Autoimmunity is largely prevented by medullary thymic epithelial cells (TECs) through their expression and presentation of tissue-specific Ags to developing thymocytes, resulting in deletion of self-reactive T cells and supporting regulatory T cell development. The transcription factor Prdm1 has been implicated in autoimmune diseases in humans through genome-wide association studies and in mice using cell type-specific deletion of Prdm1 in T and dendritic cells. In this article, we demonstrate that Prdm1 functions in TECs to prevent autoimmunity in mice. Prdm1 is expressed by a subset of mouse TECs, and conditional deletion of Prdm1 in either Keratin 14- or Foxn1-expressing cells in mice resulted in multisymptom autoimmune pathology. Notably, the development of Foxp3+ regulatory T cells occurs normally in the absence of Blimp1. Importantly, nude mice developed anti-nuclear Abs when transplanted with Prdm1 null TECs, but not wild-type TECs, indicating that Prdm1 functions in TECs to regulate autoantibody production. We show that Prdm1 acts independently of Aire, a crucial transcription factor implicated in medullary TEC function. Collectively, our data highlight a previously unrecognized role for Prdm1 in regulating thymic epithelial function.
Collapse
Affiliation(s)
- Natalie A Roberts
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Brian D Adams
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Investigative Medicine Program, Yale University School of Medicine, New Haven, CT 06520
| | - Nicholas I McCarthy
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sonia M Parnell
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- School of Immunity and Infection, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Susan M Kaech
- Department of Immunobiology, Yale University, New Haven, CT 06520; and
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520;
- Department of Dermatology, Yale University, New Haven, CT 06520
| |
Collapse
|
35
|
Nelson AC, Mould AW, Bikoff EK, Robertson EJ. Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. Sci Rep 2017; 7:6793. [PMID: 28754907 PMCID: PMC5533796 DOI: 10.1038/s41598-017-06859-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Trophoblast stem cells (TSCs) give rise to specialized cell types within the placenta. However, the regulatory mechanisms that guide trophoblast cell fate decisions during placenta development remain ill defined. Here we exploited ATAC-seq and transcriptional profiling strategies to describe dynamic changes in gene expression and chromatin accessibility during TSC differentiation. We detect significantly increased chromatin accessibility at key genes upregulated as TSCs exit from the stem cell state. However, downregulated gene expression is not simply due to the loss of chromatin accessibility in proximal regions. Additionally, transcriptional targets recognized by the zinc finger transcriptional repressor Prdm1/Blimp1, an essential regulator of placenta development, were identified in ChIP-seq experiments. Comparisons with previously reported ChIP-seq datasets for primordial germ cell-like cells and E18.5 small intestine, combined with functional annotation analysis revealed that Blimp1 has broadly shared as well as cell type-specific functional activities unique to the trophoblast lineage. Importantly, Blimp1 not only silences TSC gene expression but also prevents aberrant activation of divergent developmental programmes. Overall the present study provides new insights into the chromatin landscape and Blimp1-dependent regulatory networks governing trophoblast gene expression.
Collapse
Affiliation(s)
- Andrew C Nelson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.,School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
36
|
Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin to Regulate Hair Follicle Formation and Growth. J Invest Dermatol 2017; 137:2270-2281. [PMID: 28668474 PMCID: PMC5646946 DOI: 10.1016/j.jid.2017.06.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/18/2022]
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth.
Collapse
|
37
|
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties. Nat Cell Biol 2017; 19:603-613. [PMID: 28504705 DOI: 10.1038/ncb3532] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
Collapse
Affiliation(s)
- Giacomo Donati
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Toru Hiratsuka
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Esther Hoste
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,VIB Center for Inflammation Research, Department of Biomedical Molecular Biology (Ghent University), B-9052 Ghent, Belgium
| | - Gozde Kar
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Kai Kretzschmar
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Hubrecht Institute, KNAW and UMC Utrecht, 3584CT Utrecht, The Netherlands
| | - Klaas W Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Sarah A Teichmann
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
38
|
Bock KW. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated deregulation of myeloid and sebaceous gland stem/progenitor cell homeostasis. Arch Toxicol 2017; 91:2295-2301. [PMID: 28386637 DOI: 10.1007/s00204-017-1965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Studies of TCDD toxicity stimulated identification of the responsible aryl hydrocarbon receptor (AHR), a multifunctional, ligand-activated transcription factor of the basic helix-loop-helix/Per-Arnt-Sim family. Accumulating evidence suggests a role of this receptor in homeostasis of stem/progenitor cells, in addition to its known role in xenobiotic metabolism. (1) Regulation of myelopoiesis is complex. As one example, AHR-mediated downregulation of human CD34+ progenitor differentiation to monocytes/macrophages is discussed. (2) Accumulation of TCDD in sebum leads to deregulation of sebocyte differentiation via Blimp1-mediated inhibition of c-Myc signaling and stimulation of Wnt-mediated proliferation of interfollicular epidermis. The resulting sebaceous gland atrophy and formation of dermal cysts may explain the pathogenesis of chloracne, the hallmark of TCDD toxicity. (3) TCDD treatment of confluent liver stem cell-like rat WB-F344 cells leads to release from cell-cell contact inhibition via AHR-mediated crosstalk with multiple signaling pathways. Further work is needed to delineate AHR function in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
39
|
Makrantonaki E, Wlaschek M, Scharffetter-Kochanek K. Pathogenese von Wundheilungsstörungen bei älteren Patienten. J Dtsch Dermatol Ges 2017; 15:255-278. [DOI: 10.1111/ddg.13199_g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023]
|
40
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
41
|
Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M. Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity. Cell Syst 2016; 3:221-237.e9. [PMID: 27641957 PMCID: PMC5052454 DOI: 10.1016/j.cels.2016.08.010] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
The murine epidermis with its hair follicles represents an invaluable model system for tissue regeneration and stem cell research. Here we used single-cell RNA-sequencing to reveal how cellular heterogeneity of murine telogen epidermis is tuned at the transcriptional level. Unbiased clustering of 1,422 single-cell transcriptomes revealed 25 distinct populations of interfollicular and follicular epidermal cells. Our data allowed the reconstruction of gene expression programs during epidermal differentiation and along the proximal-distal axis of the hair follicle at unprecedented resolution. Moreover, transcriptional heterogeneity of the epidermis can essentially be explained along these two axes, and we show that heterogeneity in stem cell compartments generally reflects this model: stem cell populations are segregated by spatial signatures but share a common basal-epidermal gene module. This study provides an unbiased and systematic view of transcriptional organization of adult epidermis and highlights how cellular heterogeneity can be orchestrated in vivo to assure tissue homeostasis. Single-cell RNA-seq analysis identifies 25 populations of epidermal cells Differentiation and spatial gene expression signatures can be defined Interplay of differentiation and spatial signatures explains most heterogeneity Stem cell populations are divided by spatial signatures and only share basal identity
Collapse
Affiliation(s)
- Simon Joost
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Amit Zeisel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Gioele La Manno
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden.
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden.
| |
Collapse
|
42
|
Gunnarsson AP, Christensen R, Li J, Jensen UB. Global gene expression and comparison between multiple populations in the mouse epidermis. Stem Cell Res 2016; 17:191-202. [DOI: 10.1016/j.scr.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022] Open
|
43
|
Toward elucidation of dioxin-mediated chloracne and Ah receptor functions. Biochem Pharmacol 2016; 112:1-5. [PMID: 26801687 DOI: 10.1016/j.bcp.2016.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Target cells and molecular targets responsible for dioxin-mediated chloracne, the hallmark of dioxin toxicity, are reviewed. The dioxin TCDD accumulates in sebum, and thereby persistently activates the Ah receptor (AhR), expressed in bipotential stem/progenitor cells of the sebaceous gland. AhR operates in cooperation with other transcription factors including c-Myc, Blimp1 and ß-Catenin/TCF: c-Myc stimulates exit of stem cells from quiescence to proliferating sebocyte progenitors; Blimp1 is a major c-Myc repressor, and ß-Catenin/TCF represses sebaceous gland differentiation and stimulates differentiation to interfollicular epidermis. TCDD has been demonstrated to induce Blimp1 expression in the sebocyte stem/progenitor cell line SZ95, leading to sebocyte apoptosis and proliferation of interfollicular epidermis cells. These findings explain observations in TCDD-poisoned individuals, and identify target cells and molecular targets of dioxin-mediated chloracne. They clearly demonstrate that the AhR operates in a cell context-dependent manner, and provide hints to homeostatic functions of AhR in stem/progenitor cells.
Collapse
|
44
|
Kretzschmar K, Cottle DL, Schweiger PJ, Watt FM. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells. J Invest Dermatol 2015; 135:2753-2763. [PMID: 26121213 PMCID: PMC4641324 DOI: 10.1038/jid.2015.242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Denny L Cottle
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Pawel J Schweiger
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London, UK.
| |
Collapse
|
45
|
|
46
|
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 2015; 16:299-309. [PMID: 25907613 PMCID: PMC5317203 DOI: 10.1038/nrm3980] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types.
Collapse
Affiliation(s)
- Margaret A Goodell
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Noah Shroyer
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|