1
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
2
|
Gonzalez Galofre ZN, Kilpatrick AM, Marques M, Sá da Bandeira D, Ventura T, Gomez Salazar M, Bouilleau L, Marc Y, Barbosa AB, Rossi F, Beltran M, van de Werken HJG, van IJcken WFJ, Henderson NC, Forbes SJ, Crisan M. Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo. Nat Commun 2024; 15:1653. [PMID: 38395882 PMCID: PMC10891074 DOI: 10.1038/s41467-024-44913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.
Collapse
Affiliation(s)
- Zaniah N Gonzalez Galofre
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Diana Sá da Bandeira
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Léa Bouilleau
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yvan Marc
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Ana B Barbosa
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 GE, Rotterdam, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Vink CS, Dzierzak E. The (intra-aortic) hematopoietic cluster cocktail: what is in the mix? Exp Hematol 2023; 118:1-11. [PMID: 36529317 DOI: 10.1016/j.exphem.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The adult-definitive hematopoietic hierarchy and hematopoietic stem cells (HSCs) residing in the bone marrow are established during embryonic development. In mouse, human, and many other mammals, it is the sudden formation of so-called intra-aortic/arterial hematopoietic clusters (IAHCs) that best signifies and visualizes this de novo generation of HSCs and hematopoietic progenitor cells (HPCs). Cluster cells arise through an endothelial-to-hematopoietic transition and, for some time, express markers/genes of both tissue types, whilst acquiring more hematopoietic features and losing endothelial ones. Among several hundreds of IAHC cells, the midgestation mouse embryo contains only very few bona fide adult-repopulating HSCs, suggestive of a challenging cell fate to achieve. Most others are HPCs of various types, some of which have the potential to mature into HSCs in vitro. Based on the number of cells that reveal hematopoietic function, a fraction of IAHC cells is uncharacterized. This review aims to explore the current state of knowledge on IAHC cells. We will describe markers useful for isolation and characterization of these fleetingly produced, yet vitally important, cells and for the refined enrichment of the HSCs they contain, and speculate on the role of some IAHC cells that are as-yet functionally uncharacterized.
Collapse
Affiliation(s)
- Chris S Vink
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK
| | - Elaine Dzierzak
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK.
| |
Collapse
|
4
|
López DA, Beaudin AE. Isolation and Characterization of Fetal Liver Hematopoietic Stem Cells. Methods Mol Biol 2023; 2567:99-112. [PMID: 36255697 DOI: 10.1007/978-1-0716-2679-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hematopoietic stem cells (HSCs) are responsible for the generation and maintenance of pools of multipotent precursors that ultimately give rise to all fully differentiated blood and immune cells. Proper identification and isolation of HSCs for functional analysis has greatly facilitated our understanding of both normal and abnormal adult hematopoiesis. Whereas adult hematopoiesis in mice and humans is driven by quiescent HSCs that reside almost exclusively within the bone marrow (BM), developmental hematopoiesis is characterized by a series of transient progenitors driving waves of increasingly mature hematopoietic cell production that occur across multiple anatomical sites. These waves of hematopoietic cell production are also responsible for the generation of distinct immune cell populations during development that persist into adulthood and contribute uniquely to adult immunity. Therefore, methods to properly isolate and characterize fetal progenitors with high purity across development become increasingly important not only for defining developmental hematopoietic pathways, but also for understanding the contribution of developmental hematopoiesis to the immune system. Here, we describe and discuss methods and considerations for the isolation and characterization of HSCs from the fetal liver, the primary hematopoietic organ during fetal development.
Collapse
Affiliation(s)
- Diego A López
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna E Beaudin
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
López DA, Apostol AC, Lebish EJ, Valencia CH, Romero-Mulero MC, Pavlovich PV, Hernandez GE, Forsberg EC, Cabezas-Wallscheid N, Beaudin AE. Prenatal inflammation perturbs murine fetal hematopoietic development and causes persistent changes to postnatal immunity. Cell Rep 2022; 41:111677. [PMID: 36417858 PMCID: PMC10184520 DOI: 10.1016/j.celrep.2022.111677] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) respond directly to inflammation and infection, causing both acute and persistent changes to quiescence, mobilization, and differentiation. Here we show that murine fetal HSPCs respond to prenatal inflammation in utero and that the fetal response shapes postnatal hematopoiesis and immune cell function. Heterogeneous fetal HSPCs show divergent responses to maternal immune activation (MIA), including changes in quiescence, expansion, and lineage-biased output. Single-cell transcriptomic analysis of fetal HSPCs in response to MIA reveals specific upregulation of inflammatory gene profiles in discrete, transient hematopoietic stem cell (HSC) populations that propagate expansion of lymphoid-biased progenitors. Beyond fetal development, MIA causes the inappropriate expansion and persistence of fetal lymphoid-biased progenitors postnatally, concomitant with increased cellularity and hyperresponsiveness of fetal-derived innate-like lymphocytes. Our investigation demonstrates how inflammation in utero can direct the output and function of fetal-derived immune cells by reshaping fetal HSC establishment.
Collapse
Affiliation(s)
- Diego A López
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - April C Apostol
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA, USA
| | - Eric J Lebish
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA, USA
| | - Clint H Valencia
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA, USA
| | | | - Polina V Pavlovich
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gloria E Hernandez
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Anna E Beaudin
- Departments of Internal Medicine and Pathology, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Bigas A, Galán Palma L, Kartha GM, Giorgetti A. Using Pluripotent Stem Cells to Understand Normal and Leukemic Hematopoietic Development. Stem Cells Transl Med 2022; 11:1123-1134. [PMID: 36398586 PMCID: PMC9672852 DOI: 10.1093/stcltm/szac071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2023] Open
Abstract
Several decades have passed since the generation of the first embryonic stem cell (ESC) lines both in mice and in humans. Since then, stem cell biologists have tried to understand their potential biological and clinical uses for their implementation in regenerative medicine. The hematopoietic field was a pioneer in establishing the potential use for the development of blood cell products and clinical applications; however, early expectations have been truncated by the difficulty in generating bonafide hematopoietic stem cells (HSCs). Despite some progress in understanding the origin of HSCs during embryonic development, the reproduction of this process in vitro is still not possible, but the knowledge acquired in the embryo is slowly being implemented for mouse and human pluripotent stem cells (PSCs). In contrast, ESC-derived hematopoietic cells may recapitulate some leukemic transformation processes when exposed to oncogenic drivers. This would be especially useful to model prenatal leukemia development or other leukemia-predisposing syndromes, which are difficult to study. In this review, we will review the state of the art of the use of PSCs as a model for hematopoietic and leukemia development.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Luis Galán Palma
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Gayathri M Kartha
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| |
Collapse
|
7
|
Han XX, Cai C, Yu LM, Wang M, Yang W, Hu DY, Ren J, Zhu LY, Deng JJ, Chen QQ, He H, Gao Z. Glioma stem cells and neural stem cells respond differently to BMP4 signaling. CELL REGENERATION 2022; 11:36. [DOI: 10.1186/s13619-022-00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
AbstractMalignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates, resistance to combined therapy, and dismal prognosis. Glioma stem cells (GSCs) are likely responsible for tumor progression, resistance to therapy, recurrence, and poor prognosis owing to their high self-renewal and tumorigenic potential. As a family member of BMP signaling, bone morphogenetic protein4 (BMP4) has been reported to induce the differentiation of GSCs and neural stem cells (NSCs). However, the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear. In this study, we treated hGSCs and hNSCs with BMP4 and compared the phenotypic and transcriptional changes between these two cell types. Phenotypically, we found that the growth of hGSCs was greatly inhibited by BMP4, but the same treatment only increased the cell size of hNSCs. While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs, the profiles of differentially expressed genes were distinct between the two groups. A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture. Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation. Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.
Collapse
|
8
|
Kapeni C, Nitsche L, Kilpatrick AM, Wilson NK, Xia K, Mirshekar-Syahkal B, Chandrakanthan V, Malouf C, Pimanda JE, Göttgens B, Kirschner K, Tomlinson SR, Ottersbach K. p57Kip2 regulates embryonic blood stem cells by controlling sympathoadrenal progenitor expansion. Blood 2022; 140:464-477. [PMID: 35653588 PMCID: PMC9353151 DOI: 10.1182/blood.2021014853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are of major clinical importance, and finding methods for their in vitro generation is a prime research focus. We show here that the cell cycle inhibitor p57Kip2/Cdkn1c limits the number of emerging HSCs by restricting the size of the sympathetic nervous system (SNS) and the amount of HSC-supportive catecholamines secreted by these cells. This regulation occurs at the SNS progenitor level and is in contrast to the cell-intrinsic function of p57Kip2 in maintaining adult HSCs, highlighting profound differences in cell cycle requirements of adult HSCs compared with their embryonic counterparts. Furthermore, this effect is specific to the aorta-gonad-mesonephros (AGM) region and shows that the AGM is the main contributor to early fetal liver colonization, as early fetal liver HSC numbers are equally affected. Using a range of antagonists in vivo, we show a requirement for intact β2-adrenergic signaling for SNS-dependent HSC expansion. To gain further molecular insights, we have generated a single-cell RNA-sequencing data set of all Ngfr+ sympathoadrenal cells around the dorsal aorta to dissect their differentiation pathway. Importantly, this not only defined the relevant p57Kip2-expressing SNS progenitor stage but also revealed that some neural crest cells, upon arrival at the aorta, are able to take an alternative differentiation pathway, giving rise to a subset of ventrally restricted mesenchymal cells that express important HSC-supportive factors. Neural crest cells thus appear to contribute to the AGM HSC niche via 2 different mechanisms: SNS-mediated catecholamine secretion and HSC-supportive mesenchymal cell production.
Collapse
Affiliation(s)
- Chrysa Kapeni
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Leslie Nitsche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kankan Xia
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Bahar Mirshekar-Syahkal
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Vashe Chandrakanthan
- School of Medical Sciences, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Camille Malouf
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - John E Pimanda
- School of Medical Sciences, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kristina Kirschner
- Institute of Cancer Sciences and
- CRUK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Simon R Tomlinson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Sá da Bandeira D, Kilpatrick AM, Marques M, Gomez-Salazar M, Ventura T, Gonzalez ZN, Stefancova D, Rossi F, Vermeren M, Vink CS, Beltran M, Henderson NC, Jung B, van der Linden R, van de Werken HJG, van Ijcken WFJ, Betsholtz C, Forbes SJ, Cuervo H, Crisan M. PDGFRβ + cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Rep 2022; 40:111114. [PMID: 35858557 PMCID: PMC9638014 DOI: 10.1016/j.celrep.2022.111114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro. PDGFRβ deletion affects hematopoietic development in the AGM in vivo The transcriptome and hematopoietic support of the PDGFRβ-KO niche are altered The osteogenic gene profile and differentiation of KO AGM MSCs are affected PDGFRβ+ early embryonic precursors contribute to EC and HSPC lineages in vivo
Collapse
Affiliation(s)
- Diana Sá da Bandeira
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Alastair Morris Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Mario Gomez-Salazar
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Zaniah Nashira Gonzalez
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Dorota Stefancova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Matthieu Vermeren
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Chris Sebastiaan Vink
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Neil Cowan Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Bongnam Jung
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Reinier van der Linden
- Hubrecht Institute, Department van Oudenaarden Quantitative Biology, 3584 Utrecht, the Netherlands
| | - Harmen Jan George van de Werken
- Erasmus MC Cancer Institute, University Medical Center, Cancer Computational Biology Center, and Departments of Urology and Immunology, 3000 Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 Rotterdam, the Netherlands
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Stuart John Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK.
| |
Collapse
|
10
|
Hashem Boroojerdi M, Hosseinpour Sarmadi V, Maqbool M, Ling KH, Safarzadeh Kozani P, Safarzadeh Kozani P, Ramasamy R. Directional capacity of human mesenchymal stem cells to support hematopoietic stem cell proliferation in vitro. Gene 2022; 820:146218. [PMID: 35134469 DOI: 10.1016/j.gene.2022.146218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Hematopoietic stem cells (HSCs) reside in a specialised microenvironment in the bone marrow, which is majorly composed of mesenchymal stem cells (MSCs) and its' derivatives. This study aimed to investigate the regulatory role of MSCs to decipher the cellular and humoral communications on HSCs' proliferation, self-renewal, and differentiation at the transcriptomic level. MATERIALS AND METHODS Microarray assay was employed to analyse the gene expression profile of HSCs that imparted by MSCs during co-culture. RESULTS The proliferation of human umbilical cord blood-derived HSCs (hUC-HSCs) markedly propagated when MSCs were used as the feeder layer, without disturbing the undifferentiated state of HSCs, and reduced the cell death of HSCs. Upon co-culture with MSCs, the global microarray analysis of HSCs disclosed 712 differentially expressed genes (DEGs) (561 up-regulated and 151 down-regulated). The dysregulations of various transcripts were enriched for cellular functions such as cell cycle (including CCND1), apoptosis (including TNF), and genes related to signalling pathways governing self-renewal, as well as WNT5A from the Wnt signalling pathway, MAPK, Hedgehog, FGF2 from FGF, Jak-STAT, and PITX2 from the TGF-β signalling pathway. To concur this, real-time quantitative PCR (RT-qPCR) was utilised for corroborating the microarray results from five of the most dysregulated genes. CONCLUSION This study elucidates the underlying mechanisms of the mitogenic influences of MSCs on the propagation of HSCs. The exploitation of such mechanisms provides a potential means for achieving larger quantities of HSCs in vitro, thus obviating the need for manipulating their differentiation potential for clinical application.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Maqbool
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Dental Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| |
Collapse
|
11
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
12
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
13
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
14
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
15
|
Warsi S, Blank U, Dahl M, Hooi Min Grahn T, Schmiderer L, Andradottir S, Karlsson S. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica 2021; 106:2203-2214. [PMID: 32675226 PMCID: PMC8327730 DOI: 10.3324/haematol.2019.236125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Life-long production of blood from hematopoietic stem cells (HSC) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal – a cardinal feature of HSC. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is known about its functions in adulthood. Previously, SMAD-mediated BMP signaling has been proven dispensable for HSC. However, the BMP type-II receptor (BMPR-II) is highly expressed in HSC, leaving the possibility that BMP function via alternative pathways. Here, we establish that BMP signaling is required for selfrenewal of adult HSC. Through conditional knockout we show that BMPR-II deficient HSC have impaired self-renewal and regenerative capacity. BMPR-II deficient cells have reduced p38 activation, implying that non-SMAD pathways operate downstream of BMP in HSC. Indeed, a majority of primitive hematopoietic cells do not engage in SMADmediated responses downstream of BMP in vivo. Furthermore, deficiency of BMPR-II results in increased expression of TJP1, a known regulator of self-renewal in other stem cells, and knockdown of TJP1 in primitive hematopoietic cells partly rescues the BMPR-II null phenotype. This suggests TJP1 may be a universal stem cell regulator. In conclusion, BMP signaling, in part mediated through TJP1, is required endogenously by adult HSC to maintain self-renewal capacity and proper resilience of the hematopoietic system during regeneration.
Collapse
Affiliation(s)
- Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ulrika Blank
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maria Dahl
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Pethe P, Noel VS, Kale V. Deterministic role of sonic hedgehog signalling pathway in specification of hemogenic versus endocardiogenic endothelium from differentiated human embryonic stem cells. Cells Dev 2021; 166:203685. [PMID: 33994358 DOI: 10.1016/j.cdev.2021.203685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been shown to have an ability to form a large number of functional endothelial cells in vitro, but generating organ-specific endothelial cells remains a challenge. Sonic hedgehog (SHH) pathway is one of the crucial developmental pathways that control differentiation of many embryonic cell types such as neuroectodermal, primitive gut tube and developing limb buds; SHH pathway is important for functioning of adult cell of skin, bone, liver as well as it regulates haematopoiesis. Misregulation of SHH pathway leads to cancers such as hepatic, pancreatic, basal cell carcinoma, medulloblastoma, etc. However, its role in differentiation of human ESCs into endothelial cells has not been completely elucidated. Here, we examined the role of SHH signalling pathway in endothelial differentiation of hESCs by growing them in the presence of an SHH agonist (purmorphamine) and an SHH antagonist (SANT-1) for a period of 6 days. Interestingly, we found that activation of SHH pathway led to a higher expression of set of transcription factors such as BRACHYURY, GATA2 and RUNX1, thus favouring hemogenic endothelium; whereas inhibition of SHH pathway led to a reduced expression of set of markers such as RUNX1 and BRACHURY, and an increased expression of set of markers - NFATC1, c-KIT, GATA4, CD31 & CD34, thus favouring endocardiogenic endothelium. The results of this study have revealed the previously unreported deterministic role of SHH pathway in specification of endothelial cells differentiated from human ESCs into hemogenic vs. endocardiogenic lineage; this finding could have major implications for clinical applications.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vinnie Sharon Noel
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| |
Collapse
|
17
|
Du J, He H, Li Z, He J, Bai Z, Liu B, Lan Y. Integrative transcriptomic analysis of developing hematopoietic stem cells in human and mouse at single-cell resolution. Biochem Biophys Res Commun 2021; 558:161-167. [PMID: 33930817 DOI: 10.1016/j.bbrc.2021.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Current understanding of hematopoietic stem cell (HSC) development comes from mouse models is considered to be evolutionarily conserved in human. However, the cross-species comparison of the transcriptomic profiles of developmental HSCs at single-cell level is still lacking. Here, we performed integrative transcriptomic analysis of a series of key cell populations during HSC development in human and mouse, including HSC-primed hemogenic endothelial cells and pre-HSCs in mid-gestational aorta-gonad-mesonephros (AGM) region, and mature HSCs in fetal liver and adult bone marrow. We demonstrated the general similarity of transcriptomic characteristics between corresponding cell populations of the two species. Of note, one of the previously transcriptomically defined hematopoietic stem progenitor cell (HSPC) populations with certain arterial characteristics in AGM region of human embryos showed close transcriptomic similarity to pre-HSCs in mouse embryos. On the other hand, the other two HSPC populations in human AGM region displayed molecular similarity with fetal liver HSPCs, suggesting the maturation in AGM before HSCs colonizing the fetal liver in human, which was different to that in mouse. Finally, we re-clustered cells based on the integrated dataset and illustrated the evolutionarily conserved molecular signatures of major cell populations. Our results revealed transcriptomic conservation of critical cell populations and molecular characteristics during HSC development between human and mouse, providing a resource and theoretic basis for future studies on mammalian HSC development and regeneration by using mouse models.
Collapse
Affiliation(s)
- Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Han He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China; State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
18
|
de Roo JJ, Staal FJ. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells 2020; 9:E2264. [PMID: 33050292 PMCID: PMC7599984 DOI: 10.3390/cells9102264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by reporter models and loss- or gain of function experiments, yet results differ in many cases according to the approach. In this review, we discuss existing murine reporter models regarding these pathways, considering the genetic constructs and reporter proteins in the context of HSC studies; yet these models are relevant for all other stem cell systems. Lastly, we describe a multi-reporter model to properly study and understand the cross-pathway interaction and how reporter models are highly valuable tools to understand complex signaling dynamics in stem cells.
Collapse
Affiliation(s)
| | - Frank. J.T. Staal
- Department of Immunology, L3-Q, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
19
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
20
|
BMP4 and perivascular cells promote hematopoietic differentiation of human pluripotent stem cells in a differentiation stage-specific manner. Exp Mol Med 2020; 52:56-65. [PMID: 31956269 PMCID: PMC7000736 DOI: 10.1038/s12276-019-0357-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
The efficient and reproducible derivation and maturation of multipotent hematopoietic progenitors from human pluripotent stem cells (hPSCs) requires the recapitulation of appropriate developmental stages and the microenvironment. Here, using serum-, xeno-, and feeder-free stepwise hematopoietic induction protocols, we showed that short-term and high-concentration treatment of hPSCs with bone morphogenetic protein 4 (BMP4) strongly promoted early mesoderm induction followed by increased hematopoietic commitment. This method reduced variations in hematopoietic differentiation among hPSC lines maintained under chemically defined Essential 8 medium compared to those maintained under less-defined mTeSR medium. We also found that perivascular niche cells (PVCs) significantly augmented the production of hematopoietic cells via paracrine signaling mechanisms only when they were present during the hematopoietic commitment phase. A protein array revealed 86 differentially expressed (>1.5-fold) secretion factors in PVC-conditioned medium compared with serum-free control medium, of which the transforming growth factor-β inducible gene H3 significantly increased the number of hematopoietic colony-forming colonies. Our data suggest that BMP4 and PVCs promote the hematopoietic differentiation of hPSCs in a differentiation stage-specific manner. This will increase our understanding of hematopoietic development and expedite the development of hPSC-derived blood products for therapeutic use. Adding a vital regulatory molecule and support cells to the culture medium can help in the derivation of blood products from stem cells. A team led by Seok-Ho Hong from Kangwon National University in Chuncheon, South Korea, followed a clinical-grade protocol for converting embryonic stem cells or induced pluripotent stem cells from adults into blood cell precursors. The researchers showed that incorporating high doses of a growth factor called bone morphogenetic protein 4 into the standard culture medium for a short period promoted early differentiation toward blood cells. Incorporating so-called perivascular cells taken from umbilical cord blood also enhanced the process through the secretion of signaling molecules that further pushed the stem cells toward differentiating into blood cells. The findings could help improve protocols for making blood products from stem cells for therapeutic purposes.
Collapse
|
21
|
LncRNA MSC-AS1 promotes osteogenic differentiation and alleviates osteoporosis through sponging microRNA-140–5p to upregulate BMP2. Biochem Biophys Res Commun 2019; 519:790-796. [DOI: 10.1016/j.bbrc.2019.09.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 12/27/2022]
|
22
|
Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2019; 2:3063-3069. [PMID: 30425071 DOI: 10.1182/bloodadvances.2018021725] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Each stem cell resides in a highly specialized anatomic location known as the niche that protects and regulates stem cell function. The importance of the niche in hematopoiesis has long been appreciated in transplantation, but without methods to observe activity in vivo, the components and mechanisms of the hematopoietic niche have remained incompletely understood. Zebrafish have emerged over the past few decades as an answer to this. Use of zebrafish to study the hematopoietic niche has enabled discovery of novel cell-cell interactions, as well as chemical and genetic regulators of hematopoietic stem cells. Mastery of niche components may improve therapeutic efforts to direct differentiation of hematopoietic stem cells from pluripotent cells, sustain stem cells in culture, or improve stem cell transplant.
Collapse
|
23
|
Ziyad S, Riordan JD, Cavanaugh AM, Su T, Hernandez GE, Hilfenhaus G, Morselli M, Huynh K, Wang K, Chen JN, Dupuy AJ, Iruela-Arispe ML. A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 2019; 22:1211-1224. [PMID: 29386109 PMCID: PMC5828030 DOI: 10.1016/j.celrep.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/05/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022] Open
Abstract
Given its role as the source of definitive hematopoietic cells, we sought to determine whether mutations initiated in the hemogenic endothelium would yield hematopoietic abnormalities or malignancies. Here, we find that endothelium-specific transposon mutagenesis in mice promotes hematopoietic pathologies that are both myeloid and lymphoid in nature. Frequently mutated genes included previously recognized cancer drivers and additional candidates, such as Pi4ka, a lipid kinase whose mutation was found to promote myeloid and erythroid dysfunction. Subsequent validation experiments showed that targeted inactivation of the Pi4ka catalytic domain or reduction in mRNA expression inhibited myeloid and erythroid cell differentiation in vitro and promoted anemia in vivo through a mechanism involving deregulation of AKT, MAPK, SRC, and JAK-STAT signaling. Finally, we provide evidence linking PI4KAP2, previously considered a pseudogene, to human myeloid and erythroid leukemia.
Collapse
Affiliation(s)
- Safiyyah Ziyad
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann M Cavanaugh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gloria E Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Georg Hilfenhaus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristine Huynh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Yokomizo T, Watanabe N, Umemoto T, Matsuo J, Harai R, Kihara Y, Nakamura E, Tada N, Sato T, Takaku T, Shimono A, Takizawa H, Nakagata N, Mori S, Kurokawa M, Tenen DG, Osato M, Suda T, Komatsu N. Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. J Exp Med 2019; 216:1599-1614. [PMID: 31076455 PMCID: PMC6605751 DOI: 10.1084/jem.20181399] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and HSC-independent progenitors are generated from hemogenic endothelium. Yokomizo et al. show that Hlf expression distinguishes nascent HSCs from HSC-independent progenitors. HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. Before the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs. Using the Hlf-tdTomato reporter mouse, we found that Hlf is expressed in intra-aortic hematopoietic clusters and fetal liver HSCs. In contrast, EMPs and yolk sac hematopoietic clusters before embryonic day 9.5 do not express Hlf. HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. These results strongly suggest that HSCs and EMPs are generated from distinct cohorts of hemogenic endothelium. Selective induction of the Hlf+ lineage pathway may lead to the in vitro generation of HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan .,Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Naoki Watanabe
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ryota Harai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiko Kihara
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoiku Takaku
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Shimono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Boston, MA
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan .,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Katoh M, Katoh M. CD157 and CD200 at the crossroads of endothelial remodeling and immune regulation. Stem Cell Investig 2019; 6:10. [PMID: 31119148 DOI: 10.21037/sci.2019.04.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo, Japan
| |
Collapse
|
26
|
Liu M, Chen X, Liu H, Di Y. Expression and significance of the Hedgehog signal transduction pathway in oxygen-induced retinal neovascularization in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1337-1346. [PMID: 29861625 PMCID: PMC5968796 DOI: 10.2147/dddt.s149594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim The aim of the study was to investigate the signal transduction mechanism of Hedgehog–vascular endothelial growth factor in oxygen-induced retinopathy (OIR) and the effects of cyclopamine on OIR. Methods An OIR model was established in C57BL/6J mice exposed to hyperoxia. Two hundred mice were randomly divided into a control group, an OIR group, an OIR-control group (treated with isometric phosphate-buffered saline by intravitreal injection), and a cyclopamine group (treated with cyclopamine by intravitreal injection), with 50 mice in each group. The retinal vascular morphology was observed using adenosine diphosphatase and number counting using hematoxylin and eosin-stained image. Quantitative real-time quantitative polymerase chain reaction was used to detect mRNA expression. Protein location and expression were evaluated using immunohistochemistry and Western blot. Results The OIR group and OIR-control group demonstrated large-area pathological neovascularization and nonperfused area when compared with the control group (both P<0.05). The area of nonperfusion and neovascularization in the cyclopamine group was significantly reduced compared with the OIR and OIR-control groups (both P<0.05). Compared with the control group, the OIR and OIR-control groups had more vascular endothelial cells breaking through the inner limiting membrane. The number of new blood vessel endothelial cell nuclei in the cyclopamine group was significantly reduced (both P<0.05) when compared with the OIR and OIR-control groups. The mRNA and protein expressions of Smoothened, Gli1, and vascular endothelial growth factor in the signal pathway of the OIR and OIR-control groups were significantly higher than those of the control group; however, in the cyclopamine group, these factors were reduced when compared with the OIR and OIR-control groups (all P<0.05). Conclusion Our data suggest that abnormal expression of the Hedgehog signaling pathway may be closely associated with the formation of OIR. Inhibiting the Smoothened receptor using cyclopamine could control retinal neovascularization, providing new ideas and measures for the prevention of oxygen-induced retinal neovascularization.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Henan Liu
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
27
|
Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH, Wang Z, Dai Y, Chui DHK, Steinberg MH, Sherr DH, Murphy GJ. Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells 2018; 36:1004-1019. [PMID: 29569827 PMCID: PMC6099224 DOI: 10.1002/stem.2822] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult‐type cells is a major barrier for iPSC‐based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder‐free–directed differentiation platform to generate hematopoietic stem‐progenitor cells (HSPCs) and resultant adult‐type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid‐lineage cells display enhanced expression of adult β globin indicating definitive pathway patterning. Using this system, we demonstrate the stage‐specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage‐specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult‐type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC‐derived blood cells. Stem Cells2018;36:1004–1019
Collapse
Affiliation(s)
- Amy Leung
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Elizabeth Zulick
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Nicholas Skvir
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kim Vanuytsel
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Tasha A Morrison
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zaw Htut Naing
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Yan Dai
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H K Chui
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - George J Murphy
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Lempereur A, Canto PY, Richard C, Martin S, Thalgott J, Raymond K, Lebrin F, Drevon C, Jaffredo T. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Dev Biol 2017; 434:292-303. [PMID: 29253505 DOI: 10.1016/j.ydbio.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis.
Collapse
Affiliation(s)
- A Lempereur
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - P Y Canto
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - C Richard
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - S Martin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - J Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - K Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - F Lebrin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - C Drevon
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - T Jaffredo
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
29
|
Lv J, Liu F. Application of Aorta-gonad-mesonephros Explant Culture System in Developmental Hematopoiesis. J Vis Exp 2017. [PMID: 29155781 DOI: 10.3791/56557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The limitation of using mouse embryos for hematopoiesis studies is the added inconvenience in operations, which is largely due to the intrauterine development of the embryo. Although genetic data from knockout (KO) mice are convincing, it is not realistic to generate KO mice for all genes as needed. In addition, performing in vivo rescue experiments to consolidate the data obtained from KO mice is not convenient. To overcome these limitations, the Aorta-Gonad-Mesonephros (AGM) explant culture was developed as an appropriate system to study hematopoietic stem cell (HSC) development. Especially for rescue experiments, it can be used to recover the impaired hematopoiesis in KO mice. By adding the appropriate chemicals into the medium, the impaired signaling can be reactivated or up-regulated pathways can be inhibited. With the use of this method, many experiments can be performed to identify the critical regulators of HSC development, including HSC related gene expression at mRNA and protein levels, colony formation ability, and reconstitution capacity. This series of experiments would be helpful in defining the underlying mechanisms essential for HSC development in mammals.
Collapse
Affiliation(s)
- Junhua Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences; University of Chinese Academy of Sciences;
| |
Collapse
|
30
|
Abstract
Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity. Summary: This Review takes a close look at hematopoietic stem cell heterogeneity during development and in the adult, and discusses several different ways in which this heterogeneity may arise.
Collapse
Affiliation(s)
- Mihaela Crisan
- University of Edinburgh, BHF Centre for Cardiovascular Science, Scottish Centre for Regenerative Medicine, Edinburgh EH16 4UU, UK
| | - Elaine Dzierzak
- University of Edinburgh, Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
31
|
Abstract
The appearance of the first animal species on earth coincides with the emergence of transforming growth factor β (TGFβ) pathways. The evolution of these animals into more complex organisms coincides with a progressively increased TGFβ repertoire through gene duplications and divergence, making secreted TGFβ molecules the largest family of morphogenetic proteins in humans. It is therefore not surprising that TGFβ pathways govern numerous aspects of human biology from early embryonic development to regeneration, hematopoiesis, neurogenesis, and immunity. Such heavy reliance on these pathways is reflected in the susceptibility to minor perturbations in pathway components that can lead to dysregulated signaling and a diverse range of human pathologies such as cancer, fibrosis, and developmental disorders. Attempts to comprehensively resolve these signaling cascades are complicated by the long-recognized paradoxical role the pathway plays in cell biology. Recently, several groups have probed examples of the disparate aspects of TGFβ biology in a variety of animal models and uncovered novel context-dependent regulatory mechanisms. Here, we briefly review recent advancements and discuss their overall impact in directing future TGFβ research.
Collapse
Affiliation(s)
- Arshad Ayyaz
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Role of the bone morphogenic protein pathway in developmental haemopoiesis and leukaemogenesis. Biochem Soc Trans 2016; 44:1455-1463. [DOI: 10.1042/bst20160104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
Abstract
Myeloid leukaemias share the common characteristics of being stem cell-derived clonal diseases, characterised by excessive proliferation of one or more myeloid lineage. Chronic myeloid leukaemia (CML) arises from a genetic alteration in a normal haemopoietic stem cell (HSC) giving rise to a leukaemic stem cell (LSC) within the bone marrow (BM) ‘niche’. CML is characterised by the presence of the oncogenic tyrosine kinase fusion protein breakpoint cluster region-abelson murine leukaemia viral oncogene homolog 1 (BCR-ABL), which is responsible for driving the disease through activation of downstream signal transduction pathways. Recent evidence from our group and others indicates that important regulatory networks involved in establishing primitive and definitive haemopoiesis during development are reactivated in myeloid leukaemia, giving rise to an LSC population with altered self-renewal and differentiation properties. In this review, we explore the role the bone morphogenic protein (BMP) signalling plays in stem cell pluripotency, developmental haemopoiesis, HSC maintenance and the implication of altered BMP signalling on LSC persistence in the BM niche. Overall, we emphasise how the BMP and Wnt pathways converge to alter the Cdx–Hox axis and the implications of this in the pathogenesis of myeloid malignancies.
Collapse
|
33
|
De La Garza A, Sinha A, Bowman TV. Concise Review: Hematopoietic Stem Cell Origins: Lessons from Embryogenesis for Improving Regenerative Medicine. Stem Cells Transl Med 2016; 6:60-67. [PMID: 28170201 PMCID: PMC5442726 DOI: 10.5966/sctm.2016-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have extensive regenerative capacity to replace all blood cell types, an ability that is harnessed in the clinic for bone marrow transplantation. Finding appropriate donors remains a major limitation to more extensive usage of HSC‐based therapies. Derivation of patient‐specific HSCs from pluripotent stem cells offers great promise to remedy this problem if scientists could crack the code on how to make robust, transplantable HSCs in a dish. Studies delving into the native origins of HSC production during embryonic development should supply the necessary playbook. This review presents recent discoveries from animal models, with a focus on zebrafish, and discusses the implications of these new advances in the context of prior knowledge. The focus is on the latest research exploring the role of epigenetic regulation, signaling pathways, and niche components needed for proper HSC formation. These studies provide new directions that should be explored for de novo generation and expansion of HSCs for regenerative therapies. Stem Cells Translational Medicine2017;6:60–67
Collapse
Affiliation(s)
- Adriana De La Garza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arpan Sinha
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|