1
|
Mima A, Kimura A, Ito R, Hatano Y, Tsujimoto H, Mae SI, Yamane J, Fujibuchi W, Uza N, Toyoda T, Seno H, Osafune K. Mechanistic elucidation of human pancreatic acinar development using single-cell transcriptome analysis on a human iPSC differentiation model. Sci Rep 2025; 15:4668. [PMID: 39920294 PMCID: PMC11806057 DOI: 10.1038/s41598-025-88690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Few effective treatments have been developed for intractable pancreatic exocrine disorders due to the lack of suitable disease models using human cells. Pancreatic acinar cells differentiated from human induced pluripotent stem cells (hiPSCs) have the potential to solve this issue. In this study, we aimed to elucidate the developmental mechanisms of pancreatic exocrine acinar lineages to establish a directed differentiation method for pancreatic acinar cells from hiPSCs. hiPSC-derived pancreatic endoderm cells were spontaneously differentiated into both pancreatic exocrine and endocrine tissues by implantation into the renal subcapsular space of NOD/SCID mice. Single-cell RNA-seq analysis of the retrieved grafts confirmed the differentiation of pancreatic acinar lineage cells and identified REG4 as a candidate marker for pancreatic acinar progenitor cells. Furthermore, differential gene expression analysis revealed upregulated pathways, including cAMP-related signals, involved in the differentiation of hiPSC-derived pancreatic acinar lineage cells in vivo, and we found that a cAMP activator, forskolin, facilitates the differentiation from hiPSC-derived pancreatic endoderm into pancreatic acinar progenitor cells in our in vitro differentiation culture. Therefore, this platform contributes to our understanding of the developmental mechanisms of pancreatic acinar lineage cells and the establishment of differentiation methods for acinar cells from hiPSCs.
Collapse
Affiliation(s)
- Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
3
|
Ito R, Kimura A, Hirose Y, Hatano Y, Mima A, Mae SI, Keidai Y, Nakamura T, Fujikura J, Nishi Y, Ohta A, Toyoda T, Inagaki N, Osafune K. Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Sci Rep 2023; 13:8659. [PMID: 37248264 DOI: 10.1038/s41598-023-35875-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
For pluripotent stem cell (PSC)-based regenerative therapy against diabetes, the differentiation efficiency to pancreatic lineage cells needs to be improved based on the mechanistic understanding of pancreatic differentiation. Here, we aimed to elucidate the molecular mechanisms underlying pancreatic endoderm differentiation by searching for factors that regulate a crucial pancreatic endoderm marker gene, NKX6.1. Unbiasedly screening an siRNA knockdown library, we identified a candidate transcription factor, HHEX. HHEX knockdown suppressed the expression of another pancreatic endoderm marker gene, PTF1A, as well as NKX6.1, independently of PDX1, a known regulator of NKX6.1 expression. In contrast, the overexpression of HHEX upregulated the expressions of NKX6.1 and PTF1A. RNA-seq analysis showed decreased expressions of several genes related to pancreatic development, such as NKX6.1, PTF1A, ONECUT1 and ONECUT3, in HHEX knockdown pancreatic endoderm. These results suggest that HHEX plays a key role in pancreatic endoderm differentiation.
Collapse
Affiliation(s)
- Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yurie Hirose
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Phelps C, Chess-Williams R, Moro C. The role of intracellular calcium and Rho kinase pathways in G protein-coupled receptor-mediated contractions of urinary bladder urothelium and lamina propria. Am J Physiol Cell Physiol 2023; 324:C787-C797. [PMID: 36689673 PMCID: PMC10027080 DOI: 10.1152/ajpcell.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of extracellular and intracellular calcium on smooth muscle contractile activity varies between organs. In response to G protein-coupled receptor (GPCR) stimulation, the urinary bladder detrusor muscle has shown a 70% dependence on extracellular calcium, whereas the urothelium and lamina propria (U&LP) has a 20%-50% dependence. However, as this only accounts for partial contractile activity, the contribution of intracellular calcium and calcium sensitization pathways remains unclear. This study assessed the role of intracellular signaling pathways on GPCR-mediated urinary bladder U&LP contraction. Porcine U&LP responses to activation of the Gq/11-coupled muscarinic, histamine, 5-hydroxytryptamine (serotonin), neurokinin, prostaglandin, and angiotensin II receptors were assessed with three selective inhibitors of store-released intracellular calcium, 2-aminoethyl diphenylborinate (2-APB), cyclopiazonic acid (CPA), and ruthenium red, and three Rho kinase inhibitors, fasudil, Y-27632, and GSK269962. There was no discernible impact on receptor agonist-induced contractions of the U&LP after blocking intracellular calcium pathways, suggesting that this tissue is more sensitive to alterations in the availability of extracellular calcium. However, an alternative mechanism of action for GPCR-mediated contraction was identified to be the activation of Rho kinase, such as when Y-27632 significantly reduced the GPCR-mediated contractile activity of the U&LP by approximately 50% (P < 0.05, n = 8). This suggests that contractile responses of the bladder U&LP do not involve a significant release of calcium from intracellular stores, but that Gq/11-coupled receptor activation causes calcium sensitization via Rho kinase. This study highlights a key role for Rho kinase in the urinary bladder, which may provide a novel target in the future pharmaceutical management of bladder contractile disorders.
Collapse
Affiliation(s)
- Charlotte Phelps
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Christian Moro
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
5
|
Mechanical guidance of self-condensation patterns of differentiating progeny. iScience 2022; 25:105109. [DOI: 10.1016/j.isci.2022.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
|
6
|
Balboa D, Barsby T, Lithovius V, Saarimäki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund PE, Yang M, Ibrahim H, Näätänen A, Chandra V, Vihinen H, Jokitalo E, Kvist J, Ustinov J, Nieminen AI, Kuuluvainen E, Hietakangas V, Katajisto P, Lau J, Carlsson PO, Barg S, Tengholm A, Otonkoski T. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol 2022; 40:1042-1055. [PMID: 35241836 PMCID: PMC9287162 DOI: 10.1038/s41587-022-01219-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes. Pancreatic islets derived from stem cells are benchmarked against primary cells.
Collapse
Affiliation(s)
- Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mingyu Yang
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Näätänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Emilia Kuuluvainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Bioscience Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Lithovius V, Otonkoski T. Stem Cell Based Models in Congenital Hyperinsulinism - Perspective on Practicalities and Possibilities. Front Endocrinol (Lausanne) 2022; 13:837450. [PMID: 35250887 PMCID: PMC8895269 DOI: 10.3389/fendo.2022.837450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| |
Collapse
|
8
|
Jiang Y, Chen C, Randolph LN, Ye S, Zhang X, Bao X, Lian XL. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports 2021; 16:2395-2409. [PMID: 34450037 PMCID: PMC8452541 DOI: 10.1016/j.stemcr.2021.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) provide promising cell therapies for type 1 diabetes. Current PP differentiation requires a high amount of Activin A during the definitive endoderm (DE) stage, making it economically difficult for commercial ventures. Here we identify a dose-dependent role for Wnt signaling in controlling DE differentiation without Activin A. While high-level Wnt activation induces mesodermal formation, low-level Wnt activation by a small-molecule inhibitor of glycogen synthase kinase 3 is sufficient for DE differentiation, yielding SOX17+FOXA2+ DE cells. BMP inhibition further enhances this DE differentiation, generating over 87% DE cells. These DE cells could be further differentiated into PPs and functional β cells. RNA-sequencing analysis of PP differentiation from hPSCs revealed expected transcriptome dynamics and new gene regulators during our small-molecule PP differentiation protocol. Overall, we established a robust growth-factor-free protocol for generating DE and PP cells, facilitating scalable production of pancreatic cells for regenerative applications.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chuanxin Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Songtao Ye
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Zhang Y, Xu J, Ren Z, Meng Y, Liu W, Lu L, Zhou Z, Chen G. Nicotinamide promotes pancreatic differentiation through the dual inhibition of CK1 and ROCK kinases in human embryonic stem cells. Stem Cell Res Ther 2021; 12:362. [PMID: 34172095 PMCID: PMC8235863 DOI: 10.1186/s13287-021-02426-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Background Vitamin B3 (nicotinamide) plays important roles in metabolism as well as in SIRT and PARP pathways. It is also recently reported as a novel kinase inhibitor with multiple targets. Nicotinamide promotes pancreatic cell differentiation from human embryonic stem cells (hESCs). However, its molecular mechanism is still unclear. In order to understand the molecular mechanism involved in pancreatic cell fate determination, we analyzed the downstream pathways of nicotinamide in the derivation of NKX6.1+ pancreatic progenitors from hESCs. Methods We applied downstream modulators of nicotinamide during the induction from posterior foregut to pancreatic progenitors, including niacin, PARP inhibitor, SIRT inhibitor, CK1 inhibitor and ROCK inhibitor. The impact of those treatments was evaluated by quantitative real-time PCR, flow cytometry and immunostaining of pancreatic markers. Furthermore, CK1 isoforms were knocked down to validate CK1 function in the induction of pancreatic progenitors. Finally, RNA-seq was used to demonstrate pancreatic induction on the transcriptomic level. Results First, we demonstrated that nicotinamide promoted pancreatic progenitor differentiation in chemically defined conditions, but it did not act through either niacin-associated metabolism or the inhibition of PARP and SIRT pathways. In contrast, nicotinamide modulated differentiation through CK1 and ROCK inhibition. We demonstrated that CK1 inhibitors promoted the generation of PDX1/NKX6.1 double-positive pancreatic progenitor cells. shRNA knockdown revealed that the inhibition of CK1α and CK1ε promoted pancreatic progenitor differentiation. We then showed that nicotinamide also improved pancreatic progenitor differentiation through ROCK inhibition. Finally, RNA-seq data showed that CK1 and ROCK inhibition led to pancreatic gene expression, similar to nicotinamide treatment. Conclusions In this report, we revealed that nicotinamide promotes generation of pancreatic progenitors from hESCs through CK1 and ROCK inhibition. Furthermore, we discovered the novel role of CK1 in pancreatic cell fate determination. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02426-2.
Collapse
Affiliation(s)
- Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ya Meng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
10
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
11
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
12
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Kimura A, Toyoda T, Iwasaki M, Hirama R, Osafune K. Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells. Cell Chem Biol 2020; 27:1561-1572.e7. [PMID: 33125912 DOI: 10.1016/j.chembiol.2020.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The proliferation of human pancreatic progenitor cells (PPCs) is critical for developing cell therapies for diabetes. Here, using transcriptome analysis combined with small interfering RNA (siRNA) screening, we revealed that WNT7B is a downstream growth factor of AT7867, a compound known to promote the proliferation of PPCs generated from human pluripotent stem cells. Feeder cell lines stably expressing mouse Wnt7a or Wnt7b, but not other Wnts, enhanced PPC proliferation in the absence of AT7867. Importantly, Wnt7a/b ligands did not activate the canonical Wnt pathway, and PPC proliferation depended on the non-canonical Wnt/PKC pathway. A comparison of the phosphoproteome in response to AT7867 or a newly synthesized AT7867 derivative uncovered the function of YY1 as a transcriptional regulator of WNT7B. Overall, our data highlight unknown roles of non-canonical WNT7B/PKC signaling and YY1 in human PPC proliferation and will contribute to the stable supply of a cell source for pancreatic disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Iwasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryusuke Hirama
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
14
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Maloy MH, Ferrer MA, Parashurama N. In Vivo Differentiation of Stem Cell-derived Human Pancreatic Progenitors to Treat Type 1 Diabetes. Stem Cell Rev Rep 2020; 16:1139-1155. [PMID: 32844324 DOI: 10.1007/s12015-020-10018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the loss of the pancreatic β-cells. The autoimmune destruction of the β-cells causes the loss of insulin production from the islets of the pancreas, resulting in the loss of blood glucose regulation. This loss of regulation, if not treated, can lead to a plethora of long-term complications in patients. Subsequently, T1DM patients rely on the administration of exogenous insulin sources to maintain their blood glucose levels. In this review, we summarize the history of T1DM therapy and current treatment options. Although treatments for T1DM have progressed substantially, none of the available treatment options allow the patient to live autonomously. Therefore, the challenge to develop a therapy that will fully reverse the disease still remains. A promising field of T1DM therapies is cell replacement therapies derived from human pluripotent stem cells. Here, we specifically review studies that employ stem-cell derived pancreatic progenitors transplanted for in vivo differentiation/maturation and discuss, in detail, the complications that arise post transplantation, including heterogeneity, graft immaturity, and host foreign bodyresponse. We also discuss efforts to induce human stem cell-derived mature β-cells in vitro and compare strategies regarding transplantation of pancreatic progenitors versus mature β-cells cells. Finally, we review key approaches that address critical limitations of in vivo progenitor differentiation including vascularization, oxygenation, and transplant location. The field of islet replacement therapy has made tremendous progress in the last two decades. If the strengths and limitations of the field continue to be identified and addressed, future studies will lead to an ideal treatment for T1DM. Graphical abstract.
Collapse
Affiliation(s)
- Mitchell H Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA
| | - Matthew A Ferrer
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA. .,Department of Biomedical Engineering, University at Buffalo, (State University of New York), 323 Bonner Hall, Buffalo, NY, 14260, USA. .,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Porazinski S, Parkin A, Pajic M. Rho-ROCK Signaling in Normal Physiology and as a Key Player in Shaping the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:99-127. [PMID: 32030687 DOI: 10.1007/978-3-030-35582-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Porazinski
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Ashleigh Parkin
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Marina Pajic
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci 2019; 26:87. [PMID: 31660969 PMCID: PMC6819403 DOI: 10.1186/s12929-019-0578-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yueh-Ting Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Cardiovascular Surgery Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Astro V, Adamo A. Epigenetic Control of Endocrine Pancreas Differentiation in vitro: Current Knowledge and Future Perspectives. Front Cell Dev Biol 2018; 6:141. [PMID: 30410880 PMCID: PMC6209628 DOI: 10.3389/fcell.2018.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
The raising worldwide prevalence of Type 1 and Type 2 diabetes mellitus (T1DM and T2DM) solicits the derivation of in vitro methods yielding mature and fully functional β-cells to be used in regenerative medicine. Several protocols to differentiate human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into human pancreatic β-like cells have recently been developed. These methods, coupled with a bioengineering approach using biocompatible encapsulating devices, have recently led to experimental clinical trials showing great promises to ultimately end the battle of diabetic patients for managing hyperglycemia. However, in vitro differentiation protocols face the challenge of achieving homogenous population of mono-hormonal insulin-secreting mature β-cells. Major epigenetic events such as DNA methylation, post-translational modification of histones and non-coding RNAs expression, orchestrate physiological endocrine pancreas specification into α-, β-, γ-, and δ-cells, both in vivo and in vitro. The dysregulation of such epigenetic processes is associated to multiple pancreatic disorders including diabetes. Understanding the epigenomic and transcriptomic landscape underlying endocrine pancreas development could, therefore, improve in vitro differentiation methods. In this review, we summarize the most effective protocols for in vitro differentiation of hESCs/hiPSCs toward pancreatic β-cells and we discuss the current limitations in the derivation of functional glucose-responsive, insulin-releasing β-cells. Moreover, we focus on the main transcriptional and epigenetic events leading to pancreatic specification and on the applicative potential of novel epigenetic drugs for the establishment of innovative pharmacological therapeutic approaches.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Memon B, Karam M, Al-Khawaga S, Abdelalim EM. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther 2018; 9:15. [PMID: 29361979 PMCID: PMC5781269 DOI: 10.1186/s13287-017-0759-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Background Pancreatic progenitors (PPs) co-expressing the two transcription factors (TFs) PDX1 and NKX6.1 are recognized as the indispensable precursors of functional pancreatic β cells. Here, we aimed to establish an efficient protocol for maximizing generation of PDX1+/NKX6.1+ PPs from human pluripotent stem cells (hPSCs). Methods In order to enhance the PDX1+/NKX6.1+ population, we manipulated in vitro culture conditions during differentiation by dissociating densely formed endodermal cells and re-plating them at different densities. These dissociated cells were subjected to an augmented duration of retinoid and fibroblast growth factor (FGF)10 signaling to induce higher PDX1 and NKX6.1 expression. Results Our optimized protocol dramatically increased the expression of NKX6.1, leading to an increase in the proportion of PDX1+/NKX6.1+ progenitors (~90%) in monolayer, higher than the previously published protocols, as well as upregulated key TFs controlling pancreatic development. The improved efficiency of pancreatic differentiation was complemented by an inhibited hepatic specification and an increased proliferation of NKX6.1+ cells. Interestingly, we were able to enrich a novel PDX1–/NKX6.1+ population by manipulating the re-plating density; these oriented themselves in three-dimensional clusters. Further differentiation validated the ability of our PDX1+/NKX6.1+ progenitors to generate NGN3+ endocrine progenitors. Conclusions We provide a novel technique that facilitates appropriate cellular rearrangement in monolayer culture to yield a high proportion of PDX1+/NKX6.1+ PPs with an elevated self-replicating capacity, thereby aiding scalable production of functional β cells from hPSCs in vitro. Our innovative method also enriches a novel NKX6.1+/PDX1– population, with characteristics of proposed endocrine precursors, allowing further studies on deciphering routes to β-cell development. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0759-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Manale Karam
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
20
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Kieffer TJ, Woltjen K, Osafune K, Yabe D, Inagaki N. Beta-cell replacement strategies for diabetes. J Diabetes Investig 2017; 9:457-463. [PMID: 28984038 PMCID: PMC5934267 DOI: 10.1111/jdi.12758] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes is characterized by elevated levels of blood glucose as a result of insufficient production of insulin from loss or dysfunction of pancreatic islet β-cells. Here, we review several approaches to replacing β-cells that were recently discussed at a symposium held in Kyoto, Japan. Transplant of donor human islets can effectively treat diabetes and eliminate the need for insulin injections, supporting research aimed at identifying abundant supplies of cells. Studies showing the feasibility of producing mouse islets in rats support the concept of generating pigs with human pancreas that can serve as donors of human islets, although scientific and ethical challenges remain. Alternatively, in vitro differentiation of both human embryonic stem cells and induced pluripotent stem cells is being actively pursued as an islet cell source, and embryonic stem cell-derived pancreatic progenitor cells are now in clinical trials in North America in patients with diabetes. Macro-encapsulation devices are being used to contain and protect the cells from immune attack, and alternate strategies of immune-isolation are being pursued, such as islets contained within long microfibers. Recent advancements in genetic engineering tools offer exciting opportunities to broaden therapeutic strategies and to probe the genetic involvement in β-cell failure that contributes to diabetes. Personalized medicine might eventually become a possibility with genetically edited patient-induced pluripotent stem cells, and the development of simplified robust differentiation protocols that ideally become standardized and automated. Additional efforts to develop a safe and effective β-cell replacement strategy to treat diabetes are warranted.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular & Physiological SciencesLife Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Kenji Osafune
- Department of Cellular & Physiological SciencesLife Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|