1
|
Dardano M, Kleemiß F, Kosanke M, Lang D, Wilson L, Franke A, Teske J, Shivaraj A, de la Roche J, Fischer M, Lange L, Schambach A, Drakhlis L, Zweigerdt R. Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart. Nat Cell Biol 2024:10.1038/s41556-024-01526-4. [PMID: 39379702 DOI: 10.1038/s41556-024-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development. Modulating HFO differentiation, we here report the generation of blood-generating HFOs. While maintaining a functional ventricular-like heart anlagen, blood-generating HFOs comprise a mesenchyme-embedded haemogenic endothelial layer encompassing multiple haematopoietic derivatives and haematopoietic progenitor cells with erythro-myeloid and lymphoid potential, reflecting aspects of primitive and definitive haematopoiesis. The model enables the morphologically structured co-development of cardiac, endothelial and multipotent haematopoietic tissues equivalent to the intra-embryonic haematopoietic region in vivo, promoting research on haematopoiesis in vitro.
Collapse
Affiliation(s)
- Miriana Dardano
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Felix Kleemiß
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - Dorina Lang
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Liam Wilson
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jana Teske
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Akshatha Shivaraj
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wu X, Ni Y, Li W, Yang B, Yang X, Zhu Z, Zhang J, Wu X, Shen Q, Liao Z, Yuan L, Chen Y, Du Q, Wang C, Liu P, Miao Y, Li N, Zhang S, Liao M, Hua J. Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. J Biol Chem 2024; 300:105556. [PMID: 38097188 PMCID: PMC10825052 DOI: 10.1016/j.jbc.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Liao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlong Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengbao Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Menegatti S, Potts B, Paredes R, Garcia-Alegria E, Baker SM, Kouskoff V. CD82 expression marks the endothelium to hematopoietic transition at the onset of blood specification in human. iScience 2023; 26:107583. [PMID: 37694151 PMCID: PMC10484973 DOI: 10.1016/j.isci.2023.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
During embryonic development, all blood progenitors are initially generated from endothelial cells that acquire a hemogenic potential. Blood progenitors emerge through an endothelial-to-hematopoietic transition regulated by the transcription factor RUNX1. To date, we still know very little about the molecular characteristics of hemogenic endothelium and the molecular changes underlying the transition from endothelium to hematopoiesis. Here, we analyzed at the single cell level a human embryonic stem cell-derived endothelial population containing hemogenic potential. RUNX1-expressing endothelial cells, which harbor enriched hemogenic potential, show very little molecular differences to their endothelial counterpart suggesting priming toward hemogenic potential rather than commitment. Additionally, we identify CD82 as a marker of the endothelium-to-hematopoietic transition. CD82 expression is rapidly upregulated in newly specified blood progenitors then rapidly downregulated as further differentiation occurs. Together our data suggest that endothelial cells are first primed toward hematopoietic fate, and then rapidly undergo the transition from endothelium to blood.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
- CytoSeek Ltd, Unit Dx, Albert Road, Bristol BS2 0XJ, UK
| | - Bethany Potts
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| | - Eva Garcia-Alegria
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| | - Syed Murtuza Baker
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
Tamaoki N, Siebert S, Maeda T, Ha NH, Good ML, Huang Y, Vodnala SK, Haro-Mora JJ, Uchida N, Tisdale JF, Sweeney CL, Choi U, Brault J, Koontz S, Malech HL, Yamazaki Y, Isonaka R, Goldstein DS, Kimura M, Takebe T, Zou J, Stroncek DF, Robey PG, Kruhlak MJ, Restifo NP, Vizcardo R. Self-organized yolk sac-like organoids allow for scalable generation of multipotent hematopoietic progenitor cells from induced pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100460. [PMID: 37159663 PMCID: PMC10163025 DOI: 10.1016/j.crmeth.2023.100460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.
Collapse
Affiliation(s)
- Naritaka Tamaoki
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Takuya Maeda
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meghan L. Good
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yin Huang
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suman K. Vodnala
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Brault
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sherry Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Yamazaki
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Risa Isonaka
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - David S. Goldstein
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - David F. Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P. Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Raul Vizcardo
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Center of Cell-based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Flosdorf N, Zenke M. Dendritic cells generated from induced pluripotent stem cells and by direct reprogramming of somatic cells. Eur J Immunol 2022; 52:1880-1888. [PMID: 36045608 DOI: 10.1002/eji.202149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
Novel and exciting avenues allow generating dendritic cells (DC) by reprogramming of somatic cells. DC are obtained from induced pluripotent stem cells (iPS cells), referred to as ipDC, and by direct reprogramming of cells toward DC, referred to as induced DC (iDC). iPS cells represent pluripotent stem cells generated by reprogramming of somatic cells and can differentiate into all cell types of the body, including DC. This makes iPS cells and ipDC derived thereof useful for studying various DC subsets, acquiring high cell numbers for research and clinical use, or applying genome editing to generate DC with wanted properties. Thereby, ipDC overcome limitations in specific DC subsets, which are only found in low abundance in blood or lymphoid organs. iDC are generated by direct reprogramming of somatic cells with a specific set of transcription factors and offer an avenue to obtain DC without a pluripotent cell intermediate. ipDC and iDC retain patient and disease-specific mutations and this opens new perspectives for studying DC in disease. This review summarizes the current techniques used to generate ipDC and iDC, and the types and functionality of the DC generated.
Collapse
Affiliation(s)
- Niclas Flosdorf
- Department of Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.,Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Bigas A, Galán Palma L, Kartha GM, Giorgetti A. Using Pluripotent Stem Cells to Understand Normal and Leukemic Hematopoietic Development. Stem Cells Transl Med 2022; 11:1123-1134. [PMID: 36398586 PMCID: PMC9672852 DOI: 10.1093/stcltm/szac071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2023] Open
Abstract
Several decades have passed since the generation of the first embryonic stem cell (ESC) lines both in mice and in humans. Since then, stem cell biologists have tried to understand their potential biological and clinical uses for their implementation in regenerative medicine. The hematopoietic field was a pioneer in establishing the potential use for the development of blood cell products and clinical applications; however, early expectations have been truncated by the difficulty in generating bonafide hematopoietic stem cells (HSCs). Despite some progress in understanding the origin of HSCs during embryonic development, the reproduction of this process in vitro is still not possible, but the knowledge acquired in the embryo is slowly being implemented for mouse and human pluripotent stem cells (PSCs). In contrast, ESC-derived hematopoietic cells may recapitulate some leukemic transformation processes when exposed to oncogenic drivers. This would be especially useful to model prenatal leukemia development or other leukemia-predisposing syndromes, which are difficult to study. In this review, we will review the state of the art of the use of PSCs as a model for hematopoietic and leukemia development.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Luis Galán Palma
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Gayathri M Kartha
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| |
Collapse
|
10
|
Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AES. Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells. eLife 2022; 11:76622. [PMID: 35920626 PMCID: PMC9371602 DOI: 10.7554/elife.76622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.
Collapse
Affiliation(s)
- Anna Leabourn Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tayla J Wickman
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Jo L James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Vargas-Valderrama A, Ponsen AC, Le Gall M, Clay D, Jacques S, Manoliu T, Rouffiac V, Ser-le-Roux K, Quivoron C, Louache F, Uzan G, Mitjavila-Garcia MT, Oberlin E, Guenou H. Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Res Ther 2022; 13:254. [PMID: 35715824 PMCID: PMC9205076 DOI: 10.1186/s13287-022-02925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages.
Methods Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144+-embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144+, respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other’s (e.g. hPSC-ECs vs. hPSC-EB-CD144+) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations.
Results A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144+ contributed to the generation of CD45+ human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144+. Endothelial differentiation of hPSC-EB-CD144+ yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144+ generated an intermediate population of > 90% CD43+ hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144+, hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144+CD45+, a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors.
Conclusion The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02925-w.
Collapse
Affiliation(s)
| | - Anne-Charlotte Ponsen
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Morgane Le Gall
- Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Denis Clay
- INSERM UMS-44, Hôpital Paul Brousse, Université Paris Sud-Université Paris-Saclay, 94807, Villejuif, France
| | - Sébastien Jacques
- Plateforme de Génomique- GENOM'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Tudor Manoliu
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Valérie Rouffiac
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Karine Ser-le-Roux
- INSERM, UMS AMMICa, Plate-forme d'Evaluation Préclinique, Gustave Roussy, 94807, Villejuif, France
| | - Cyril Quivoron
- Laboratoire d'Hématologie Translationnelle, Gustave Roussy, 94805, Villejuif, France
| | - Fawzia Louache
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Georges Uzan
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | | | - Estelle Oberlin
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France. .,Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 91000, Evry, France.
| |
Collapse
|
12
|
Ma Z, Toledo MAS, Wanek P, Elsafi Mabrouk MH, Smet F, Pulak R, Pieske S, Piotrowski T, Herfs W, Brecher C, Schmitt RH, Wagner W, Zenke M. Cell Cluster Sorting in Automated Differentiation of Patient-specific Induced Pluripotent Stem Cells Towards Blood Cells. Front Bioeng Biotechnol 2022; 10:755983. [PMID: 35662848 PMCID: PMC9157239 DOI: 10.3389/fbioe.2022.755983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for a large array of applications in biology and medicine. Taking full advantage of iPS cell technology requires high throughput and automated iPS cell culture and differentiation. We present an automated platform for efficient and robust iPS cell culture and differentiation into blood cells. We implemented cell cluster sorting for analysis and sorting of iPS cell clusters in order to establish clonal iPS cell lines with high reproducibility and efficacy. Patient-specific iPS cells were induced to differentiate towards hematopoietic cells via embryoid body (EB) formation. EB size impacts on iPS cell differentiation and we applied cell cluster sorting to obtain EB of defined size for efficient blood cell differentiation. In summary, implementing cell cluster sorting into the workflow of iPS cell cloning, growth and differentiation represent a valuable add-on for standard and automated iPS cell handling.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcelo Augusto Szymanskide Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Paul Wanek
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Rock Pulak
- Union Biometrica, Holliston, MA, United States
| | - Simon Pieske
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Werner Herfs
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
| | - Christian Brecher
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Robert H. Schmitt
- Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Wolfgang Wagner
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
14
|
Oburoglu L, Mansell E, Canals I, Sigurdsson V, Guibentif C, Soneji S, Woods N. Pyruvate metabolism guides definitive lineage specification during hematopoietic emergence. EMBO Rep 2022; 23:e54384. [PMID: 34914165 PMCID: PMC8811648 DOI: 10.15252/embr.202154384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.
Collapse
Affiliation(s)
- Leal Oburoglu
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Els Mansell
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Isaac Canals
- NeurologyLund Stem Cell CenterLund UniversityLundSweden
| | - Valgardur Sigurdsson
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Carolina Guibentif
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
- Present address:
Sahlgrenska Center for Cancer ResearchDepartment of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Shamit Soneji
- Molecular HematologyLund Stem Cell CenterLund UniversityLundSweden
| | - Niels‐Bjarne Woods
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| |
Collapse
|
15
|
Menegatti S, Potts B, Garcia-Alegria E, Paredes R, Lie-A-Ling M, Lacaud G, Kouskoff V. The RUNX1b Isoform Defines Hemogenic Competency in Developing Human Endothelial Cells. Front Cell Dev Biol 2021; 9:812639. [PMID: 34977046 PMCID: PMC8716778 DOI: 10.3389/fcell.2021.812639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor RUNX1 is a master regulator of blood cell specification. During embryogenesis, hematopoietic progenitors are initially generated from hemogenic endothelium through an endothelium-to-hematopoietic transition controlled by RUNX1. Several studies have dissected the expression pattern and role of RUNX1 isoforms at the onset of mouse hematopoiesis, however the precise pattern of RUNX1 isoform expression and biological output of RUNX1-expressing cells at the onset of human hematopoiesis is still not fully understood. Here, we investigated these questions using a RUNX1b:VENUS RUNX1c:TOMATO human embryonic stem cell line which allows multi-parameter single cell resolution via flow cytometry and isolation of RUNX1b-expressing cells for further analysis. Our data reveal the sequential expression of the two RUNX1 isoforms with RUNX1b expressed first in a subset of endothelial cells and during the endothelial to hematopoietic transition while RUNX1c only becomes expressed in fully specified blood cells. Furthermore, our data show that RUNX1b marks endothelial cells endowed with hemogenic potential and that RUNX1b expression level determines hemogenic competency in a dose-dependent manner. Together our data reveal the dynamic of RUNX1 isoforms expression at the onset of human blood specification and establish RUNX1b isoform as the earliest known marker for hemogenic competency.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- CytoSeek Ltd., Bristol, United Kingdom
| | - Bethany Potts
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Eva Garcia-Alegria
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Stem Cell Process Development, Adaptimmune Ltd., Abingdon, United Kingdom
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Satoh T, Toledo MAS, Boehnke J, Olschok K, Flosdorf N, Götz K, Küstermann C, Sontag S, Seré K, Koschmieder S, Brümmendorf TH, Chatain N, Tagawa YI, Zenke M. Human DC3 Antigen Presenting Dendritic Cells From Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:667304. [PMID: 34368123 PMCID: PMC8339905 DOI: 10.3389/fcell.2021.667304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.
Collapse
Affiliation(s)
- Taiki Satoh
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,School of Life Sciences and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Marcelo A S Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Janik Boehnke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Niclas Flosdorf
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Katrin Götz
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Yoh-Ichi Tagawa
- School of Life Sciences and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
18
|
Pethe P, Noel VS, Kale V. Deterministic role of sonic hedgehog signalling pathway in specification of hemogenic versus endocardiogenic endothelium from differentiated human embryonic stem cells. Cells Dev 2021; 166:203685. [PMID: 33994358 DOI: 10.1016/j.cdev.2021.203685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been shown to have an ability to form a large number of functional endothelial cells in vitro, but generating organ-specific endothelial cells remains a challenge. Sonic hedgehog (SHH) pathway is one of the crucial developmental pathways that control differentiation of many embryonic cell types such as neuroectodermal, primitive gut tube and developing limb buds; SHH pathway is important for functioning of adult cell of skin, bone, liver as well as it regulates haematopoiesis. Misregulation of SHH pathway leads to cancers such as hepatic, pancreatic, basal cell carcinoma, medulloblastoma, etc. However, its role in differentiation of human ESCs into endothelial cells has not been completely elucidated. Here, we examined the role of SHH signalling pathway in endothelial differentiation of hESCs by growing them in the presence of an SHH agonist (purmorphamine) and an SHH antagonist (SANT-1) for a period of 6 days. Interestingly, we found that activation of SHH pathway led to a higher expression of set of transcription factors such as BRACHYURY, GATA2 and RUNX1, thus favouring hemogenic endothelium; whereas inhibition of SHH pathway led to a reduced expression of set of markers such as RUNX1 and BRACHURY, and an increased expression of set of markers - NFATC1, c-KIT, GATA4, CD31 & CD34, thus favouring endocardiogenic endothelium. The results of this study have revealed the previously unreported deterministic role of SHH pathway in specification of endothelial cells differentiated from human ESCs into hemogenic vs. endocardiogenic lineage; this finding could have major implications for clinical applications.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vinnie Sharon Noel
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| |
Collapse
|
19
|
Ackermann M, Haake K, Kempf H, Kaschutnig P, Weiss AC, Nguyen AHH, Abeln M, Merkert S, Kühnel MP, Hartmann D, Jonigk D, Thum T, Kispert A, Milsom MD, Lachmann N. A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica 2021; 106:1354-1367. [PMID: 32327499 PMCID: PMC8094103 DOI: 10.3324/haematol.2019.228064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional (3D), organoid-like differentiation system (“hemanoid”) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43–/CD45– hemato-endothelial progenitors (HEP) forming organized, vasculature-like structures and giving rise to CD34low/CD144–/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEP is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signaling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of HEP and highlight the potential of a hemanoid-based model to study human hematopoietic development.
Collapse
Affiliation(s)
- Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Kathrin Haake
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Hannover Medical School and dept. of Stem Cell Discovery, Novo Nordisk, Denmark
| | - Paul Kaschutnig
- German Cancer Research Center (DKFZ) Heidelberg Institute for Stem Cell Technology, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Ariane H H Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Markus Abeln
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Sylvia Merkert
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | | | - Dorothee Hartmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Germany
| | - Danny Jonigk
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Germany
| | - Thomas Thum
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael D Milsom
- German Cancer Research Center and Heidelberg Institute for Stem Cell Technology, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
A NEWral approach for HSC production in vitro? Blood 2021; 136:2845-2847. [PMID: 33331929 DOI: 10.1182/blood.2020007864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Garcia-Alegria E, Potts B, Menegatti S, Kouskoff V. In vitro differentiation of human embryonic stem cells to hemogenic endothelium and blood progenitors via embryoid body formation. STAR Protoc 2021; 2:100367. [PMID: 33718891 PMCID: PMC7933812 DOI: 10.1016/j.xpro.2021.100367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Little is known about the emergence of blood progenitors during human embryogenesis due to ethical reasons and restricted embryo access. The use of human embryonic stem cells (hESCs) as a model system offers unique opportunities to dissect human blood cell formation. Here, we describe a protocol allowing the differentiation of hESCs via embryoid bodies toward hemogenic endothelium and its subsequent differentiation to blood progenitors. This protocol relies on the formation of embryoid bodies, which is tricky if not carefully performed. For complete details on the use and execution of this protocol, please refer to Garcia-Alegria et al. (2018).
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
- Stem Cell Process Development, Adaptimmune Ltd., 60 Jubilee Avenue Milton Park, Abingdon, Oxfordshire OX14 4RX, UK
| | - Bethany Potts
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| | - Sara Menegatti
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
- CytoSeek Ltd, Unit Dx, Albert Road, Bristol BS2 0XJ, UK
| | - Valerie Kouskoff
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
22
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
23
|
Horton PD, Dumbali SP, Bhanu KR, Diaz MF, Wenzel PL. Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:1-15. [PMID: 33937868 PMCID: PMC8087251 DOI: 10.1007/s43152-020-00027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sandeep P. Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Krithikaa Rajkumar Bhanu
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Miguel F. Diaz
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
24
|
Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Front Cell Dev Biol 2021; 9:631699. [PMID: 33681211 PMCID: PMC7930747 DOI: 10.3389/fcell.2021.631699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
During ontogeny, the establishment of the hematopoietic system takes place in several phases, separated both in time and location. The process is initiated extra-embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo with the formation of hematopoietic stem cells (HSC). Initially, it was thought that HSC-independent hematopoietic YS cells were transient, and only required to bridge the gap to HSC activity. However, in recent years it has become clear that these cells also contribute to embryonic organogenesis, including the emergence of HSCs. Furthermore, some of these early HSC-independent YS cells persist into adulthood as distinct hematopoietic populations. These previously unrecognized abilities of embryonic HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim to provide a succinct overview of the current knowledge regarding the contribution of YS-derived hematopoietic cells to the development of the embryo and the adult hematopoietic system.
Collapse
Affiliation(s)
- Wen Hao Neo
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | | | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
25
|
Fidanza A, Stumpf PS, Ramachandran P, Tamagno S, Babtie A, Lopez-Yrigoyen M, Taylor AH, Easterbrook J, Henderson BEP, Axton R, Henderson NC, Medvinsky A, Ottersbach K, Romanò N, Forrester LM. Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood 2020; 136:2893-2904. [PMID: 32614947 PMCID: PMC7862875 DOI: 10.1182/blood.2020006229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/20/2020] [Indexed: 01/19/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.
Collapse
Affiliation(s)
- Antonella Fidanza
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, Uniklinik Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Prakash Ramachandran
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ann Babtie
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom; and
| | - Martha Lopez-Yrigoyen
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - A Helen Taylor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Easterbrook
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Beth E P Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Axton
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lesley M Forrester
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Cellular Basis of Embryonic Hematopoiesis and Its Implications in Prenatal Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249346. [PMID: 33302450 PMCID: PMC7763178 DOI: 10.3390/ijms21249346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023] Open
Abstract
Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.
Collapse
|
27
|
Zhu Y, Wang T, Gu J, Huang K, Zhang T, Zhang Z, Liu H, Tang J, Mai Y, Zhang Y, Li Y, Feng Y, Kang B, Li J, Shan Y, Chen Q, Zhang J, Long B, Wang J, Gao M, Zhang D, Zhou M, Zhong X, Chen J, Pei D, Nie J, Liu B, Pan G. Characterization and generation of human definitive multipotent hematopoietic stem/progenitor cells. Cell Discov 2020; 6:89. [PMID: 33298886 PMCID: PMC7705709 DOI: 10.1038/s41421-020-00213-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Definitive hematopoiesis generates hematopoietic stem/progenitor cells (HSPCs) that give rise to all mature blood and immune cells, but remains poorly defined in human. Here, we resolve human hematopoietic populations at the earliest hematopoiesis stage by single-cell RNA-seq. We characterize the distinct molecular profiling between early primitive and definitive hematopoiesis in both human embryonic stem cell (hESC) differentiation and early embryonic development. We identify CD44 to specifically discriminate definitive hematopoiesis and generate definitive HSPCs from hESCs. The multipotency of hESCs-derived HSPCs for various blood and immune cells is validated by single-cell clonal assay. Strikingly, these hESCs-derived HSPCs give rise to blood and lymphoid lineages in vivo. Lastly, we characterize gene-expression dynamics in definitive and primitive hematopoiesis and reveal an unreported role of ROCK-inhibition in enhancing human definitive hematopoiesis. Our study provides a prospect for understanding human early hematopoiesis and a firm basis for generating blood and immune cells for clinical purposes.
Collapse
Affiliation(s)
- Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiaming Gu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jun Tang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuchan Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jinbing Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China. .,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
28
|
Direct Comparison of Four Hematopoietic Differentiation Methods from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2020; 15:735-748. [PMID: 32763163 PMCID: PMC7486192 DOI: 10.1016/j.stemcr.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are an invaluable resource for the study of human disease. However, there are no standardized methods for differentiation into hematopoietic cells, and there is a lack of robust, direct comparisons of different methodologies. In the current study we improved a feeder-free, serum-free method for generation of hematopoietic cells from iPSCs, and directly compared this with three other commonly used strategies with respect to efficiency, repeatability, hands-on time, and cost. We also investigated their capability and sensitivity to model genetic hematopoietic disorders in cells derived from Down syndrome and β-thalassemia patients. Of these methods, a multistep monolayer-based method incorporating aryl hydrocarbon receptor hyperactivation (“2D-multistep”) was the most efficient, generating significantly higher numbers of CD34+ progenitor cells and functional hematopoietic progenitors, while being the most time- and cost-effective and most accurately recapitulating phenotypes of Down syndrome and β-thalassemia. Direct comparison of 4 serum & feeder-free iPSC hematopoietic differentiation methods Comparison: cost-benefit efficiency, sensitivity to model genetic blood diseases Presents an improved iPSC hematopoietic differentiation: 7× efficiency at 50% cost Improved method = most live cells, CD34+, CFU; lowest cost; greatest sensitivity
Collapse
|
29
|
Mariani L, Weinand K, Gisselbrecht SS, Bulyk ML. MEDEA: analysis of transcription factor binding motifs in accessible chromatin. Genome Res 2020; 30:736-748. [PMID: 32424069 PMCID: PMC7263192 DOI: 10.1101/gr.260877.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to understanding transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility (MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-specific accessible regions and lineage-specific motifs associated with TF binding therein. To benchmark MEDEA, we used a panel of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA improves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel regulators, such as NRF1 in kidney development. Finally, we show that MEDEA performs well on both bulk and single-cell ATAC-seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kathryn Weinand
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
McBride WH, Schaue D. Radiation-induced tissue damage and response. J Pathol 2020; 250:647-655. [PMID: 31990369 PMCID: PMC7216989 DOI: 10.1002/path.5389] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Normal tissue responses to ionizing radiation have been a major subject for study since the discovery of X-rays at the end of the 19th century. Shortly thereafter, time-dose relationships were established for some normal tissue endpoints that led to investigations into how the size of dose per fraction and the quality of radiation affected outcome. The assessment of the radiosensitivity of bone marrow stem cells using colony-forming assays by Till and McCulloch prompted the establishment of in situ clonogenic assays for other tissues that added to the radiobiology toolbox. These clonogenic and functional endpoints enabled mathematical modeling to be performed that elucidated how tissue structure, and in particular turnover time, impacted clinically relevant fractionated radiation schedules. More recently, lineage tracing technology, advanced imaging and single cell sequencing have shed further light on the behavior of cells within stem, and other, cellular compartments, both in homeostasis and after radiation damage. The discovery of heterogeneity within the stem cell compartment and plasticity in response to injury have added new dimensions to the consideration of radiation-induced tissue damage. Clinically, radiobiology of the 20th century garnered wisdom relevant to photon treatments delivered to a fairly wide field at around 2 Gy per fraction, 5 days per week, for 5-7 weeks. Recently, the scope of radiobiology has been extended by advances in technology, imaging and computing, as well as by the use of charged particles. These allow radiation to be delivered more precisely to tumors while minimizing the amount of normal tissue receiving high doses. One result has been an increase in the use of schedules with higher doses per fraction given in a shorter time frame (hypofractionation). We are unable to cover these new technologies in detail in this review, just as we must omit low-dose stochastic effects, and many aspects of dose, dose rate and radiation quality. We argue that structural diversity and plasticity within tissue compartments provides a general context for discussion of most radiation responses, while acknowledging many omissions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- William H McBride
- Departent of Radiation OncologyUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - Dörthe Schaue
- Departent of Radiation OncologyUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
31
|
Abstract
The generation of hematopoietic stem cells (HSCs) from pluripotent stem cell (PSC) sources is a long-standing goal that will require a comprehensive understanding of the molecular and cellular factors that determine HSC fate during embryogenesis. A precise interplay between niche components, such as the vascular, mesenchymal, primitive myeloid cells, and the nervous system provides the unique signaling milieu for the emergence of functional HSCs in the aorta-gonad-mesonephros (AGM) region. Over the last several years, the interrogation of these aspects in the embryo model and in the PSC differentiation system has provided valuable knowledge that will continue educating the design of more efficient protocols to enable the differentiation of PSCs into
bona fide, functionally transplantable HSCs. Herein, we provide a synopsis of early hematopoietic development, with particular focus on the recent discoveries and remaining questions concerning AGM hematopoiesis. Moreover, we acknowledge the recent advances towards the generation of HSCs
in vitro and discuss possible approaches to achieve this goal in light of the current knowledge.
Collapse
Affiliation(s)
- Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA.,Molecular Oncology Program, Georgetown University, Washington D.C., USA
| |
Collapse
|
32
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|