1
|
Omura S, Ogawa R, Kawachi T, Ogawa A, Arai Y, Takayama N, Masui A, Kondo K, Sugimoto H, Shinohara HM, Takahashi T, Maeda H, Ohyama K. Olig2+/NG2+/BLBP+ astrocyte progenitors: a novel component of the neurovascular unit in the developing mouse hippocampus. Front Cell Neurosci 2024; 18:1464402. [PMID: 39484182 PMCID: PMC11524929 DOI: 10.3389/fncel.2024.1464402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Astrocytes are key components of the neurovascular unit. While we have recently identified Olig2+ astrocyte progenitors (ASPs) in the developing mouse dentate gyrus (DG), their molecular signature remains incompletely characterized. Here we demonstrate that Olig2+ ASPs predominantly express brain lipid-binding protein (BLBP), while only a small population of them expresses gfap-GFP. These Olig2+/BLBP+ ASPs co-express the transcription factors Sox3, Sox9 and the proteoglycan NG2 but not Sox10, a marker for oligodendrocyte progenitors (OLPs). Olig2+ ASPs appear from embryonic day 18 (E18) onwards and decline at postnatal day 14 (P14). Consistent with the proliferation of both Olig2+ and NG2+ glial cells after brain injury, intrauterine intermittent hypoxia (IH) led to an increase in Olig2+/NG2+/BLBP+ ASPs in the postnatal DG. IH also promoted both angiogenesis and vascular coupling of Olig2+/NG2+ ASPs. Our data suggest that IH-induced expression of HIF1a increases Olig2+/NG2+/BLBP+ ASPs in a cell non-autonomous manner. Our data also revealed increased vascular coupling of GFAP+ astrocytes following IH, while the number of GFAP+ astrocytes remains unchanged. Given that BLBP, Olig2 and NG2 are expressed in reactive astrocytes, our findings suggest that Olig2+/NG2+/BLBP+ ASPs represent a subtype of reactive astrocyte progenitors. Furthermore, the enhanced vascular coupling of Olig2+/NG2+/BLBP+ ASPs appears to be an adaptive response to hypoxic brain injury. This study provides new insights into the molecular characteristics of Olig2+/NG2+/BLBP+ ASPs and their potential role in the brain's response to hypoxic injury, contributing to our understanding of neurovascular unit dynamics in both development and pathological conditions.
Collapse
Affiliation(s)
- Shoichiro Omura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Rina Ogawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tomomi Kawachi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Aya Ogawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Yuuki Arai
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Natsumi Takayama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Aki Masui
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kumiko Kondo
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiroki Sugimoto
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi M. Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tokiharu Takahashi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Legal Medicine, Osaka University, Suita, Japan
| | - Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
3
|
Escudier O, Zhang Y, Whiting A, Chazot P. Evaluation of a Synthetic Retinoid, Ellorarxine, in the NSC-34 Cell Model of Motor Neuron Disease. Int J Mol Sci 2024; 25:9764. [PMID: 39337251 PMCID: PMC11431449 DOI: 10.3390/ijms25189764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease worldwide and is characterized by progressive muscle atrophy. There are currently two approved treatments, but they only relieve symptoms briefly and do not cure the disease. The main hindrance to research is the complex cause of ALS, with its pathogenesis not yet fully elucidated. Retinoids (vitamin A derivatives) appear to be essential in neuronal cells and have been implicated in ALS pathogenesis. This study explores 4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquinoxalin-2-yl)ethylnyl]benzoic acid (Ellorarxine, or DC645 or NVG0645), a leading synthetic retinoic acid, discussing its pharmacological mechanisms, neuroprotective properties, and relevance to ALS. The potential therapeutic effect of Ellorarxine was analyzed in vitro using the WT and SOD1G93A NSC-34 cell model of ALS at an administered concentration of 0.3-30 nM. Histological, functional, and biochemical analyses were performed. Elorarxine significantly increased MAP2 expression and neurite length, increased AMPA receptor GluA2 expression and raised intracellular Ca2+ baseline, increased level of excitability, and reduced Ca2+ spike during depolarization in neurites. Ellorarxine also displayed both antioxidant and anti-inflammatory effects. Overall, these results suggest Ellorarxine shows relevance and promise as a novel therapeutic strategy for treatment of ALS.
Collapse
Affiliation(s)
- Olivia Escudier
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Yunxi Zhang
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
4
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Yeo YG, Park J, Kim Y, Rah JC, Shin CH, Oh SJ, Jang JH, Lee Y, Yoon JH, Oh YS. Retinoic acid modulation of granule cell activity and spatial discrimination in the adult hippocampus. Front Cell Neurosci 2024; 18:1379438. [PMID: 38694537 PMCID: PMC11061364 DOI: 10.3389/fncel.2024.1379438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Retinoic acid (RA), derived from vitamin A (retinol), plays a crucial role in modulating neuroplasticity within the adult brain. Perturbations in RA signaling have been associated with memory impairments, underscoring the necessity to elucidate RA's influence on neuronal activity, particularly within the hippocampus. In this study, we investigated the cell type and sub-regional distribution of RA-responsive granule cells (GCs) in the mouse hippocampus and delineated their properties. We discovered that RA-responsive GCs tend to exhibit a muted response to environmental novelty, typically remaining inactive. Interestingly, chronic dietary depletion of RA leads to an abnormal increase in GC activation evoked by a novel environment, an effect that is replicated by the localized application of an RA receptor beta (RARβ) antagonist. Furthermore, our study shows that prolonged RA deficiency impairs spatial discrimination-a cognitive function reliant on the hippocampus-with such impairments being reversible with RA replenishment. In summary, our findings significantly contribute to a better understanding of RA's role in regulating adult hippocampal neuroplasticity and cognitive functions.
Collapse
Affiliation(s)
- Yun-Gwon Yeo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongrak Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoonsub Kim
- Sensory and Motor Systems Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jong-Cheol Rah
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Sensory and Motor Systems Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Chang-Hoon Shin
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seo-Jin Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yaebin Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
6
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
7
|
Perez-Mockus G, Cocconi L, Alexandre C, Aerne B, Salbreux G, Vincent JP. The Drosophila ecdysone receptor promotes or suppresses proliferation according to ligand level. Dev Cell 2023; 58:2128-2139.e4. [PMID: 37769663 PMCID: PMC7615657 DOI: 10.1016/j.devcel.2023.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation. Dose-response RNA sequencing (RNA-seq) analysis of ex vivo cultured wing precursors identifies genes that are quantitatively activated by 20E across the physiological range, likely comprising positive modulators of proliferation and other genes that are only activated at high doses. We suggest that some of these "high-threshold" genes dominantly suppress the activity of the pro-proliferation genes. We then show mathematically and with synthetic reporters that combinations of basic regulatory elements can recapitulate the behavior of both types of target genes. Thus, a relatively simple genetic circuit can account for the bimodal activity of this hormone.
Collapse
Affiliation(s)
| | - Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | | | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | |
Collapse
|
8
|
Abrego-Guandique DM, Bonet ML, Caroleo MC, Cannataro R, Tucci P, Ribot J, Cione E. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci 2023; 13:1468. [PMID: 37891835 PMCID: PMC10605009 DOI: 10.3390/brainsci13101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
β-carotene is a powerful antioxidant and dietary precursor of vitamin A whose role in maintaining mental health and cognitive performance, either alone or in combination with other dietary compounds, has been a topic of recent research. However, its effectiveness is still unclear. This systematic review, conducted according to the PRISMA guideline and assisted by the MySLR platform, addressed this issue. A total of 16 eligible original research articles were identified. Dietary intake or β-carotene serum levels were associated with improved measures of cognitive function in 7 out of 10 epidemiological studies included. In intervention studies, β-carotene consumption alone did not promote better cognitive function in the short term, but only in a long-term intervention with a mean duration of 18 years. However, all but one intervention study suggested the beneficial effects of β-carotene supplementation at doses ranging from 6 mg to 50 mg per day in combination with a multicomplex such as vitamin E, vitamin C, zinc, or selenium for a period of 16 weeks to 20 years. Despite the current limitations, the available evidence suggests a potential association between β-carotene dietary/supplementary intake and the maintenance of cognitive function. The β-carotene most probably does not act alone but in synergy with other micronutrients.
Collapse
Affiliation(s)
- Diana Marisol Abrego-Guandique
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (M.L.B.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogota 110311, Colombia
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (M.L.B.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
9
|
Alexandrovich YV, Antonov EV, Shikhevich SG, Kharlamova AV, Meister LV, Makovka YV, Shepeleva DV, Gulevich RG, Herbeck YE. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:651-661. [PMID: 38213464 PMCID: PMC10782033 DOI: 10.18699/vjgb-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2022] [Accepted: 06/30/2023] [Indexed: 01/13/2024] Open
Abstract
The hippocampus plays the key role in stress response regulation, and stress response appears to be weakened in domesticated animals compared to their wild relatives. The hippocampus is functionally heterogeneous along its dorsoventral axis, with its ventral compartment being more closely involved in stress regulation. An earlier series of experiments was conducted with a unique breeding model of animal domestication, the farm silver fox (Vulpes vulpes), which included tame, aggressive, and unselected animals. A decrease in many indices of the hypothalamic-pituitary-adrenal activity was observed in tame animals. Also, adult hippocampal neurogenesis was more intense in tame foxes, and this fact may relate to reduced stress levels in this experimental population of foxes. Nevertheless, the molecular mechanisms responsible for the reduced stress response in tame animals remain obscure. In this study, serum cortisol levels and the mRNA levels of 13 genes in the dorsal and ventral hippocampus have been measured and compared in tame, aggressive, and unselected foxes. At the current stage of domestication, stress-induced cortisol levels in tame, aggressive, and unselected animals differ significantly from each other: tame foxes show the lowest levels, and aggressive ones, the highest. Twelve genes tested demonstrate significant gene expression differences between the dorsal and ventral hippocampi. These differences are mainly consistent with those found in rodents and humans. In tame foxes, significantly elevated mRNA levels were recorded for several genes: CYP26B1 for cytochrome P450 26B1 and ADRA1A for α1A adrenergic receptor in the dorsal hippocampus, whereas the level of NR3C2 mRNA for mineralocorticoid receptor was higher in the ventral. It is presumed that these genes constitute an important part of the mechanism reducing stress induced by contacts with humans and contribute to linking stress regulation with adult neurogenesis in tame foxes and domesticated animals in general.
Collapse
Affiliation(s)
- Yu V Alexandrovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Antonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Sirius University of Science and Technology, Scientific Center for Translational Medicine, Sochi, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kharlamova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L V Meister
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y V Makovka
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Shepeleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R G Gulevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu E Herbeck
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Allen CA, Goderie SK, Liu M, Kiehl TR, Farjood F, Wang Y, Boles NC, Temple S. Adult Mouse Leptomeninges Exhibit Regional and Age-related Cellular Heterogeneity Implicating Mental Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557097. [PMID: 37745502 PMCID: PMC10515796 DOI: 10.1101/2023.09.10.557097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression. Surprisingly, these non-neuronal cells co-expressed genes implicated in neural functions. The regional differences changed with aging, from 3 to 18 months. Cytokine analysis revealed specific soluble factor production from anterior vs posterior meninges that also altered with age. Secreted factors from the leptomeninges from different regions and ages differentially impacted the survival of anterior or posterior cortical neuronal subsets, neuron morphology, and glia proliferation. These findings suggest that meningeal dysfunction in different brain regions could contribute to specific neural pathologies. The disease-associations of meningeal cell genes differentially expressed with region and age were significantly enriched for mental and substance abuse disorders.
Collapse
Affiliation(s)
| | | | - Mo Liu
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| |
Collapse
|
11
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
12
|
Kopec RE, Chasman DI, Okereke OI, Sesso HD. Re-remembering the influence of randomized β-carotene on cognitive decline. Alzheimers Dement 2023; 19:3718-3721. [PMID: 36939000 DOI: 10.1002/alz.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/21/2023]
Abstract
The wave of individuals impacted by dementia continues to rise rapidly as worldwide lifespan increases. Dietary strategies to slow cognitive decline and prolong time to clinical dementia remain understudied, but with potentially powerful public health consequences. Indeed, previously conducted large, randomized, placebo-controlled trials of micronutrients remain an under-leveraged resource to study changes in cognitive performance. As a motivating example, we highlight an ancillary report from the Physicians' Health Study, where subjects randomized to β-carotene (a provitamin A carotenoid) had a more attenuated change in longitudinal global cognitive performance and verbal memory, as compared to subjects randomized to placebo. Despite mechanistic evidence from cell and animal studies supporting a vitamin A-mediated role in the biology associated with cognition, limited follow-up work has been conducted. We argue that dietary factors (including provitamin A) deserve a second look, leveraging multi-omic approaches, to elucidate how they may mitigate cognitive decline and dementia risk.
Collapse
Affiliation(s)
- Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, the Ohio State University, Columbus, Ohio, USA
- Foods for Health Discovery Theme, the Ohio State University, Columbus, Ohio, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
14
|
Como CN, Cervantes C, Pawlikowski B, Siegenthaler J. Retinoic acid signaling in mouse retina endothelial cells is required for early angiogenic growth. Differentiation 2023; 130:16-27. [PMID: 36528974 PMCID: PMC10006372 DOI: 10.1016/j.diff.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The development of the retinal vasculature is essential to maintain health of the tissue, but the developmental mechanisms are not completely understood. The aim of this study was to investigate the cell-autonomous role of retinoic acid signaling in endothelial cells during retina vascular development. Using a temporal and cell-specific mouse model to disrupt retinoic acid signaling in endothelial cells in the postnatal retina (Pdgfbicre/+dnRAR403fl/fl mutants), we discovered that angiogenesis in the retina is significantly decreased with a reduction in retina vascularization, endothelial tip cell number and filipodia, and endothelial 'crowding' of stalk cells. Interestingly, by P15, the vasculature can overcome the early angiogenic defect and fully vascularized the retina. At P60, the vasculature is intact with no evidence of retina cell death or altered blood retinal barrier integrity. Further, we identified that the angiogenic defect seen in mutants at P6 correlates with decreased Vegfr3 expression in endothelial cells. Collectively, our work identified a previously unappreciated function for endothelial retinoic acid signaling in early retinal angiogenesis.
Collapse
Affiliation(s)
- Christina N Como
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA
| | - Cesar Cervantes
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA
| | - Brad Pawlikowski
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA
| | - Julie Siegenthaler
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
16
|
Wingrove J, de Hoog E, Spencer GE. Disruptions in network plasticity precede deficits in memory following inhibition of retinoid signaling. J Neurophysiol 2023; 129:41-55. [PMID: 36448682 DOI: 10.1152/jn.00270.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for vertebrate cognition and hippocampal plasticity, but few studies have examined its role in invertebrate learning and memory, and its actions in the invertebrate central nervous system are currently unknown. Using the mollusc Lymnaea stagnalis, we examined operant conditioning of the respiratory behavior, controlled by a well-defined central pattern generator (CPG), and used citral to inhibit retinoic acid signaling. Both citral- and vehicle-treated animals showed normal learning, but citral-treated animals failed to exhibit long-term memory at 24 h. Cohorts of citral- or vehicle-treated animals were dissected into semi-intact preparations, either 1 h after training, or after the memory test 24 h later. Simultaneous electrophysiological recordings from the CPG pacemaker cell (right pedal dorsal 1; RPeD1) and an identified motorneuron (VI) were made while monitoring respiratory activity (pneumostome opening). Activity of the CPG pneumostome opener interneuron (input 3 interneuron; IP3) was also monitored indirectly. Vehicle-treated conditioned preparations showed significant changes in network parameters immediately after learning, such as reduced motorneuron bursting activity (from IP3 input), delayed pneumostome opening, and decoupling of coincident IP3 input within the network. However, citral-treated preparations failed to exhibit these network changes and more closely resembled naïve preparations. Importantly, these citral-induced differences were manifested immediately after training and before any overt changes in the behavioral response (memory impairment). These studies shed light on where and when retinoid signaling might affect a central pattern-generating network to promote memory formation during conditioning of a homeostatic behavior.NEW & NOTEWORTHY We provide novel evidence for how conditioning-induced changes in a CPG network are disrupted when retinoid signaling is inhibited. Inhibition of retinoic acid signaling prevents long-term memory formation following operant conditioning, but has no effect on learning. Simultaneous electrophysiological and behavioral analyses indicate network changes immediately following learning, but these changes are prevented with inhibition of retinoid signaling, before any overt changes in behavior. These data suggest sites for retinoid actions during memory formation.
Collapse
Affiliation(s)
- Joel Wingrove
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Eric de Hoog
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
17
|
Dhillon VS, Deo P, Fenech M. Plasma Micronutrient Profile of Prostate Cancer Cases Is Altered Relative to Healthy Controls-Results of a Pilot Study in South Australia. Cancers (Basel) 2022; 15:cancers15010077. [PMID: 36612074 PMCID: PMC9817984 DOI: 10.3390/cancers15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests possible roles of micronutrients in cancer prevention. The study was designed to test the hypothesis that the concentration profile of plasma micronutrients (i.e., the nutriome) in prostate cancer patients is different from that of healthy controls. Plasma samples from 116 Caucasian men diagnosed with late onset of prostate cancer and 132 matched controls from the South Australian population were collected and analysed for their concentration of micronutrients. Plasma concentrations of lutein, lycopene, α-carotene and β-carotene were found to be significantly lower in prostate cancer patients (p = 0.03, 0.008, 0.002 and 0.002, respectively). Plasma levels of elements such as iron, copper, calcium and sulphur were significantly higher (p < 0.0001, <0.0001, <0.0001 and p = 0.0003, respectively) while that of selenium was significantly lower (p = 0.002) in prostate cancer patients. Higher prostate cancer risk is significantly associated with plasma levels below the median of lycopene (OR: 2.24), α-carotene (OR: 2.13), β-carotene (OR: 1.97) and high levels above the median of iron (OR: 2.31), calcium (OR: 4.35) and sulphur (OR: 2.39). The results of this study suggest that the plasma nutriome could be a useful diagnostic of prostate cancer risk.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton, Adelaide 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
18
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Nutrition influences nervous system development by regulating neural stem cell homeostasis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
21
|
Xie J, Li J, Ma J, Li M, Wang X, Fu X, Ma Y, Yang H, Li B, Saijilafu. Magnesium Oxide/Poly(l-lactide-co-ε-caprolactone) Scaffolds Loaded with Neural Morphogens Promote Spinal Cord Repair through Targeting the Calcium Influx and Neuronal Differentiation of Neural Stem Cells. Adv Healthc Mater 2022; 11:e2200386. [PMID: 35587044 PMCID: PMC11469078 DOI: 10.1002/adhm.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Because of the limited regenerative ability of the central nervous system (CNS), effective treatments for spinal cord injury (SCI) are still lacking. After SCI, neuron loss and axon regeneration failure often result in irreversible functional impairment. The calcium overload induced by the N-methyl-D-aspartate receptor (NMDAR) overactivation is critical for cell death in SCI. It has been reported that the magnesium ion (Mg2+ ) can competitively block the NMDAR and reduce the calcium influx, and that sonic hedgehog (Shh) and retinoic acid (RA) are the critical regulators of neuronal differentiation of endogenous neural stem cells (NSCs). Here, magnesium oxide (MgO)/poly (l-lactide-co-ε-caprolactone) (PLCL) scaffold loaded with purmorphamine (PUR, a Shh signaling agonist) and RA is developed and its feasibility in SCI repair is tested. The results showed that the Mg2+ released from MgO attenuated cell apoptosis by blocking the calcium influx, and the PUR/RA promoted the recruitment and neuronal differentiation of endogenous NSCs, thereby reducing the glial scar formation at the SCI lesion site. Furthermore, implantation of PUR/RA-loaded MgO/PLCL scaffold facilitates the partial recovery of a locomotor function of SCI mouse in vivo. Together, findings from this study imply that PUR/RA-loaded MgO/PLCL scaffold may be a promising biomaterial for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Jile Xie
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
| | - Jiaying Li
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Jinjin Ma
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Meimei Li
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Xingran Wang
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Xinya Fu
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Yanxia Ma
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Bin Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Saijilafu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| |
Collapse
|
22
|
Guo L, Zhang Y, Liu H, Cheng Q, Yang S, Yang D. All-trans retinoic acid inhibits the osteogenesis of periodontal ligament stem cells by promoting IL-1β production via NF-κB signaling. Int Immunopharmacol 2022; 108:108757. [DOI: 10.1016/j.intimp.2022.108757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
|
23
|
Lithopoulos MA, Strueby L, O'Reilly M, Zhong S, Möbius MA, Eaton F, Fung M, Hurskainen M, Cyr-Depauw C, Suen C, Xu L, Collins JJP, Vadivel A, Stewart DJ, Burger D, Thébaud B. Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. Am J Respir Crit Care Med 2022; 205:1186-1201. [PMID: 35286238 DOI: 10.1164/rccm.202012-4520oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials mesenchymal stromal cell therapies demonstrate promise as a therapeutic for bronchopulmonary dysplasia. OBJECTIVES To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. METHODS Mice at postnatal day 7/8 were injected intraperitoneally with lipopolysaccharide and ventilated with 40% oxygen at postnatal day 9/10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone/hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. MEASUREMENTS AND MAIN RESULTS The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. Additionally, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. CONCLUSIONS Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Marissa A Lithopoulos
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Lannae Strueby
- University of Saskatchewan, 7235, Department of Pediatrics, Saskatoon, Saskatchewan, Canada
| | - Megan O'Reilly
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Shumei Zhong
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Marius A Möbius
- Universitätsklinikum Carl Gustav Carus, 39063, Department of Neonatalogy and Pediatric Critical Care Medicine, Dresden, Germany
| | - Farah Eaton
- University of Alberta, 3158, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
| | - Moses Fung
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Maria Hurskainen
- Helsinki University Central Hospital, 159841, Department of Pediatric Cardiology, Helsinki, Finland.,University of Helsinki, 3835, Pediatric Research Center, Helsinki, Finland
| | - Chanèle Cyr-Depauw
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Colin Suen
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Liqun Xu
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jennifer J P Collins
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Arul Vadivel
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Dylan Burger
- University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, 10055, Kidney Research Centre, Chronic Disease Program, Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, 274065, Ottawa, Ontario, Canada;
| |
Collapse
|
24
|
The RIG-I-NRF2 axis regulates the mesenchymal stromal niche for bone marrow transplantation. Blood 2022; 139:3204-3221. [PMID: 35259210 DOI: 10.1182/blood.2021013048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) support bone formation and constitute the stromal niche in regulating hematopoietic stem cells (HSCs). Stromal niche dysfunction affects HSC engraftment during transplantation; however, the underlying mechanisms remain elusive. In the present study, we found that all-trans retinoic acid (ATRA) and inflammation stress upregulated retinoic acid-inducible gene I (RIG-I) in BMSCs. Excess RIG-I expression damaged the clonogenicity, bone-forming ability of BMSCs and, particularly, their stromal niche function that supports HSC expansion in vitro and engraftment in vivo. Mechanistically, RIG-I elevation promoted the degradation of NRF2, a checkpoint for antioxidant cellular response, by altering the RIG-I-Trim25-Keap1-NRF2 complex, leading to reactive oxygen species (ROS) accumulation and BMSC damage. Genetic inhibition of RIG-I sustained NRF2 protein levels and reduced ROS levels in ATRA-treated BMSCs, thus preserving their clonogenicity, bone-forming ability, and stromal niche function in supporting HSC engraftment in mice. More importantly, RIG-I inhibition recovered the ATRA-treated stromal niche function, to enhance HSC engraftment and emergency myelopoiesis for innate immunity against the bacterium Listeria monocytogenes during transplantation. Overall, we identified a non-canonical role of RIG-I in the regulation of the stromal niche for HSC transplantation.
Collapse
|
25
|
Lidin E, Sköld MK, Angéria M, Davidsson J, Risling M. Hippocampal Expression of Cytochrome P450 1B1 in Penetrating Traumatic Brain Injury. Int J Mol Sci 2022; 23:722. [PMID: 35054909 PMCID: PMC8775891 DOI: 10.3390/ijms23020722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents' outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.
Collapse
Affiliation(s)
- Erik Lidin
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Mattias K. Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Angéria
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mårten Risling
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (M.K.S.); (M.A.); (M.R.)
| |
Collapse
|
26
|
Brum PO, Viola GD, Saibro-Girardi C, Tiefensee-Ribeiro C, Brum MO, Gasparotto J, Krolow R, Moreira JCF, Gelain DP. Hypoxia-Inducible Factor-1α (HIF-1α) Inhibition Impairs Retinoic Acid-Induced Differentiation in SH-SY5Y Neuroblastoma Cells, Leading to Reduced Neurite Length and Diminished Gene Expression Related to Cell Differentiation. Neurochem Res 2021; 47:409-421. [PMID: 34557995 PMCID: PMC8827409 DOI: 10.1007/s11064-021-03454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in childhood, originated from cells of the neural crest during the development of the Sympathetic Nervous System. Retinoids are vitamin-A derived differentiating agents utilised to avoid disease resurgence in high-risk neuroblastoma treatment. Several studies indicate that hypoxia—a common feature of the tumoural environment—is a key player in cell differentiation and proliferation. Hypoxia leads to the accumulation of the hypoxia-inducible factor-1α (HIF-1α). This work aims to investigate the effects of the selective inhibition of HIF-1α on the differentiation induced by retinoic acid in human neuroblastoma cells from the SH-SY5Y lineage to clarify its role in cell differentiation. Our results indicate that HIF-1α inhibition impairs RA-induced differentiation by reducing neuron-like phenotype and diminished immunolabeling and expression of differentiation markers.
Collapse
Affiliation(s)
- Pedro Ozorio Brum
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Max F. Perutz Labs, University of Vienna, Dr Bohr-Gasse 9, Room 4.510, 1030, Vienna, Austria.
| | - Guilherme Danielski Viola
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Saibro-Girardi
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Rachel Krolow
- Laboratório de Programação Neurobiológica do Comportamento Alimentar, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
28
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
29
|
Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia Iii AJ. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 2021; 11:6005. [PMID: 33727588 PMCID: PMC7966401 DOI: 10.1038/s41598-021-85357-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Over one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer’s disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis. We demonstrate that IH creates a pro-oxidant condition that reduces the Tbr2+ neural progenitor pool early in the process, while also suppressing terminal differentiation of adult born neurons during late adult neurogenesis. We further show that IH-dependent cell-autonomous hypoxia inducible factor 1-alpha (HIF1a) signaling is activated in early neuroprogenitors and enhances the generation of adult born neurons upon termination of IH. Our findings indicate that oscillations in oxygen homeostasis, such as those found in sleep apnea, have complex stage-dependent influence over hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alejandra Arias-Cavieres
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alfredo J Garcia Iii
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA. .,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
31
|
Hummel R, Ulbrich S, Appel D, Li S, Hirnet T, Zander S, Bobkiewicz W, Gölz C, Schäfer MK. Administration of all-trans retinoic acid after experimental traumatic brain injury is brain protective. Br J Pharmacol 2020; 177:5208-5223. [PMID: 32964418 PMCID: PMC7588818 DOI: 10.1111/bph.15259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE All-trans retinoic acid (ATRA) is a vitamin A metabolite, important in the developing and mature brain. Pre-injury ATRA administration ameliorates ischaemic brain insults in rodents. This study examined the effects of post-traumatic ATRA treatment in experimental traumatic brain injury (TBI). EXPERIMENTAL APPROACH Male adult mice were subjected to the controlled cortical impact model of TBI or sham procedure and killed at 7 or 30 days post-injury (dpi). ATRA (10 mg kg-1, i.p.) was given immediately after the injury and 1, 2 and 3 dpi. Neurological function and sensorimotor coordination were evaluated. Brains were processed for (immuno-) histological, mRNA and protein analyses (qPCR and western blot). KEY RESULTS ATRA treatment reduced brain lesion size, reactive astrogliosis and axonal injury at 7 dpi, and hippocampal granule cell layer (GCL) integrity was protected at 7 and 30 dpi, independent of cell proliferation in neurogenic niches and blood-brain barrier damage. Neurological and motor deficits over time and the brain tissue loss at 30 dpi were not affected by ATRA treatment. ATRA decreased gene expression of markers for damage-associated molecular pattern (HMGB1), apoptosis (caspase-3 and Bax), activated microglia (TSPO), and reactive astrogliosis (GFAP, SerpinA3N) at 7 dpi and a subset of markers at 30 dpi (TSPO, GFAP). CONCLUSION AND IMPLICATIONS In experimental TBI, post-traumatic ATRA administration exerted brain protective effects, including long-term protection of GCL integrity, but did not affect neurological and motor deficits. Further investigations are required to optimize treatment regimens to enhance ATRA's brain protective effects and improve outcomes.
Collapse
Affiliation(s)
- Regina Hummel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sebastian Ulbrich
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Dominik Appel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Shuailong Li
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Tobias Hirnet
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sonja Zander
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Wieslawa Bobkiewicz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Christina Gölz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Michael K.E. Schäfer
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
- Focus Program Translational Neurosciences (FTN)Johannes Gutenberg‐University MainzMainzGermany
- Research Center for ImmunotherapyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| |
Collapse
|
32
|
Kukreja S, Udaykumar N, Yogesh B, Sen J. Retinoic acid signaling regulates proliferation and lamina formation in the developing chick optic tectum. Dev Biol 2020; 467:95-107. [PMID: 32919944 DOI: 10.1016/j.ydbio.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023]
Abstract
The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.
Collapse
Affiliation(s)
- Shweta Kukreja
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Baba Yogesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
33
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
34
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
35
|
Retinoic Acid Signal Negatively Regulates Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. Stem Cells Int 2020; 2020:5891783. [PMID: 32676119 PMCID: PMC7336240 DOI: 10.1155/2020/5891783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) signal is involved in tooth development and osteogenic differentiation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) are one of the useful MSCs in tissue regeneration. However, the function of RA in osteo/odontogenic differentiation of DPSCs remains unclear. Here, we investigated the expression pattern of RA in miniature pig tooth germ and intervened in the RA signal during osteo/odontogenic differentiation of human DPSCs. Deciduous canine (DC) germs of miniature pigs were observed morphologically, and the expression patterns of RA were studied by in situ hybridization (ISH). Human DPSCs were isolated and cultured in osteogenic induction medium with or without RA or BMS 493, an inverse agonist of the pan-retinoic acid receptors (pan-RARs). Alkaline phosphatase (ALP) activity assays, alizarin red staining, quantitative calcium analysis, CCK8 assay, osteogenesis-related gene expression, and in vivo transplantation were conducted to determine the osteo/odontogenic differentiation potential and proliferation potential of DPSCs. We found that the expression of RARβ and CRABP2 decreased during crown calcification of DCs of miniature pigs. Activation of RA signal in vitro inhibited ALP activities and mineralization of human DPSCs and decreased the mRNA expression of ALP, osteocalcin, osteopontin, and a transcription factor, osterix. With BMS 493 treatment, the results were opposite. Interference in RA signal decreased the proliferation of DPSCs. In vivo transplantation experiments suggested that osteo/odontogenic differentiation potential of DPSCs was enhanced by inversing RA signal. Our results demonstrated that downregulation of RA signal promoted osteo/odontogenic differentiation of DPSCs and indicated a potential target pathway to improve tissue regeneration.
Collapse
|
36
|
Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neurosci Biobehav Rev 2020; 112:376-391. [DOI: 10.1016/j.neubiorev.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
37
|
Rodrigues DC, Harvey EM, Suraj R, Erickson SL, Mohammad L, Ren M, Liu H, He G, Kaplan DR, Ellis J, Yang G. Methylglyoxal couples metabolic and translational control of Notch signalling in mammalian neural stem cells. Nat Commun 2020; 11:2018. [PMID: 32332750 PMCID: PMC7181744 DOI: 10.1038/s41467-020-15941-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Gene regulation and metabolism are two fundamental processes that coordinate the self-renewal and differentiation of neural precursor cells (NPCs) in the developing mammalian brain. However, little is known about how metabolic signals instruct gene expression to control NPC homeostasis. Here, we show that methylglyoxal, a glycolytic intermediate metabolite, modulates Notch signalling to regulate NPC fate decision. We find that increased methylglyoxal suppresses the translation of Notch1 receptor mRNA in mouse and human NPCs, which is mediated by binding of the glycolytic enzyme GAPDH to an AU-rich region within Notch1 3ʹUTR. Interestingly, methylglyoxal inhibits the enzymatic activity of GAPDH and engages it as an RNA-binding protein to suppress Notch1 translation. Reducing GAPDH levels or restoring Notch signalling rescues methylglyoxal-induced NPC depletion and premature differentiation in the developing mouse cortex. Taken together, our data indicates that methylglyoxal couples the metabolic and translational control of Notch signalling to control NPC homeostasis. Gene regulation and metabolism co-ordinate self-renewal and differentiation of neural precursors (NPCs) in the developing brain. Here the authors show that methylglyoxal, a glycolytic intermediate metabolite, promotes GADPH-dependent translational repression of Notch1, thereby promoting NPC differentiation.
Collapse
Affiliation(s)
- Deivid Carvalho Rodrigues
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Emily M Harvey
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Rejitha Suraj
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Sarah L Erickson
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Lamees Mohammad
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Mengli Ren
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Hongrui Liu
- Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - David R Kaplan
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Guang Yang
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada. .,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
38
|
Xu M, Xu L, Du H, Shan W, Feng J, Zhai G, Yang X. Decreased Serum Retinoic Acid May Predict Poor Outcome in Ischemic Stroke Patients. Neuropsychiatr Dis Treat 2020; 16:1483-1491. [PMID: 32606701 PMCID: PMC7293911 DOI: 10.2147/ndt.s254591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND AIMS Decreased serum retinoic acid (RA) levels have been shown to be linked with increased mortality in cardiovascular diseases. This study aimed to investigate the relationship between serum RA and 3-month functional outcome after ischemic stroke. METHODS Between January 2019 and September 2019, we prospectively recruited ischemic stroke patients within 24 hrs of symptom onset. Serum RA levels were measured for all patients at admission. The primary outcome was defined as poor functional outcome (modified Rankin Scale 3-6) at 90 days. The secondary outcome was defined as early neurological deterioration (END), which is considered as an increase of ≥1 point in motor power or total National Institutes of Health Stroke Scale score of ≥2 points within 7 days. RESULTS A total of 217 patients were included in the analysis. The median RA levels were 2.9 ng/mL. Ninety-four (43.3%) and 65 (30.0%) patients experienced 3-month poor outcome and END, respectively. After adjusted for potential confounders, decreased levels of serum RA were associated with a higher risk of poor outcome (P for trend = 0.001) and END (P for trend = 0.002). Adding RA quartile to the existing risk factors improved risk prediction for poor outcome [net reclassification improvement (NRI) = 42.6%, P = 0.001; integrated discrimination improvement (IDI) = 5.7%, P = 0.001] and END (NRI index = 45.4%, P = 0.001; IDI = 4.3%; P = 0.005). CONCLUSION Low serum RA levels at baseline were associated with poor prognosis at 90 days after ischemic stroke, suggesting that RA may be a potential prognostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Mengshi Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| | - Liang Xu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, People's Republic of China
| | - Huaping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| | - Wanying Shan
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| | - Jie Feng
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| | - Guojie Zhai
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| | - Xiuyan Yang
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, People's Republic of China
| |
Collapse
|
39
|
Cavallucci V, Fidaleo M, Pani G. Nutrients and neurogenesis: the emerging role of autophagy and gut microbiota. Curr Opin Pharmacol 2019; 50:46-52. [PMID: 31869664 DOI: 10.1016/j.coph.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis, the generation of mature functional neurons from neural stem cells in specific regions of the adult mammalian brain, is implicated in brain physiology, neurodegeneration and mood disorders. Among the many intrinsic and extrinsic factors that modulate neurogenic activity, the role of nutrients, energy metabolism, and gut microbiota has recently emerged. It is increasingly evident that excessive calorie intake accelerates the age-dependent decline of neurogenesis, while calorie restriction and physical exercise have the opposite effect. Mechanistically, nutrient availability could affect neurogenesis by modulating autophagy, a cell-rejuvenating process, in neural stem cells. In parallel, diet can alter the composition of gut microbiota thus impacting the intestine-neurogenic niche communication. These exciting breakthroughs are here concisely reviewed.
Collapse
Affiliation(s)
- Virve Cavallucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Fidaleo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovambattista Pani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
40
|
Das BC, Dasgupta S, Ray SK. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease. Neural Regen Res 2019; 14:1880-1892. [PMID: 31290437 PMCID: PMC6676868 DOI: 10.4103/1673-5374.259604] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to activate specific signaling pathways in the cells. Retinoic acid signaling is extremely important in the central nervous system. Impairment of retinoic acid signaling pathways causes severe pathological processes in the central nervous system, especially in the adult brain. Retinoids have major roles in neural patterning, differentiation, axon outgrowth in normal development, and function of the brain. Impaired retinoic acid signaling results in neuroinflammation, oxidative stress, mitochondrial malfunction, and neurodegeneration leading to progressive Alzheimer's disease, which is pathologically characterized by extra-neuronal accumulation of amyloid plaques (aggregated amyloid-beta) and intra-neurofibrillary tangles (hyperphosphorylated tau protein) in the temporal lobe of the brain. Alzheimer's disease is the most common cause of dementia and loss of memory in old adults. Inactive cholinergic neurotransmission is responsible for cognitive deficits in Alzheimer's disease patients. Deficiency or deprivation of retinoic acid in mice is associated with loss of spatial learning and memory. Retinoids inhibit expression of chemokines and neuroinflammatory cytokines in microglia and astrocytes, which are activated in Alzheimer's disease. Stimulation of retinoic acid receptors and retinoid X receptors slows down accumulation of amyloids, reduces neurodegeneration, and thereby prevents pathogenesis of Alzheimer's disease in mice. In this review, we described chemistry and biochemistry of some natural and synthetic retinoids and potentials of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Institute of Molecular Medicine and Genetics, Augusta University, Augusta, GA, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
41
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
42
|
Mosher KI, Schaffer DV. Proliferation versus Differentiation: Redefining Retinoic Acid's Role. Stem Cell Reports 2019; 10:1673-1675. [PMID: 29874625 PMCID: PMC6117460 DOI: 10.1016/j.stemcr.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Retinoic acid is commonly used in culture to differentiate stem cells into neurons and has established neural differentiation functions in vivo in developing and adult organisms. In this issue of Stem Cell Reports, Mishra et al. (2018) broaden its role in stem cell functions, showing that retinoic acid is necessary for stem and progenitor cell proliferation in the adult brain.
Collapse
Affiliation(s)
- Kira Irving Mosher
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Mao S, Zhang S, Zhou S, Huang T, Feng W, Gu X, Yu B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB J 2019; 33:12409-12424. [PMID: 31415184 DOI: 10.1096/fj.201900965r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schwann cells (SCs) play an essential role in nerve injury repair. A striking feature of the cellular response to peripheral nerve injury is the proliferation of SCs. Circular (circ)RNAs are enriched in the nervous system and are involved in physiologic and pathologic processes. However, the potential role of circRNAs in SC proliferation post nerve injury remains largely unknown. Using a sciatic nerve crush model, we obtained an expression profiling of circRNAs in injured sciatic nerves in rats by RNA sequencing and bioinformatics analysis, and we further identified a circRNA [circ-ankyrin repeat and in-between Ring finger (IBR) domain containing 1 (Ankib1)] involved in SC proliferation by the transfection of specific small interfering RNAs. Overexpression of circ-Ankib1, which was specifically and highly enriched in SCs, impaired SC proliferation and axon regeneration following sciatic nerve injury. Mechanistically, increased expression of DEx/H-box helicase 9 (DHX9) postinjury might contribute to the down-regulation of circ-Ankib1, which further suppressed cytochrome P450, family 26, subfamily B, polypeptide 1 expression by sponging miR-423-5p, miR-485-5p, and miR-666-3p, leading to the induction of SC proliferation and nerve regeneration. Taken together, our results reveal a crucial role for circRNAs in regulating proliferation of SCs involved in sciatic nerve regeneration; as such, circRNAs may serve as a potential therapeutic avenue for nerve injury repair.-Mao, S., Zhang, S., Zhou, S., Huang, T., Feng, W., Gu, X., Yu, B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury.
Collapse
Affiliation(s)
- Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shanshan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuoshuo Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
44
|
Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Transl Med 2019; 9:47-60. [PMID: 31508905 PMCID: PMC6954720 DOI: 10.1002/sctm.19-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post‐MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell‐derived CPC model to screen a 10,000‐compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time‐of‐differentiation‐dependent effect on the HuES6‐derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.
Collapse
Affiliation(s)
- Lauren Drowley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Jane McPheat
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anneli Nordqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | | | - Ulla Karlsson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Martinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Erik Müllers
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anita Dellsén
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Alleyn T Plowright
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| |
Collapse
|
45
|
Nutrients in the Prevention of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9874159. [PMID: 31565158 PMCID: PMC6746160 DOI: 10.1155/2019/9874159] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a disease caused by the complex interaction of multiple mechanisms, some of which are still not fully understood. To date, pharmacological treatments and supplementation of individual nutrients have been poorly effective in terms of the prevention and treatment of AD, while alternative strategies based on multimodal approaches (diet, exercise, and cognitive training) seem to be more promising. In this context, the focus on dietary patterns rather than on single food components could be more useful in preventing or counteracting the pathological processes typical of AD, thanks to the potential synergistic effects of various nutrients (neuronutrients). The aim of this narrative review is to summarize the currently existing preclinical and clinical evidence regarding the Mediterranean diet (MeDi), the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, which are three dietary patterns with well-known anti-inflammatory and antioxidant properties. Recently, they have been related to brain protection and AD prevention, perhaps thanks to their high content of neuroprotective bioactive compounds. Similarly, intermittent fasting (IF) or calorie restriction (CR) is emerging as interesting approaches that seem to promote hippocampal neurogenesis, activate adaptive stress response systems, and enhance neuronal plasticity, thus leading to motor and cognitive improvements in animal models of AD and hopefully also in human beings.
Collapse
|
46
|
Yan HC, Li L, Liu JC, Wang YF, Liu XL, Ge W, Dyce PW, Li L, Sun XF, Shen W, Cheng SF. RA promotes proliferation of primordial germ cell-like cells differentiated from porcine skin-derived stem cells. J Cell Physiol 2019; 234:18214-18229. [PMID: 30859584 DOI: 10.1002/jcp.28454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that primordial germ cell-like cells (PGCLCs) can be obtained from human, porcine and mouse skin-derived stem cells (SDSCs). In this paper, we found retinoic acid (RA), the active derivative of vitamin A, accelerated the growth of porcine primordial germ cells (pPGCs) and porcine PGCLCs (pPGCLCs) which were derived from porcine SDSCs (pSDSCs). Moreover, flow cytometry results revealed that the proliferation promoting effect of RA was attenuated by U0126, a specific inhibitor of extracellular signal-regulated kinase (ERK). Western blot analysis showed the protein level of ERK, phosphorylated ERK, cyclin D1 (CCND1), and cyclin-dependent kinase 2 (CDK2) increased after stimulation with RA, and this effect could also be abolished by U0126. Our data revealed that ablation of ERK expression by U0126 should significantly decrease proliferation of pPGCLCS. This reduction was because CCND1 and CDK2 proteins level decrease and subsequently the pPGCLCs were arrested in the G0/G1 phase. In addition, we also confirmed RA indeed promoted the proliferation of pPGCs isolated from porcine fetal genital ridges in vitro. Furthermore, our data indicated that DNA methylation pattern were changed in pPGCLCs and this pattern were more similar to pPGCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Feng Sun
- Reproductive Center, Anqiu Women and Children's Hospital, Weifang, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
47
|
Pawlikowski B, Wragge J, Siegenthaler JA. Retinoic acid signaling in vascular development. Genesis 2019; 57:e23287. [PMID: 30801891 DOI: 10.1002/dvg.23287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Formation of the vasculature is an essential developmental process, delivering oxygen and nutrients to support cellular processes needed for tissue growth and maturation. Retinoic acid (RA) and its downstream signaling pathway is vital for normal pre- and post-natal development, playing key roles in the specification and formation of many organs and tissues. Here, we review the role of RA in blood and lymph vascular development, beginning with embryonic yolk sac vasculogenesis and remodeling and discussing RA's organ-specific roles in angiogenesis and vessel maturation. In particular, we highlight the multi-faceted role of RA signaling in CNS vascular development and acquisition of blood-brain barrier properties.
Collapse
Affiliation(s)
- Brad Pawlikowski
- Department of Molecular, Cell and Developmental Biology, University of Colorado-Boulder, Boulder, Colorado
| | - Jacob Wragge
- Department of Pediatrics-Section of Developmental Biology, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Siegenthaler
- Department of Pediatrics-Section of Developmental Biology, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
48
|
Trigo D, Goncalves MB, Corcoran JPT. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 2019; 33:7225-7235. [PMID: 30857414 PMCID: PMC6529336 DOI: 10.1096/fj.201802097r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-β signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-β signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-β signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.—Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling.
Collapse
Affiliation(s)
- Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|