1
|
Oh SJ, Shin YY, Ahn JS, Park HJ, Kang MJ, Shin TH, Lee BC, Kim WK, Oh JM, Lee D, Kim YH, Kim JM, Sung ES, Lee EW, Jeong JH, Lee BJ, Seo Y, Kim HS. TGFβ2-Driven Ferritin Degradation and Subsequent Ferroptosis Underlie Salivary Gland Dysfunction in Postmenopausal Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400660. [PMID: 39481440 DOI: 10.1002/advs.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Despite the high incidence of dry mouth in postmenopausal women, its underlying mechanisms and therapeutic interventions remain underexplored. Using ovariectomized (OVX) mouse models, here this study identifies ferroptosis, an iron-dependent regulated cell death, as a central mechanism driving postmenopausal salivary gland (SG) dysfunction. In the OVX-SGs, TGFβ signaling pathway is enhanced with the aberrant TGFβ2 expression in SG mesenchymal cells. Intriguingly, TGFβ2 treatment reduces iron-storing ferritin levels, leading to lipid peroxidation and ferroptotic death in SG epithelial organoids (SGOs). Mechanistically, TGFβ2 promotes the autophagy-mediated ferritin degradation, so-called ferritinophagy. A notable overexpression of the type III TGFβ receptor (TβRIII) is found in the OVX-SGs and TGFβ2-treated SGOs, while the silencing of TβRIII mitigates the ferroptosis-mediated deleterious effects of TGFβ2 on SGOs. Finally, administration of ferroptosis inhibitor, Liproxstatin-1 (Lip-1), improves saliva secretion in OVX mice. Present findings collectively suggest a link between TGFβ signaling, ferroptosis, and SG injury, offering new therapeutic avenues for postmenopausal xerostomia.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Ye Young Shin
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Seoul, 08590, Republic of Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hee-Jeong Park
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Tae-Hoon Shin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science andTechnology (KIST), Gangneung, 25451, Republic of Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
- Division of Natural Products Applied Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Ji Min Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan, 50612, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| |
Collapse
|
2
|
Paz C, Glassey A, Frick A, Sattar S, Zaorsky NG, Blitzer GC, Kimple RJ. Cancer therapy-related salivary dysfunction. J Clin Invest 2024; 134:e182661. [PMID: 39225092 PMCID: PMC11364403 DOI: 10.1172/jci182661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Salivary gland dysfunction is a common side effect of cancer treatments. Salivary function plays key roles in critical daily activities. Consequently, changes in salivary function can profoundly impair quality of life for cancer patients. We discuss salivary gland anatomy and physiology to understand how anticancer therapies such as chemotherapy, bone marrow transplantation, immunotherapy, and radiation therapy impair salivary function. We discuss approaches to quantify xerostomia in the clinic, including the advantages and limitations of validated quality-of-life instruments and approaches to directly measuring salivary function. Current and emerging approaches to treat cancer therapy-induced dry mouth are presented using radiation-induced salivary dysfunction as a model. Limitations of current sialagogues and salivary analogues are presented. Emerging approaches, including cellular and gene therapy and novel pharmacologic approaches, are described.
Collapse
Affiliation(s)
- Cristina Paz
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Annemarie Glassey
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Abigail Frick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sarah Sattar
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nicholas G. Zaorsky
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Grace C. Blitzer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
4
|
Pillai S, Munguia-Lopez JG, Tran SD. Bioengineered Salivary Gland Microtissues─A Review of 3D Cellular Models and their Applications. ACS APPLIED BIO MATERIALS 2024; 7:2620-2636. [PMID: 38591955 DOI: 10.1021/acsabm.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Jose G Munguia-Lopez
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
5
|
Mahmood A, Maher N, Amin F, Alqutaibi AY, Kumar N, Zafar MS. Chitosan-based materials for dental implantology: A comprehensive review. Int J Biol Macromol 2024; 268:131823. [PMID: 38677667 DOI: 10.1016/j.ijbiomac.2024.131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chitosan, a versatile biopolymer, has gained recognition in the discipline of dental implantology due to possessing salient properties. This comprehensive review explores the potential of chitosan in dental implants, focusing on its biocompatibility, bioactivity, and the various chitosan-based materials that have been utilized for dental implant therapy. The review also highlights the importance of surface treatment in dental implants to enhance osseointegration and inhibit bacterial biofilm formation. Additionally, the chemical structure, properties, and sources of chitosan are described, along with its different structural forms. The characteristics of chitosan particularly color, molecular weight, viscosity, and degree of deacetylation are discussed about their influence on its applications. This review provides valuable insights into the promising utilization of polymeric chitosan in enhancing the success and functionality of dental implants. This study highlights the potential applications of chitosan in oral implantology. Chitosan possesses various advantageous properties, including muco-adhesiveness, hemostatic action, biocompatibility, biodegradability, bioactivity, and antibacterial and antifungal activities, which enhance its uses in dental implantology. However, it has limited aqueous solubility at the physiological pH, which sometimes restricts its biological application, but this problem can be overcome by using modified chitosan or chitosan derivatives, which have also shown encouraging results. Recent research suggests that chitosan may act as a promising material for coating titanium-based implants, improving osteointegration together with antibacterial properties.
Collapse
Affiliation(s)
- Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
6
|
Aalam SMM, Varela AR, Khaderi A, Mondesir RJ, Mun DG, Ding A, Lombaert IM, Coppes RP, Emperumal CP, Pandey A, Janus JR, Kannan N. The Mayo Clinic Salivary Tissue-Organoid Biobanking: A Resource for Salivary Regeneration Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581761. [PMID: 38464033 PMCID: PMC10925098 DOI: 10.1101/2024.02.23.581761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The salivary gland (SG) is an essential organ that secretes saliva, which supports versatile oral function throughout life, and is maintained by elusive epithelial stem and progenitor cells (SGSPC). Unfortunately, aging, drugs, autoimmune disorders, and cancer treatments can lead to salivary dysfunction and associated health consequences. Despite many ongoing therapeutic efforts to mediate those conditions, investigating human SGSPC is challenging due to lack of standardized tissue collection, limited tissue access, and inadequate purification methods. Herein, we established a diverse and clinically annotated salivary regenerative biobanking at the Mayo Clinic, optimizing viable salivary cell isolation and clonal assays in both 2D and 3D-matrigel growth environments. Our analysis identified ductal epithelial cells in vitro enriched with SGSPC expressing the CD24/EpCAM/CD49f+ and PSMA- phenotype. We identified PSMA expression as a reliable SGSPC differentiation marker. Moreover, we identified progenitor cell types with shared phenotypes exhibiting three distinct clonal patterns of salivary differentiation in a 2D environment. Leveraging innovative label-free unbiased LC-MS/MS-based single-cell proteomics, we identified 819 proteins across 71 single cell proteome datasets from purified progenitor-enriched parotid gland (PG) and sub-mandibular gland (SMG) cultures. We identified distinctive co-expression of proteins, such as KRT1/5/13/14/15/17/23/76 and 79, exclusively observed in rare, scattered salivary ductal basal cells, indicating the potential de novo source of SGSPC. We also identified an entire class of peroxiredoxin peroxidases, enriched in PG than SMG, and attendant H2O2-dependent cell proliferation in vitro suggesting a potential role for PRDX-dependent floodgate oxidative signaling in salivary homeostasis. The distinctive clinical resources and research insights presented here offer a foundation for exploring personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Ana Rita Varela
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aalim Khaderi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ronsard J Mondesir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Isabelle M.A. Lombaert
- Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, 2900 Plymouth Rd, Ann Arbor, MI, USA
| | - Rob P. Coppes
- Departments of Radiation Oncology and Biomedical Sciences, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jeffrey R. Janus
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Jacksonville, FL, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Soto-Gamez A, van Es M, Hageman E, Serna-Salas SA, Moshage H, Demaria M, Pringle S, Coppes RP. Mesenchymal stem cell-derived HGF attenuates radiation-induced senescence in salivary glands via compensatory proliferation. Radiother Oncol 2024; 190:109984. [PMID: 37926332 DOI: 10.1016/j.radonc.2023.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND & AIM Irradiation of the salivary glands during head and neck cancer treatment induces cellular senescence in response to DNA damage and contributes to radiation-induced hyposalivation by affecting the salivary gland stem/progenitor cell (SGSC) niche. Cellular senescence, such as that induced by radiation, is a state of cell-cycle arrest, accompanied by an altered pro-inflammatory secretome known as the senescence-associated secretory phenotype (SASP) with potential detrimental effects on the surrounding microenvironment. We hypothesized that the pro-regenerative properties of mesenchymal stem cells (MSCs) may attenuate cellular senescence post-irradiation. Therefore, here we evaluated the effects of adipose-derived MSCs (ADSCs) on the radiation-induced response of salivary gland organoids (SGOs). METHODS Proteomic analyses to identify soluble mediators released by ADSCs co-cultured with SGOS revealed secretion of hepatocyte growth factor (HGF) in ADSCs, suggesting a possible role in the stem cell crosstalk. Next, the effect of recombinant HGF in the culture media of ex vivo grown salivary gland cells was tested in 2D monolayers and 3D organoid models. RESULTS Treatment with HGF robustly increased salivary gland cell proliferation. Importantly, HGF supplementation post-irradiation enhanced proliferation at lower doses of radiation (0, 3, 7 Gy), but not at higher doses (10, 14 Gy) where most cells stained positive for senescence-associated beta-galactosidase. Furthermore, HGF had no effect on the senescence-associated secretory phenotype (SASP) of irradiated SGOs, suggesting there may be compensatory proliferation by cell-division competent cells instead of a reversal of cellular senescence after irradiation. CONCLUSION ADSCs may positively influence radiation recovery through HGF secretion and can promote the ex vivo expansion of salivary gland stem/progenitor cells to enhance the effects of co-transplanted SGSC.
Collapse
Affiliation(s)
- A Soto-Gamez
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - M van Es
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - E Hageman
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - S A Serna-Salas
- Dept of Gastroenterology and Hepatology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - H Moshage
- Dept of Gastroenterology and Hepatology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - S Pringle
- Dept. of Rheumatology and Clinical Immunology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - R P Coppes
- Dept. of Biomedical Sciences of Cells & Systems, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands; Dept. of Radiation Oncology, University of Groningen (RUG) and University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
8
|
Cinat D, Souza ALD, Soto-Gamez A, Jellema-de Bruin AL, Coppes RP, Barazzuol L. Mitophagy induction improves salivary gland stem/progenitor cell function by reducing senescence after irradiation. Radiother Oncol 2024; 190:110028. [PMID: 38007043 DOI: 10.1016/j.radonc.2023.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-β-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Lena De Souza
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Abel Soto-Gamez
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
I T, Kanai R, Hasegawa K, Ogaeri T, Tran SD, Sumita Y. Recent progress in regenerative therapy for damaged salivary glands: From bench to bedside. Oral Dis 2024; 30:38-49. [PMID: 37498953 DOI: 10.1111/odi.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE For functional restoration of salivary glands (SGs) injured by radiation therapy or Sjögren's syndrome (SS), various experimental approaches, such as gene therapy, tissue engineering, and cell-based therapy, have been proposed. This narrative review summarized recent progresses in research using cell-based therapies, including promising trials that could lead to bench-to-clinic applications. METHODS A literature review based on PubMed publications in the last two decades was performed to summarize progresses in cell-based therapies for SG dysfunction. RESULTS Over 100 experimental studies have shown the therapeutic potential of several types of cells, such as SG stem cells and mesenchymal stem cells, as well as effectively conditioned mononuclear cells, in both radiation injury and SS animal models. These therapies affect to slow fibrosis progression and stimulate tissue regeneration in atrophic glands. However, to date, only a total of seven studies have been developed to the stage of clinical study, showing the safety and preliminary efficacy. CONCLUSION To lead the radical effectiveness expected in cell-based therapy, advances in reverse translational research and in innovative experimental research, based on the findings of recent clinical studies, will be critical in the next decade.
Collapse
Affiliation(s)
- Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Riho Kanai
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takunori Ogaeri
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Yan S, Zhang Y, Zhang S, Wei S. Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors. Int J Stem Cells 2023; 16:394-405. [PMID: 37670513 PMCID: PMC10686799 DOI: 10.15283/ijsc23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.
Collapse
Affiliation(s)
- Shuang Yan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University, Beijing, China
| | - Yifei Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University, Beijing, China
| | - Siqi Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University, Beijing, China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
11
|
Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X, Ma J, Liang Y, Quan D, Liao G, Bai Y, Zhang S. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater 2023; 169:256-272. [PMID: 37557943 DOI: 10.1016/j.actbio.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Saliva is key to the maintenance of oral homeostasis. However, several forms of salivary gland (SG) disorders, followed by hyposalivation, often result in dental caries, oral infection, and decreased taste, which dramatically affect the quality of patient's life. Functional biomaterials hold great potential for tissue regeneration in damaged or dysfunctional SGs and maintaining the good health of oral cavity. Herein, we prepared an injectable hydrogel derived from decellularized porcine submandibular glands (pDSG-gel), the material and biological properties of the hydrogel were systematically investigated. First, good biocompatibility and bioactivities of the pDSG-gel were validated in 2D and 3D cultures of primary submandibular gland mesenchymal stem cells (SGMSCs). Especially, the pDSG-gel effectively facilitated SGMSCs migration and recruitment through the activation of PI3K/AKT signaling pathway, suggested by transcriptomic analysis and immunoblotting. Furthermore, proteomic analysis of the pDSG revealed that many extracellular matrix components and secreted factors were preserved, which may contribute to stem cell homing. The recruitment of endogenous SG cells was confirmed in vivo, upon in situ injection of the pDSG-gel into the defective SGs in rats. Acinar and ductal-like structures were evident in the injury sites after pDSG-gel treatment, suggesting the reconstruction of functional SG units. Meanwhile, histological characterizations showed that the administration of the pDSG-gel also significantly suppressed fibrogenesis within the injured SG tissues. Taken together, this tissue-specific hydrogel provides a pro-regenerative microenvironment for endogenous SG regeneration and holds great promise as a powerful and bioactive material for future treatments of SG diseases. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) has been acknowledged as one of the most promising biomaterials that recapitalizes the microenvironment in native tissues. Hydrogel derived from the dECM allows in situ administration for tissue repair. Herein, a tissue-specific dECM hydrogel derived from porcine salivary glands (pDSG-gel) was successfully prepared and developed for functional reconstruction of defective salivary gland (SG) tissues. The pDSG-gel effectively accelerated endogenous SG stem cells migration and their recruitment for acinar- and ductal-like regeneration, which was attributed to the activation of PI3K/AKT signaling pathway. Additionally, the introduction of the pDSG-gel resulted in highly suppressed fibrogenesis in the defective tissues. These outcomes indicated that the pDSG-gel holds great potential in clinical translation toward SG regeneration through cell-free treatments.
Collapse
Affiliation(s)
- Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xinyun Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xuefan Zhai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
12
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
13
|
Phan TV, Oo Y, Rodboon T, Nguyen TT, Sariya L, Chaisuparat R, Phoolcharoen W, Yodmuang S, Ferreira JN. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS Technol 2023; 28:278-291. [PMID: 36966988 DOI: 10.1016/j.slast.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Truc T Nguyen
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Mereness JA, Piraino L, Chen CY, Moyston T, Song Y, Shubin A, DeLouise LA, Ovitt CE, Benoit DSW. Slow hydrogel matrix degradation enhances salivary gland mimetic phenotype. Acta Biomater 2023; 166:187-200. [PMID: 37150277 PMCID: PMC10330445 DOI: 10.1016/j.actbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.
Collapse
Affiliation(s)
- Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, United States
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Chiao Yun Chen
- Department of Biomedical Engineering, University of Rochester, United States
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, United States
| | - Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, United States; Knight Campus Department of Bioengineering, Syracuse University, Syracuse, NY, United States
| | - Andrew Shubin
- Department of Biomedical Engineering, University of Rochester, United States; Department of General Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Catherine E Ovitt
- Department of Biomedical Genetics, University of Rochester, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Knight Campus Bioengineering Department, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
15
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
16
|
Viragova S, Aparicio L, Palmerini P, Zhao J, Valencia Salazar LE, Schurer A, Dhuri A, Sahoo D, Moskaluk CA, Rabadan R, Dalerba P. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J Natl Cancer Inst 2023; 115:838-852. [PMID: 37040084 PMCID: PMC10323906 DOI: 10.1093/jnci/djad062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.
Collapse
Affiliation(s)
- Sara Viragova
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Luis Aparicio
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Pierangela Palmerini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Luis E Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Alexandra Schurer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anika Dhuri
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Rebecca and John Moores Comprehensive Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Christopher A Moskaluk
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Phan TV, Oo Y, Ahmed K, Rodboon T, Rosa V, Yodmuang S, Ferreira JN. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS Technol 2023; 28:199-209. [PMID: 37019217 DOI: 10.1016/j.slast.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Hyposalivation and severe dry mouth syndrome are the most common complications in patients with head and neck cancer (HNC) after receiving radiation therapy. Conventional treatment for hyposalivation relies on the use of sialogogues such as pilocarpine; however, their efficacy is constrained by the limited number of remnant acinar cells after radiation. After radiotherapy, the salivary gland (SG) secretory parenchyma is largely destroyed, and due to the reduced stem cell niche, this gland has poor regenerative potential. To tackle this, researchers must be able to generate highly complex cellularized 3D constructs for clinical transplantation via technologies, including those that involve bioprinting of cells and biomaterials. A potential stem cell source with promising clinical outcomes to reserve dry mouth is adipose mesenchymal stem cells (AdMSC). MSC-like cells like human dental pulp stem cells (hDPSC) have been tested in novel magnetic bioprinting platforms using nanoparticles that can bind cell membranes by electrostatic interaction, as well as their paracrine signals arising from extracellular vesicles. Both magnetized cells and their secretome cues were found to increase epithelial and neuronal growth of in vitro and ex vivo irradiated SG models. Interestingly, these magnetic bioprinting platforms can be applied as a high-throughput drug screening system due to the consistency in structure and functions of their organoids. Recently, exogenous decellularized porcine ECM was added to this magnetic platform to stimulate an ideal environment for cell tethering, proliferation, and/or differentiation. The combination of these SG tissue biofabrication strategies will promptly allow for in vitro organoid formation and establishment of cellular senescent organoids for aging models, but challenges remain in terms of epithelial polarization and lumen formation for unidirectional fluid flow. Current magnetic bioprinting nanotechnologies can provide promising functional and aging features to in vitro craniofacial exocrine gland organoids, which can be utilized for novel drug discovery and/or clinical transplantation.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore; Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
19
|
Narendra R, Ninche N, Ghazizadeh S. Functional Differences in the Role of Ductal Stem Cells in Mouse Major Salivary Glands. Stem Cells Dev 2023; 32:152-161. [PMID: 36541354 PMCID: PMC9986005 DOI: 10.1089/scd.2022.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Salivary gland (SG) stem cells are the only cell population capable of extended growth in organotypic cultures, and thus they are considered a source for cell-based therapies aimed at SG regeneration. Studies in the mouse submandibular gland have identified only one population of tissue stem cells capable of salisphere formation in culture. These cells are actively dividing ductal cells that express epithelial progenitor markers keratin (K) 5/14 and normally function as lineage-restricted stem cells for differentiated ductal cells. In response to severe injury, however, these cells undergo a multipotency switch and contribute to regeneration of multiple cell lineages, including secretory units or acini. Little is known about the mechanism of cell renewal and regeneration in the other major SGs and whether comparable stem cell populations exist in the parotid (PG) and sublingual (SLG) glands. Using in vivo and ex vivo models, we show that both the PG and SLG contain a small population of K14-expressing ductal cells. Although they do not cycle frequently, K14-expressing ductal cells are the source of salisphere-forming cells in these glands. Long-term lineage tracing studies in adult mouse PGs showed a progenitor-progeny relationship between the K14-expressing ductal cells and the K19-expressing ductal cells in the striated ducts. In the SLGs, however, K14-expressing ductal cells did not generate a differentiated cell progeny for a 6-month period of observation and did not make a significant contribution to regeneration of gland after severe injury. These studies reveal the functional similarities and differences in tissue stem cells among the major SGs and have implications for developing strategies for SG regenerative therapies.
Collapse
Affiliation(s)
- Raksha Narendra
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Ninche Ninche
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Soosan Ghazizadeh
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
20
|
Schaafsma P, Kracht L, Baanstra M, Jellema-de Bruin AL, Coppes RP. Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels. Front Mol Biosci 2023; 10:1100541. [PMID: 36818041 PMCID: PMC9932530 DOI: 10.3389/fmolb.2023.1100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.
Collapse
Affiliation(s)
- Paulien Schaafsma
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne L. Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: Robert P. Coppes,
| |
Collapse
|
21
|
Zhang S, Sui Y, Zhang Y, Yan S, Ding C, Feng Y, Xiong J, Wei S. Derivation of Human Salivary Epithelial Progenitors from Pluripotent Stem Cells via Activation of RA and Wnt Signaling. Stem Cell Rev Rep 2023; 19:430-442. [PMID: 35948781 DOI: 10.1007/s12015-022-10431-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Derivation of salivary gland epithelial progenitors (SGEPs) from human pluripotent stem cells (hPSCs) has great potential in developmental biology and regenerative medicine. At present, no efficient method is available to generate salivary gland cells from hPSCs. Here, we described for the first time a robust protocol for direct differentiation of hPSCs into SGEPs by mimicking retinoic acid and Wnt signaling. These hPSC-derived SGEPs expressed SOX9, KRT5, and KRT19, important progenitor markers of developing salivary glands. CD24 and α-SMA positive cells, capable of restoring the functions of injured salivary glands, were also present in SGEP cultures. Importantly, RNA-sequencing revealed that the SGEPs resembled the transcript profiles of human fetal submandibular glands. Therefore, we provided an efficient protocol to induce hPSCs differentiation into SGEPs. Our study provides a foundation for generating functional hPSCs derived salivary gland acinar cells and three-dimensional organoids, potentially serving as new models for basic study and future translational research.
Collapse
Affiliation(s)
- Siqi Zhang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China.,Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yi Sui
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yifei Zhang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Shuang Yan
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Chong Ding
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yanrui Feng
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Jingwei Xiong
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shicheng Wei
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Yang H, Liang Q, Zhang J, Liu J, Wei H, Chen H, Wei W, Chen D, Zhao Y. Establishment of papillary thyroid cancer organoid lines from clinical specimens. Front Endocrinol (Lausanne) 2023; 14:1140888. [PMID: 36992805 PMCID: PMC10040568 DOI: 10.3389/fendo.2023.1140888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Papillary thyroid cancer (PTC) is a common malignancy of the endocrine system, and its morbidity and mortality are increasing year by year. Traditional two-dimensional culture of cell lines lacks tissue structure and is difficult to reflect the heterogeneity of tumors. The construction of mouse models is inefficient and time-consuming, which is difficult to be applied to individualized treatment on a large scale. Clinically relevant models that recapitulate the biology of their corresponding parental tumors are urgently needed. Based on clinical specimens of PTC, we have successfully established patient-derived organoids by exploring and optimizing the organoid culture system. These organoids have been cultured stably for more than 5 passages and successfully cryopreserved and retried. Histopathological and genome analysis revealed a high consistency of the histological architectures as well as mutational landscapes between the matched tumors and organoids. Here, we present a fully detailed method to derive PTC organoids from clinical specimens. Using this approach, we have developed PTC organoid lines from thyroid cancer samples with a success rate of 77.6% (38/49) until now.
Collapse
Affiliation(s)
- Hao Yang
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingzhuang Liang
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Jinkun Liu
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Hao Wei
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Haibo Chen
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- *Correspondence: Yongsheng Zhao, ; Dong Chen,
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- *Correspondence: Yongsheng Zhao, ; Dong Chen,
| |
Collapse
|
23
|
Chansaenroj A, Adine C, Charoenlappanit S, Roytrakul S, Sariya L, Osathanon T, Rungarunlert S, Urkasemsin G, Chaisuparat R, Yodmuang S, Souza GR, Ferreira JN. Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair. Bioact Mater 2022; 18:151-163. [PMID: 35387159 PMCID: PMC8961305 DOI: 10.1016/j.bioactmat.2022.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
Salivary glands (SG) are exocrine organs with secretory units commonly injured by radiotherapy. Bio-engineered organoids and extracellular vesicles (EV) are currently under investigation as potential strategies for SG repair. Herein, three-dimensional (3D) cultures of SG functional organoids (SGo) and human dental pulp stem cells (hDPSC) were generated by magnetic 3D bioassembly (M3DB) platforms. Fibroblast growth factor 10 (FGF10) was used to enrich the SGo in secretory epithelial units. After 11 culture days via M3DB, SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation. To consistently develop 3D hDPSC in vitro, 3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation. EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures. EV were characterized by nanoparticle tracking analysis, electron microscopy and immunoblotting. EV were in the exosome range for hDPSC (diameter: 88.03 ± 15.60 nm) and for SGo (123.15 ± 63.06 nm). Upon ex vivo administration, exosomes derived from SGo significantly stimulated epithelial growth (up to 60%), mitosis, epithelial progenitors and neuronal growth in injured SG; however, such biological effects were less distinctive with the ones derived from hDPSC. Next, these exosome biological effects were investigated by proteomic arrays. Mass spectrometry profiling of SGo exosomes predicted that cellular growth, development and signaling was due to known and undocumented molecular targets downstream of FGF10. Semaphorins were identified as one of the novel targets requiring further investigations. Thus, M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Christabella Adine
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 119077, Singapore, Singapore
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ganokon Urkasemsin
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Glauco R. Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
- Nano3D Biosciences Inc., Houston, TX, 77030, USA
- Greiner Bio-One North America Inc, Monroe, NC, 28110, USA
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|
24
|
Serrano Martinez P, Maimets M, Bron R, van Os R, de Haan G, Pringle S, Coppes RP. Role of quiescent cells in the homeostatic maintenance of the adult submandibular salivary gland. iScience 2022; 25:105047. [PMID: 36147959 PMCID: PMC9485076 DOI: 10.1016/j.isci.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/08/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Stem/progenitor cells are required for maintenance of salivary gland (SG) function and serve as untapped reservoirs to create functional cells. Despite recent advancements in the identification of stem/progenitor pools, in the submandibular gland (SMG), a knowledge gap remains. Furthermore, the contribution to adult SMG homeostasis of stem/progenitor cells originating from embryonic development is unclear. Here, we employ an H2B-GFP embryonic and adult pulse-and-chase system to characterize potential SMG stem/progenitor cells (SGSCs) based on quiescence at different stages. Phenotypical profiling of quiescent cells in the SMG revealed that label-retaining cells (LRCs) of embryonic or adult origin co-localized with CK8+ ductal or vimentin + mesenchymal, but not with CK5+ or CK14 + stem/progenitor cells. These SMG LRCs failed to self-renew in vitro while non-label retaining cells displayed differentiation and long-term expansion potential as organoids. Collectively, our data suggest that an active cycling population of cells is responsible for SMG homeostasis with organoid forming potential. Embryonic quiescent cells do not retain stemness in the adult submandibular gland (SMG) Postnatal quiescent cells do not exhibit stem/progenitor cell potency in the adult SMG Quiescent cells do not contribute to the homeostatic maintenance of the murine SMG Adult murine SMG stem/progenitor cells are likely to be an actively cycling population
Collapse
Affiliation(s)
- Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Martti Maimets
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Reinier Bron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Ronald van Os
- Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Gerald de Haan
- Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
25
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Ou M, Li Q, Ling X, Yao J, Mo X. Cocktail Formula and Application Prospects for Oral and Maxillofacial Organoids. Tissue Eng Regen Med 2022; 19:913-925. [PMID: 35612711 DOI: 10.1007/s13770-022-00455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Oral and maxillofacial organoids (OMOs), tiny tissues and organs derived from stem cells cultured through 3-d cell culture models, can fully summarize the cell tissue structure, physiological functions and biological characteristics of the source tissues in the body. OMOs are applied in areas such as disease modelling, developmental and regenerative medicine, drug screening, personalized treatment, etc. Although the construction of organoids in various parts of the oral and maxillofacial (OM) region has achieved considerable success, the existing cocktail formulae (construction strategies) are not widely applicable for tissues of various sources due to factors including the heterogeneity of the source tissues and the dependence on laboratory technology. Most of their formulae are based on growth factor niches containing expensive recombinant proteins with their efficiency remaining to be improved. In view of this, the cocktail formulae of various parts of the OM organs are reviewed with further discussion of the application and prospects for those OMOs to find some affordable cocktail formula with strong operability and high repeatability for various maxillofacial organs. The results may help improve the efficiency of organoid construction in the laboratory and accelerate the pace of the clinical use of organoid technology.
Collapse
Affiliation(s)
- Mingyu Ou
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Qing Li
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Xiaofang Ling
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China. .,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China.
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.
| |
Collapse
|
27
|
Shiihara M, Furukawa T. Application of Patient-Derived Cancer Organoids to Personalized Medicine. J Pers Med 2022; 12:jpm12050789. [PMID: 35629212 PMCID: PMC9146789 DOI: 10.3390/jpm12050789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cell models are indispensable for the research and development of cancer therapies. Cancer medications have evolved with the establishment of various cell models. Patient-derived cell lines are very useful for identifying characteristic phenotypes and susceptibilities to anticancer drugs as well as molecularly targeted therapies for tumors. However, conventional 2-dimensional (2D) cell cultures have several drawbacks in terms of engraftment rate and phenotypic changes during culture. The organoid is a recently developed in vitro model with cultured cells that form a three-dimensional structure in the extracellular matrix. Organoids have the capacity to self-renew and can organize themselves to resemble the original organ or tumor in terms of both structure and function. Patient-derived cancer organoids are more suitable for the investigation of cancer biology and clinical medicine than conventional 2D cell lines or patient-derived xenografts. With recent advances in genetic analysis technology, the genetic information of various tumors has been clarified, and personalized medicine based on genetic information has become clinically available. Here, we have reviewed the recent advances in the development and application of patient-derived cancer organoids in cancer biology studies and personalized medicine. We have focused on the potential of organoids as a platform for the identification and development of novel targeted medicines for pancreatobiliary cancer, which is the most intractable cancer.
Collapse
Affiliation(s)
| | - Toru Furukawa
- Correspondence: ; Tel.: +81-22-717-8149; Fax: +81-22-717-8053
| |
Collapse
|
28
|
Viswanathan V, Cao H, Saiki J, Jiang D, Mattingly A, Nambiar D, Bloomstein J, Li Y, Jiang S, Chamoli M, Sirjani D, Kaplan M, Holsinger FC, Liang R, Von Eyben R, Jiang H, Guan L, Lagory E, Feng Z, Nolan G, Ye J, Denko N, Knox S, Rosen DM, Le QT. Aldehyde dehydrogenase 3A1 deficiency leads to mitochondrial dysfunction and impacts salivary gland stem cell phenotype. PNAS NEXUS 2022; 1:pgac056. [PMID: 35707206 PMCID: PMC9186046 DOI: 10.1093/pnasnexus/pgac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/10/2022] [Indexed: 01/29/2023]
Abstract
Adult salivary stem/progenitor cells (SSPC) have an intrinsic property to self-renew in order to maintain tissue architecture and homeostasis. Adult salivary glands have been documented to harbor SSPC, which have been shown to play a vital role in the regeneration of the glandular structures postradiation damage. We have previously demonstrated that activation of aldehyde dehydrogenase 3A1 (ALDH3A1) after radiation reduced aldehyde accumulation in SSPC, leading to less apoptosis and improved salivary function. We subsequently found that sustained pharmacological ALDH3A1 activation is critical to enhance regeneration of murine submandibular gland after radiation damage. Further investigation shows that ALDH3A1 function is crucial for SSPC self-renewal and survival even in the absence of radiation stress. Salivary glands from Aldh3a1 -/- mice have fewer acinar structures than wildtype mice. ALDH3A1 deletion or pharmacological inhibition in SSPC leads to a decrease in mitochondrial DNA copy number, lower expression of mitochondrial specific genes and proteins, structural abnormalities, lower membrane potential, and reduced cellular respiration. Loss or inhibition of ALDH3A1 also elevates ROS levels, depletes glutathione pool, and accumulates ALDH3A1 substrate 4-hydroxynonenal (4-HNE, a lipid peroxidation product), leading to decreased survival of murine SSPC that can be rescued by treatment with 4-HNE specific carbonyl scavengers. Our data indicate that ALDH3A1 activity protects mitochondrial function and is important for the regeneration activity of SSPC. This knowledge will help to guide our translational strategy of applying ALDH3A1 activators in the clinic to prevent radiation-related hyposalivation in head and neck cancer patients.
Collapse
Affiliation(s)
- Vignesh Viswanathan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Julie Saiki
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aaron Mattingly
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dhanya Nambiar
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Joshua Bloomstein
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yang Li
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Davud Sirjani
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Kaplan
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - F Christopher Holsinger
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel Liang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rie Von Eyben
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Edward Lagory
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Denko
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daria-Mochly Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Sun CP, Lan HR, Fang XL, Yang XY, Jin KT. Organoid Models for Precision Cancer Immunotherapy. Front Immunol 2022; 13:770465. [PMID: 35450073 PMCID: PMC9016193 DOI: 10.3389/fimmu.2022.770465] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer immunotherapy is exploited for the treatment of disease by modulating the immune system. Since the conventional in vivo animal and 2D in vitro models insufficiently recapitulate the complex tumor immune microenvironment (TIME) of the original tumor. In addition, due to the involvement of the immune system in cancer immunotherapy, more physiomimetic cancer models, such as patient-derived organoids (PDOs), are required to evaluate the efficacy of immunotherapy agents. On the other hand, the dynamic interactions between the neoplastic cells and non-neoplastic host components in the TIME can promote carcinogenesis, tumor metastasis, cancer progression, and drug resistance of cancer cells. Indeed, tumor organoid models can properly recapitulate the TIME by preserving endogenous stromal components including various immune cells, or by adding exogenous immune cells, cancer-associated fibroblasts (CAFs), vasculature, and other components. Therefore, organoid culture platforms could model immunotherapy responses and facilitate the immunotherapy preclinical testing. Here, we discuss the various organoid culture approaches for the modeling of TIME and the applications of complex tumor organoids in testing cancer immunotherapeutics and personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Cai-Ping Sun
- Department of Medical Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xing-Liang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University College of Medicine (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xiao-Yun Yang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
30
|
Ogundipe V, Plukker J, Links T, Coppes R. Thyroid Gland Organoids: Current models and insights for application in tissue engineering. Tissue Eng Part A 2022; 28:500-510. [PMID: 35262402 DOI: 10.1089/ten.tea.2021.0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The incidence of treatment of thyroid disease and consequential hypothyroidism has been increasing over the past few years. To maintain adequate thyroid hormone levels, these patients require daily supplementation with levothyroxine (L-T4) for the rest of their lives. However, a large part of these patients experiences difficulties due to the medication, which causes a decrease in their quality of life. Regenerative medicine through tissue engineering could provide a potential therapy by establishing tissue engineering models, such as those employing thyroid-derived organoids. The development of such treatment options may replace the need for additional hormonal replacement therapy. This review aims to highlight the current knowledge on thyroid regenerative medicine using organoids for tissue engineering, and to discuss insights into potential methods to optimize thyroid engineering culture systems. Finally, we will describe several challenges faced when utilising these models.
Collapse
Affiliation(s)
- Vivian Ogundipe
- University Medical Centre Groningen, 10173, Biomedical Sciences of Cells and Systems, Groningen, Groningen, Netherlands;
| | - John Plukker
- University Medical Centre Groningen, 10173, Surgical Oncology, Groningen, Netherlands;
| | - Thera Links
- University Medical Centre Groningen, 10173, Endocrinology, Groningen, Groningen, Netherlands;
| | - Rob Coppes
- University Medical Centre Groningen, 10173, Biomedical Sciences of Cells and Sytems, Groningen, Netherlands;
| |
Collapse
|
31
|
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering (Basel) 2022; 9:bioengineering9010038. [PMID: 35049747 PMCID: PMC8773299 DOI: 10.3390/bioengineering9010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.
Collapse
|
32
|
Induction of salivary gland-like cells from epithelial tissues transdifferentiated from mouse embryonic fibroblasts. Biochem Biophys Res Commun 2022; 586:55-62. [PMID: 34826701 DOI: 10.1016/j.bbrc.2021.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022]
Abstract
Salivary gland hypofunction due to radiation therapy for head and neck cancer or Sjögren syndrome may cause various oral diseases, which can lead to a decline in the quality of life. Cell therapy using salivary gland stem cells is a promising method for restoring hypofunction. Herein, we show that salivary gland-like cells can be induced from epithelial tissues that were transdifferentiated from mouse embryonic fibroblasts (MEFs). We introduced four genes, Dnp63a, Tfap2a, Grhl2, and Myc (PTMG) that are known to transdifferentiate fibroblasts into oral mucosa-like epithelium in vivo into MEFs. MEFs overexpressing these genes showed epithelial cell characteristics, such as cobblestone appearance and E-cadherin positivity, and formed oral epithelial-like tissue under air-liquid interface culture conditions. The epithelial sheet detached from the culture dish was infected with adenoviruses encoding Sox9 and Foxc1, which we previously identified as essential factors to induce salivary gland formation. The cells detached from the cell sheet formed spheres 10 days after infection and showed a branching morphology. The spheres expressed genes encoding basal/myoepithelial markers, cytokeratin 5, cytokeratin 14, acinar cell marker, aquaporin 5, and the myoepithelial marker α-smooth muscle actin. The dissociated cells of these primary spheres had the ability to form secondary spheres. Taken together, our results provide a new strategy for cell therapy of salivary glands and hold implications in treating patients with dry mouth.
Collapse
|
33
|
Rocchi C, Cinat D, Serrano Martinez P, Bruin ALJD, Baanstra M, Brouwer U, Del Angel Zuivre C, Schepers H, van Os R, Barazzuol L, Coppes RP. The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Sci Signal 2021; 14:eabk0599. [PMID: 34874744 DOI: 10.1126/scisignal.abk0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Cinthya Del Angel Zuivre
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Ronald van Os
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
34
|
Takamatsu K, Tanaka J, Katada R, Azuma K, Takakura I, Aota K, Kamatani T, Shirota T, Inoue S, Mishima K. Aging-associated stem/progenitor cell dysfunction in the salivary glands of mice. Exp Cell Res 2021; 409:112889. [PMID: 34678306 DOI: 10.1016/j.yexcr.2021.112889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Although stem cell aging leads to a decline in tissue homeostasis and regenerative capacity, it remains unclear whether salivary gland stem cell function changes during this process. However, the salivary glands are gradually replaced by connective tissue during aging. Here, we show a decline in the stem cell ability of CD133-positive stem/progenitor cells in the salivary glands of aged mice. The CD133-positive cells were isolated from young, adult, and aged mice. The number of CD133-positive cells was significantly decreased in aged mice. They also showed a lower sphere formation capacity compared to young and adult mice. RNA sequencing revealed that CD133-positive cells in aged mice exhibited lower gene expression of several aging-related genes, including FoxO3a, than those in young and adult mice. Salivary gland cells infected with a recombinant lentivirus encoding the FoxO3a gene showed a reduction in oxidative stress induced by hydrogen peroxide compared with those infected with a control virus. Thus, FoxO3a may inhibit stem cell aging via oxidative stress.
Collapse
Affiliation(s)
- Koki Takamatsu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryogo Katada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ikuko Takakura
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Kamatani
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
35
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
36
|
Sox9 + cells are required for salivary gland regeneration after radiation damage via the Wnt/β-catenin pathway. J Genet Genomics 2021; 49:230-239. [PMID: 34757039 DOI: 10.1016/j.jgg.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
Radiotherapy for head and neck cancer can cause serious side effects, including severe damage to the salivary glands, resulting in symptoms such as xerostomia, dental caries, and oral infection. Due to the lack of long-term treatment for the symptoms of xerostomia, current research has focused on finding endogenous stem cells that can differentiate into various cell lineages to replace lost tissue and restore functions. Here, we report that Sox9+ cells can differentiate into various salivary epithelial cell lineages under homeostatic conditions. After ablating Sox9+ cells, the salivary glands of irradiated mice showed more severe phenotypes and the reduced proliferative capacity. Analysis of online single-cell RNA-sequencing data reveals the enrichment of the Wnt/β-catenin pathway in the Sox9+ cell population. Furthermore, treatment with a Wnt/β-catenin inhibitor in irradiated mice inhibits the regenerative capability of Sox9+ cells. Finally, we show that Sox9+ cells are capable of forming organoids in vitro and that transplanting these organoids into salivary glands after radiation partially restored salivary gland functions. These results suggest that regenerative therapy targeting Sox9+ cells is a promising approach to treat radiation-induced salivary gland injury.
Collapse
|
37
|
Organoid Models for Salivary Gland Biology and Regenerative Medicine. Stem Cells Int 2021; 2021:9922597. [PMID: 34497651 PMCID: PMC8421180 DOI: 10.1155/2021/9922597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The salivary gland is composed of an elegant epithelial network that secrets saliva and maintains oral homeostasis. While cell lines and animal models furthered our understanding of salivary gland biology, they cannot replicate key aspects of the human salivary gland tissue, particularly the complex architecture and microenvironmental features that dictate salivary gland function. Organoid cultures provide an alternative system to recapitulate salivary gland tissue in vitro, and salivary gland organoids have been generated from pluripotent stem cells and adult stem/progenitor cells. In this review, we describe salivary gland organoids, the advances and limitations, and the promising potential for regenerative medicine.
Collapse
|
38
|
Piraino LR, Benoit DSW, DeLouise LA. Salivary Gland Tissue Engineering Approaches: State of the Art and Future Directions. Cells 2021; 10:1723. [PMID: 34359893 PMCID: PMC8303463 DOI: 10.3390/cells10071723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Salivary gland regeneration is important for developing treatments for radiation-induced xerostomia, Sjögren's syndrome, and other conditions that cause dry mouth. Culture conditions adopted from tissue engineering strategies have been used to recapitulate gland structure and function to study and regenerate the salivary glands. The purpose of this review is to highlight current trends in the field, with an emphasis on soluble factors that have been shown to improve secretory function in vitro. A PubMed search was conducted to identify articles published in the last 10 years and articles were evaluated to identify the most promising approaches and areas for further research. Results showed increasing use of extracellular matrix mimetics, such as Matrigel®, collagen, and a variety of functionalized polymers. Soluble factors that provide supportive cues, including fibroblast growth factors (FGFs) and neurotrophic factors, as well as chemical inhibitors of Rho-associated kinase (ROCK), epidermal growth factor receptor (EGFR), and transforming growth factor β receptor (TGFβR) have shown increases in important markers including aquaporin 5 (Aqp5); muscle, intestine, and stomach expression 1 (Mist1); and keratin (K5). However, recapitulation of tissue function at in vivo levels is still elusive. A focus on identification of soluble factors, cells, and/or matrix cues tested in combination may further increase the maintenance of salivary gland secretory function in vitro. These approaches may also be amenable for translation in vivo to support successful regeneration of dysfunctional glands.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Xia T, Du W, Chen X, Zhang Y. Organoid models of the tumor microenvironment and their applications. J Cell Mol Med 2021; 25:5829-5841. [PMID: 34033245 PMCID: PMC8256354 DOI: 10.1111/jcmm.16578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Wen‐Lin Du
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiao‐Yi Chen
- Clinical Research InstituteZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - You‐Ni Zhang
- Department of Laboratory MedicineTiantai People's HospitalTaizhouChina
| |
Collapse
|
40
|
Sağraç D, Şişli HB, Şenkal S, Hayal TB, Şahin F, Doğan A. Organoids in Tissue Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:45-64. [PMID: 34164796 DOI: 10.1007/5584_2021_647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvements in stem cell-based research and genetic modification tools enable stem cell-based tissue regeneration applications in clinical therapies. Although inadequate cell numbers in culture, invasive isolation procedures, and poor survival rates after transplantation remain as major challenges, cell-based therapies are useful tools for tissue regeneration.Organoids hold a great promise for tissue regeneration, organ and disease modeling, drug testing, development, and genetic profiling studies. Establishment of 3D cell culture systems eliminates the disadvantages of 2D models in terms of cell adaptation and tissue structure and function. Organoids possess the capacity to mimic the specific features of tissue architecture, cell-type composition, and the functionality of real organs while preserving the advantages of simplified and easily accessible cell culture models. Thus, organoid technology might emerge as an alternative to cell and tissue transplantation. Although transplantation of various organoids in animal models has been demonstrated, liöitations related to vascularized structure formation, cell viability and functionality remain as obstacles in organoid-based transplantation therapies. Clinical applications of organoid-based transplantations might be possible in the near future, when limitations related to cell viability and tissue integration are solved. In this review, the literature was analyzed and discussed to explore the current status of organoid-based transplantation studies.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
41
|
Akashi Y, Nemoto A, Nakajima K, Kokubun K, Murakami S, Inoue T, Matsuzaka K. The effect of fibroblast growth factor 7 on human dental pulp stem cells for differentiation to AQP5-positive and αSMA-positive cells in vitro and in vivo. Clin Exp Dent Res 2021; 7:344-353. [PMID: 33783980 PMCID: PMC8204033 DOI: 10.1002/cre2.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Transplantation of stem cells into wounds has become popular in regeneration therapies. As stem cells for transplantation, human dental pulp stem cells (hDPSCs) are known to be pluripotent cells that are relatively easy to collect from the pulp of deciduous or wisdom teeth. The purpose of this study was to investigate whether hDPSCs treated with fibroblast growth factor 7 (FGF7) would contribute to the regeneration of wounded rat submandibular glands (SMGs). MATERIALS AND METHODS In in vitro studies, hDPSCs were treated with or without FGF7 and mRNA expression levels were examined at days 3, 7 and 14 using qRT-PCR. The target genes analyzed were BMI1 as an undifferentiated marker, AQP5 as an acinar cell marker, CK19 as a ductal epithelial cell marker, αSMA as a myoepithelial cell marker and VIMENTIN as a fibroblast marker. In in vivo studies, hDPSCs treated with or without FGF7 for 14 days were mixed with type I collagen gels and were transplanted into wounded rat SMGs. Hematoxylin-Eosin and immunohistochemical staining were performed at days 3 and 7, and the numbers of positive cells were counted. The primary antibodies used were against BMI1, AQP5, αSMA, PanCK and VIMENTIN. RESULTS In the in vitro studies, mRNA levels of BMI1 were decreased and αSMA were increased at days 3, 7 and 14, while AQP5 was increased at day 14 in the FGF7 group. In the in vivo studies, the proliferation of hDPSCs and cell islands was observed at day 7 in the FGF7 group. Few BMI1-positive cells were observed, while numbers of AQP5-positive and αSMA-positive cells were increased at days 3 and 7 in the FGF7 group. Moreover, cell islands were AQP5-positive. CONCLUSION These results suggest that FGF7-treated hDPSCs differentiate into AQP5-positive and αSMA-positive cells. Moreover, AQP5-positive cell aggregations were formed.
Collapse
Affiliation(s)
| | - Atsushi Nemoto
- Department of Pathology, Tokyo Dental College, Tokyo, Japan
| | - Kei Nakajima
- Department of Pathology, Tokyo Dental College, Tokyo, Japan
| | | | - Satoshi Murakami
- Department of Oral Pathology, Matsumoto Dental University, Shiojiri, Japan
| | | | | |
Collapse
|
42
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
43
|
Kim K, Min S, Kim D, Kim H, Roh S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021; 26:molecules26092658. [PMID: 34062818 PMCID: PMC8124333 DOI: 10.3390/molecules26092658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland stem cells (SGSCs) are potential cell sources for the treatment of salivary gland diseases. The control of cell survival is an essential factor for applying stem cells to regenerative medicine or stem cell-based research. The purpose of this study was to investigate the effects of the ROCK inhibitor Y-27632 on the survival of SGSCs and its underlying mechanisms. SGSCs were isolated from mouse submandibular glands and cultured in suspension. Treatment with Y-27632 restored the viability of SGSCs that was significantly decreased during isolation and the subsequent culture. Y-27632 upregulated the expression of anti-apoptotic protein BCL-2 in SGSCs and, in the apoptosis assay, significantly reduced apoptotic and necrotic cell populations. Matrigel was used to mimic the extracellular environment of an intact salivary gland. The expression of genes regulating apoptosis and the ROCK signaling pathway was significantly reduced when SGSCs were embedded in Matrigel. SGSCs cultured in Matrigel and treated with Y-27632 showed no difference in the total numbers of spheroids and expression levels of apoptosis-regulating genes. Matrigel-embedded SGSCs treated with Y-27632 increased the number of spheroids with budding structures and the expression of acinar cell-specific marker AQP5. We demonstrate the protective effects of Y-27632 against dissociation-induced apoptosis of SGSCs during their culture in vitro.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA;
| | - Hyewon Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-880-2333
| |
Collapse
|
44
|
Ogundipe VML, Groen AH, Hosper N, Nagle PWK, Hess J, Faber H, Jellema AL, Baanstra M, Links TP, Unger K, Plukker JTM, Coppes RP. Generation and Differentiation of Adult Tissue-Derived Human Thyroid Organoids. Stem Cell Reports 2021; 16:913-925. [PMID: 33711265 PMCID: PMC8072035 DOI: 10.1016/j.stemcr.2021.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Total thyroidectomy as part of thyroid cancer treatment results in hypothyroidism requiring lifelong daily thyroid hormone replacement. Unbalanced hormone levels result in persistent complaints such as fatigue, constipation, and weight increase. Therefore, we aimed to investigate a patient-derived thyroid organoid model with the potential to regenerate the thyroid gland. Murine and human thyroid-derived cells were cultured as organoids capable of self-renewal and which expressed proliferation and putative stem cell and thyroid characteristics, without a change in the expression of thyroid tumor-related genes. These organoids formed thyroid-tissue-resembling structures in culture. (Xeno-)transplantation of 600,000 dispersed organoid cells underneath the kidney capsule of a hypothyroid mouse model resulted in the generation of hormone-producing thyroid-resembling follicles. This study provides evidence that thyroid-lineage-specific cells can form organoids that are able to self-renew and differentiate into functional thyroid tissue. Subsequent (xeno-)transplantation of these thyroid organoids demonstrates a proof of principle for functional miniature gland formation.
Collapse
Affiliation(s)
- Vivian M L Ogundipe
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Andries H Groen
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Nynke Hosper
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Peter W K Nagle
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg 85764, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Hette Faber
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Anne L Jellema
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Thera P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg 85764, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - John T M Plukker
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands.
| |
Collapse
|
45
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
46
|
Rocchi C, Barazzuol L, Coppes RP. The evolving definition of salivary gland stem cells. NPJ Regen Med 2021; 6:4. [PMID: 33526786 PMCID: PMC7851389 DOI: 10.1038/s41536-020-00115-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the salivary gland and irreversible hyposalivation are the main side effects of radiotherapy treatment for head and neck cancer leading to a drastic decrease of the quality of life of the patients. Approaches aimed at regenerating damaged salivary glands have been proposed as means to provide long-term restoration of tissue function in the affected patients. In studies to elucidate salivary gland regenerative mechanisms, more and more evidence suggests that salivary gland stem/progenitor cell behavior, like many other adult tissues, does not follow that of the hard-wired professional stem cells of the hematopoietic system. In this review, we provide evidence showing that several cell types within the salivary gland epithelium can serve as stem/progenitor-like cells. While these cell populations seem to function mostly as lineage-restricted progenitors during homeostasis, we indicate that upon damage specific plasticity mechanisms might be activated to take part in regeneration of the tissue. In light of these insights, we provide an overview of how recent developments in the adult stem cell research field are changing our thinking of the definition of salivary gland stem cells and their potential plasticity upon damage. These new perspectives may have important implications on the development of new therapeutic approaches to rescue radiation-induced hyposalivation.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands. .,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands. .,Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
47
|
Abstract
Three-dimensional organoids have been widely used for developmental and disease modeling. Organoids are derived from both adult and pluripotent stem cells. Various types are available for mimicking almost all major organs and tissues in the mouse and human. While culture protocols for stepwise differentiation and long-term expansion are well established, methods for genetic manipulation in organoids still need further standardization. In this review, we summarized different methods for organoid genetics and provide the pros and cons of each method for designing an optimal strategy.
Collapse
|
48
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
49
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
50
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|