1
|
Oh SY, Kim HY, Jung SY, Kim HS. Tissue Engineering and Regenerative Medicine in the Field of Otorhinolaryngology. Tissue Eng Regen Med 2024; 21:969-984. [PMID: 39017827 PMCID: PMC11416456 DOI: 10.1007/s13770-024-00661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years. METHODS This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea. RESULTS AND CONCLUSION The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Convergence Medicine, College of Medicine, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| |
Collapse
|
2
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Gunder N, Dörig P, Witt M, Welge-Lüssen A, Menzel S, Hummel T. Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview. HNO 2023; 71:35-43. [PMID: 36734997 PMCID: PMC9897160 DOI: 10.1007/s00106-022-01249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 02/04/2023]
Abstract
Olfactory disorders may be temporary or permanent and can have various causes. Currently, many COVID-19 patients report a reduced or complete loss of olfactory function. A wide range of treatment options have been investigated in the past, such as olfactory training, acupuncture, medical therapy, transcranial magnetic stimulation, or surgical excision of olfactory epithelium, e.g., in severe qualitative smell disorders. The development of a bioelectric nose, e.g., in connection with direct electrical stimulation or transplantation of olfactory epithelium or stem cells, represent treatment options of the future. The basis of these developments and the state of knowledge is discussed in the following work.
Collapse
Affiliation(s)
- N Gunder
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - P Dörig
- Universitäts-HNO Klinik Basel, Basel, Switzerland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Germany
| | | | - S Menzel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - T Hummel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
4
|
Song J, Wang M, Wang C, Zhang L. Olfactory dysfunction in chronic rhinosinusitis: insights into the underlying mechanisms and treatments. Expert Rev Clin Immunol 2023; 19:993-1004. [PMID: 37432663 DOI: 10.1080/1744666x.2023.2235891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Olfactory dysfunction (OD) is a typical symptom of chronic rhinosinusitis (CRS), which adversely affects the patient's quality of life and results in mood depression. Studies investigating the impairment of olfactory epithelium (OE) have indicated that inflammation-induced cell damage and dysfunction in OE plays a vital role in the development of OD. Consequently, glucocorticoids and biologics are beneficial in the management of OD in CRS patients. However, the mechanisms underlying OE impairment in CRS patients have not been fully elucidated. AREAS COVERED This review focuses on mechanisms underlying inflammation-induced cell impairment in OE of CRS patients. Additionally, the methods used for detection of olfaction and both currently available and potentially new clinical treatments for OD are reviewed. EXPERT OPINION Chronic inflammation in OE impairs not only olfactory sensory neurons but also non-neuronal cells that are responsible for regeneration and support for neurons. The current treatment for OD in CRS is mainly aimed at attenuating and preventing inflammation. Strategies for use of combinations of these therapies may achieve greater efficacy in restoration of the damaged OE and consequently better management of OD.
Collapse
Affiliation(s)
- Jing Song
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Riccardi G, Niccolini GF, Bellizzi MG, Fiore M, Minni A, Barbato C. Post-COVID-19 Anosmia and Therapies: Stay Tuned for New Drugs to Sniff Out. Diseases 2023; 11:79. [PMID: 37366867 DOI: 10.3390/diseases11020079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Anosmia is defined as the complete absence of olfactory function, which can be caused by a variety of causes, with upper respiratory tract infections being among the most frequent causes. Anosmia due to SARS-CoV-2 infection has attracted attention given its main role in symptomatology and the social impact of the pandemic. Methods: We conducted systematic research in a clinicaltrials.gov database to evaluate all active clinical trials worldwide regarding drug therapies in adult patients for anosmia following SARS-CoV-2 infection with the intention of identifying the nearby prospects to treat Anosmia. We use the following search terms: "Anosmia" AND "COVID-19" OR "SARS-CoV-2" OR "2019 novel coronavirus". Results: We found 18 active clinical trials that met our criteria: one phase 1, one phase 1-2, five phases 2, two phases 2-3, three phases 3, and six phases 4 studies were identified. The drug therapies that appear more effective and promising are PEA-LUT and Cerebrolysin. The other interesting drugs are 13-cis-retinoic acid plus aerosolized Vitamin D, dexamethasone, and corticosteroid nasal irrigation. Conclusions: COVID-19 has allowed us to highlight how much anosmia is an important and debilitating symptom for patients and, above all, to direct research to find a therapy aimed at curing the symptom, whether it derives from SARS-CoV-2 infection or other infections of the upper airways. Some of these therapies are very promising and are almost at the end of experimentation. They also provide hope in this field, which not addressed until recently.
Collapse
Affiliation(s)
- Gabriele Riccardi
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | | | - Mario Giuseppe Bellizzi
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Unit of Translational Biomolecular Medicine, Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Antonio Minni
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Unit of Translational Biomolecular Medicine, Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| |
Collapse
|
6
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
7
|
Qureshi HA, Lane AP. Olfaction Now and in the Future in CRSwNP. Am J Rhinol Allergy 2023; 37:168-174. [PMID: 36848279 DOI: 10.1177/19458924231153485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is the leading cause of olfactory dysfunction in the general population. Olfactory dysfunction is more common in patients with CRS with nasal polyposis (CRSwNP) compared to those without polyps. PURPOSE The present review aims to summarize the current literature on the mechanism behind olfactory dysfunction in CRSwNP and the impact of therapy on olfactory outcomes in this patient population. METHODS A comprehensive review of the available literature on olfaction in CRSwNP was performed. We evaluated the most recent evidence from studies on the mechanisms behind smell loss in CRSwNP and the impact of medical and surgical therapy for CRS on olfactory outcomes. RESULTS The mechanism behind olfactory dysfunction in CRSwNP is not completely understood, but evidence from clinical research and animal models suggests both an obstructive component causing conductive olfactory loss and an inflammatory response in the olfactory cleft leading to sensorineural olfactory loss. Oral steroids and endoscopic sinus surgery have both shown efficacy in improving olfactory outcomes in CRSwNP in the short term; however, the long-term response of these treatments remains uncertain. Newer targeted biologic therapies, such as dupilumab, have also shown remarkable and durable improvement in smell loss for CRSwNP patients. CONCLUSION Olfactory dysfunction is highly prevalent in the CRSwNP population. Although significant advances have been made in our understanding of olfactory dysfunction in the setting of CRS, additional studies are needed to elucidate cellular and molecular changes mediated by type 2-mediated inflammation in the olfactory epithelium with potential downstream effects on the central olfactory system. Further identification of these underlying basic mechanisms will be vital for developing future therapies targeted to improve olfactory dysfunction in patients with CRSwNP.
Collapse
Affiliation(s)
- Hannan A Qureshi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Garden EM, Espehana A, Boak D, Gadi N, Philpott CM. Commentary on Patient Advocacy and Research Priorities in Olfactory and Gustatory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023; 11:1-8. [PMID: 36811099 PMCID: PMC9936105 DOI: 10.1007/s40136-023-00444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
Purpose of Review This paper outlines the challenges faced by people with smell and taste disorders (SATDs) and why patient advocacy is crucial in addressing these. It includes recent findings in identifying research priorities in SATDs. Recent Findings A recent Priority Setting Partnership (PSP) conducted with the James Lind Alliance (JLA) has been completed and the top 10 research priorities in SATDs determined. Fifth Sense, a UK charity, has been working alongside patient and healthcare professions to drive awareness, education and research in this area. Summary Following the completion of the PSP, Fifth Sense have launched six Research Hubs to take forward these priorities and engage with researchers to carry out and deliver research that directly answers the questions raised by the results of the PSP. The six Research Hubs cover a different aspect of smell and taste disorders. Each hub is led by clinicians and researchers recognised for their expertise in their field, who will act as champions for their respective hub.
Collapse
Affiliation(s)
- E M Garden
- Rhinology & ENT Research Group, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A Espehana
- Rhinology & ENT Research Group, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - D Boak
- Fifth Sense, Barrow-in-Furness, LA14 2UA UK
| | - N Gadi
- Anglia Ruskin Medical School, Anglia Ruskin University, Bishop Hall Ln, Chelmsford, CM1 1SQ UK
| | - C M Philpott
- Rhinology & ENT Research Group, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK.,Fifth Sense, Barrow-in-Furness, LA14 2UA UK.,Norfolk & Waveney ENT Service, The Norfolk Smell & Taste Clinic, Norwich, NR31 6LA UK
| |
Collapse
|
9
|
Shamsundara M, Jayalakshmi L. Anosmia-An Effect of COVID-19 Infection-Review. Indian J Otolaryngol Head Neck Surg 2022; 75:815-821. [PMID: 36593947 PMCID: PMC9798353 DOI: 10.1007/s12070-022-03401-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022] Open
Abstract
The World Health Organization announced on March 11, 2020 that COVID-19 could become a pandemic. COVID-19 is a contagious disease caused by the coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2). Viruses usually enter the body through the mouth or nose. The virus then enters the alveoli, which are small air sacs inside the lungs. Cough, fatigue, fever, shortness of breath or breathing difficulties, and loss of smell and taste are all symptoms of COVID-19. Anosmia, also known as smell blindness, is a condition in which the ability to detect one or more smells is lost. Olfaction uses chemoreceptors to create signals that are processed in the brain and form the sense of smell in anosmia. Anosmia is recognised as a COVID-19 symptom in many countries, and some have developed "smell tests" as potential screening tools. The first level of screening, which is currently used in India, is primarily based on temperature and can result in false positives and negatives (fever as a symptom has not yet been developed although infection). One of the methods for detecting COVID-19 is an intermediate level of screening based on assessing an olfactory function, depending on the usage. This paper provides an overview of COVID-19 and its effects on the human body, as well as an overview of anosmia and how it contributes to one of the symptoms of COVID-19.
Collapse
Affiliation(s)
- Manaswi Shamsundara
- Medical Student Phase 3 Part 1 MBBS, Dr. B. R. Ambedkar Medical College, Bangalore, Karnataka India
| | - Lingaraj Jayalakshmi
- Physiology Department, Dr B. R. Ambedkar Medical College, Bangalore, Karnataka India
| |
Collapse
|
10
|
Chang MT, Patel ZM. Novel Therapies in Olfactory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:427-432. [PMID: 36312744 PMCID: PMC9589531 DOI: 10.1007/s40136-022-00436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Purpose of Review To summarize and critically review the recent literature on novel treatments for olfactory disorders (OD). Recent Findings Emerging therapies in the management of OD include multiple vitamins and supplements, biologics, neuromodulators, and intranasal agents. There is also an active investigation into treatments that harness the neuroregenerative properties of the olfactory epithelium, such as platelet-rich plasma and stem cell transplantation. Summary Successful management of OD is multimodal and tailored to the underlying etiology. As the findings of further investigations accrue, the management of OD will undoubtedly continue to be advanced and refined, and likely harness the intrinsic neuroregenerative properties of the olfactory system.
Collapse
Affiliation(s)
- Michael T. Chang
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA 94305 USA
| | - Zara M. Patel
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA 94305 USA
| |
Collapse
|
11
|
Konstantinidis I. Managing Post-traumatic Olfactory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Purpose of Review
This study aims to summarize and critically review recent literature on management of post-traumatic olfactory dysfunction (PTOD) with emphasis on the diagnostic procedure and treatment options.
Recent Findings
Magnetic resonance imaging and olfactory testing are the basis of the diagnostic procedure. Time of diagnosis is critical as the most improvement occurs within the first year after trauma. Olfactory training and oral steroids seem to be a relatively evidence-based therapeutic option but with non-optimal results. Surgery has a limited place in the management of PTOD. Promising future options could be the development of olfactory implants and transplantation of olfactory epithelium or stem cells.
Summary
PTOD management is challenging as it has several pathogenetic mechanisms and relatively poor prognosis. Patients with olfactory impairment and head trauma have diminished quality of life, and increased risk for harmful events and development of depression. Thus, clinicians should not only focus to therapeutic options but equally to appropriate counseling to their patients in order to decrease risks of personal injury and improve their daily life.
Collapse
|
12
|
Pieniak M, Oleszkiewicz A, Avaro V, Calegari F, Hummel T. Olfactory training - Thirteen years of research reviewed. Neurosci Biobehav Rev 2022; 141:104853. [PMID: 36064146 DOI: 10.1016/j.neubiorev.2022.104853] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
The sense of smell is interrelated with psychosocial functioning. Olfactory disorders often decrease quality of life but treatment options for people with olfactory loss are limited. Additionally, olfactory loss accompanies and precedes psychiatric and neurodegenerative diseases. Regular, systematic exposure to a set of odors, i.e., olfactory training (OT) has been offered for rehabilitation of the sense of smell in clinical practice. As signals from the olfactory bulb are directly projected to the limbic system it has been also debated whether OT might benefit psychological functioning, i.e., mitigate cognitive deterioration or improve emotional processing. In this review we synthesize key findings on OT utility in the clinical practice and highlight the molecular, cellular, and neuroanatomical changes accompanying olfactory recovery in people with smell loss as well as in experimental animal models. We discuss how OT and its modifications have been used in interventions aiming to support cognitive functions and improve well-being. We delineate main methodological challenges in research on OT and suggest areas requiring further scientific attention.
Collapse
Affiliation(s)
- Michal Pieniak
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland.
| | - Anna Oleszkiewicz
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland
| | - Vittoria Avaro
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany
| |
Collapse
|
13
|
Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022; 18:4795-4808. [PMID: 35874953 PMCID: PMC9305264 DOI: 10.7150/ijbs.73485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, i.e., impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.
Collapse
Affiliation(s)
- Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
14
|
Olfactory and gustatory disorders in COVID-19. ALLERGO JOURNAL INTERNATIONAL 2022; 31:243-250. [PMID: 35755859 PMCID: PMC9208356 DOI: 10.1007/s40629-022-00216-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/05/2022]
Abstract
Loss of olfaction is one of the symptoms most commonly reported by patients with coronavirus disease 2019 (COVID-19). Although the spontaneous recovery rate is high, recent studies have shown that up to 7% of patients remain anosmic for more than 12 months after the onset of infection, leaving millions of people worldwide suffering from severe olfactory impairment. Olfactory training remains the first recommended treatment. With the continued lack of approved drug treatments, new therapeutic options are being explored. This article reviews the current state of science on COVID-19-related olfactory disorders, focusing on epidemiology, pathophysiology, cure rates, currently available treatment options, and research on new treatments.
Collapse
|
15
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This article reviews the literature on COVID-19 related anosmia, focusing on the epidemiology, pathophysiology recovery rates, current available treatment options, and research regarding novel treatments. RECENT FINDINGS Loss of sense of smell is one of the most prevalent symptoms reported by patients after COVID-19 infection. Even though there is a high self-reported recovery rate, recent studies have demonstrated that up to 7% of the patients remain anosmic more than 12 months after onset, leaving millions worldwide with severe olfactory dysfunction. Olfactory training remains the first line recommended treatment. Given the paucity of effective medical treatments options researchers are exploring novel therapeutic options. SUMMARY Olfactory dysfunction remains a significant and persistent legacy of the COVID-19 pandemic, but heightened awareness may stimulate research that leads to the development of much-needed treatment options.
Collapse
Affiliation(s)
- Katerina Karamali
- Department of Otorhinolaryngology, Guy's and St Thomas NHS Foundation Trust
| | - Michael Elliott
- Department of Otorhinolaryngology, Guy's and St Thomas NHS Foundation Trust
| | - Claire Hopkins
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Abstract
Purpose of Review Olfactory dysfunction is a prevalent condition affecting 5–15% of the general population, with significant impact on quality of life. This review summarizes the most recent and relevant literature in the treatment of olfactory dysfunction. Recent Findings Current evidence supports the short-term use of topical corticosteroids and systemic therapy. These treatments may occur in conjunction with olfactory training, which is well supported by the literature. While there are several additional treatments currently under investigation, meaningful conclusions are not yet able to be made regarding their efficacy. Summary The treatment of olfactory dysfunction is targeted at the suspected etiology when possible. After normal aging, chronic rhinosinusitis, post-infectious sequelae including as a result SARS-CoV-2 infection (COVID-19), and head trauma are the most common causes. Current evidence supports the short-term use of topical corticosteroids and systemic therapy. Several additional treatments are under investigation but recommendations for their use cannot currently be made. Graphical abstract ![]()
Collapse
Affiliation(s)
- Aria Jafari
- Department of Otolaryngology-Head & Neck Surgery, Division of Rhinology and Endoscopic Skull Base Surgery, University of Washington, Seattle, WA, 98195-6515, USA.
| | - Eric H Holbrook
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
18
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
19
|
Klimek L, Hagemann J, Döge J, Koll L, Cuevas M, Klimek F, Hummel T. Störungen des Riech- und Schmeckvermögens bei COVID-19. ALLERGO JOURNAL 2022; 31:35-43. [PMCID: PMC9618349 DOI: 10.1007/s15007-022-5602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Der Verlust des Riechvermögens ist eines der Symptome, die von Patienten mit COVID-19 mit am häufigsten angegeben werden. Obwohl die Spontanheilungsrate hoch ist, haben neuere Studien gezeigt, dass bis zu 7 % der Patienten mehr als zwölf Monate nach Beginn der Infektion anosmisch bleiben, sodass weltweit Millionen von Menschen unter schweren Riechstörungen leiden. Riechtraining ist nach wie vor die erste empfohlene Behandlungsform. Angesichts weiterhin fehlender zugelassener medikamentöser Behandlungsmöglichkeiten werden neue therapeutische Optionen erforscht. Dieser Artikel gibt einen Überblick über den aktuellen Stand der Wissenschaft zu COVID-19-bedingten Riechstörungen, wobei der Schwerpunkt auf der Epidemiologie, der Pathophysiologie, den Heilungsraten, den derzeit verfügbaren Behandlungsmöglichkeiten und der Forschung zu neuen Behandlungsmethoden liegt. Zitierweise: Klimek L, Hagemann J, Döge J, Freudelsperger L, Cuevas M, Klimek F, Hummel T. Olfactory and gustatory disorders in COVID-19. Allergo J Int 2022;31:243-50 https://doi.org/10.1007/s40629-022-00216-7
Collapse
Affiliation(s)
- Ludger Klimek
- FA für Dermatologie u. Allergologie, Zentrum f. Rhinologie und Allergologie, An den Quellen 10, 65183 Wiesbaden, Germany
| | - Jan Hagemann
- Klinik f. Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Julia Döge
- Klinik f. Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Laura Koll
- Hals-, Nasen-, Ohrenklinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Germany
| | - Mandy Cuevas
- Klinik u. Poliklinik für Hals- Nasen- und Ohrenheilkunde, Univ.-Klinikum Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Felix Klimek
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183 Wiesbaden, Germany
| | - Thomas Hummel
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
20
|
Dörig P, Gunder N, Witt M, Welge-Lüssen A, Hummel T. [Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview]. HNO 2021; 69:623-632. [PMID: 33988723 PMCID: PMC8120256 DOI: 10.1007/s00106-021-01060-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Passagere oder permanente Riechstörungen können verschiedene Ursachen haben. Ganz aktuell berichtet eine Vielzahl von Patienten im Rahmen von COVID-19-Infektionen über ein fehlendes oder vermindertes Riechvermögen. In der Vergangenheit wurden vielfältige Therapieoptionen untersucht, diese variieren vom Riechtraining über Akupunktur und medikamentöse Therapien bis hin zur transkraniellen Magnetstimulation oder, z. B. bei ausgeprägten qualitativen Riechstörungen, der chirurgischen Resektion der Riechschleimhaut. Die Entwicklung einer bioelektrischen Nase, z. B. in Verbindung mit direkter elektrischer Stimulation des Bulbus olfactorius, oder die Transplantation von Riechschleimhaut oder von Stammzellen stellen Behandlungsmöglichkeiten der Zukunft dar. Die Grundlagen für diese Entwicklungen sowie der Stand des Wissens werden in der vorliegenden Arbeit erläutert.
Collapse
Affiliation(s)
- P Dörig
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - A Welge-Lüssen
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz
| | - T Hummel
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| |
Collapse
|
21
|
陈 银, 俞 晨, 钱 晓, 高 下. [Research progress in the treatment of sensorineural olfactory dysfunction]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:365-370. [PMID: 33794640 PMCID: PMC10128435 DOI: 10.13201/j.issn.2096-7993.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 11/12/2022]
Abstract
Sensorineural olfactory dysfunction refers to the reduction or distortion of sensory intensity due to insufficient reception or processing of stimulation by olfactory receptors, olfactory sensory neurons or central nervous system. As olfactory dysfunction can affect patients' physical and mental health and even safety of life and the etiology of sensorineural olfactory dysfunction is complicated, it has great clinical significance for understanding the development of olfactory dysfunction's treatment. This article summarizes the current promising treatment for sensorineural olfactory dysfunction, including drug therapy, cell therapy, gene therapy and olfactory training.
Collapse
Affiliation(s)
- 银 陈
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)
| | - 晨杰 俞
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)
- 南京大学医学院附属鼓楼医院耳鼻咽喉头颈外科 江苏省医学重点学科
- 南京鼓楼医院耳鼻咽喉研究所
| | - 晓云 钱
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)
- 南京大学医学院附属鼓楼医院耳鼻咽喉头颈外科 江苏省医学重点学科
- 南京鼓楼医院耳鼻咽喉研究所
| | - 下 高
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)
- 南京大学医学院附属鼓楼医院耳鼻咽喉头颈外科 江苏省医学重点学科
- 南京鼓楼医院耳鼻咽喉研究所
| |
Collapse
|
22
|
Xie C, Martens JR. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement. Chem Senses 2021; 46:6159785. [PMID: 33690843 DOI: 10.1093/chemse/bjab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Mainland JD, Barlow LA, Munger SD, Millar SE, Vergara MN, Jiang P, Schwob JE, Goldstein BJ, Boye SE, Martens JR, Leopold DA, Bartoshuk LM, Doty RL, Hummel T, Pinto JM, Trimmer C, Kelly C, Pribitkin EA, Reed DR. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem Senses 2020; 45:493-502. [PMID: 32556127 PMCID: PMC7545248 DOI: 10.1093/chemse/bjaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.
Collapse
Affiliation(s)
| | - Linda A Barlow
- Department of Cell & Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven D Munger
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Natalia Vergara
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Cir Clinic 1F, Durham, NC, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Donald A Leopold
- Division of Otolaryngology Head and Neck Surgery, University of Vermont Medical Center, Burlington, VT, USA
| | - Linda M Bartoshuk
- Department of Food Science and Human Nutrition, Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse, Dresden, Germany
| | - Jayant M Pinto
- Section of Otolaryngology—Head and Neck Surgery, Department of Surgery, The University of Chicago, MC, Chicago, IL, USA
| | | | | | - Edmund A Pribitkin
- Department of Otolaryngology—Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Marin C, Langdon C, Alobid I, Mullol J. Olfactory Dysfunction in Traumatic Brain Injury: the Role of Neurogenesis. Curr Allergy Asthma Rep 2020; 20:55. [PMID: 32648230 DOI: 10.1007/s11882-020-00949-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Olfactory functioning disturbances are common following traumatic brain injury (TBI) having a significant impact on quality of life. A spontaneous recovery of the olfactory function over time may occur in TBI patients. Although there is no standard treatment for patients with posttraumatic olfactory loss, olfactory training (OT) has shown some promise beneficial effects. However, the mechanisms underlying spontaneous recovery and olfactory improvement induced by OT are not completely known. RECENT FINDINGS The spontaneous recovery of the olfactory function and the improvement of olfactory function after OT have recently been associated with an increase in subventricular (SVZ) neurogenesis and an increase in olfactory bulb (OB) glomerular dopaminergic (DAergic) interneurons. In addition, after OT, an increase in electrophysiological responses at the olfactory epithelium (OE) level has been reported, indicating that recovery of olfactory function not only affects olfactory processing at the central level, but also at peripheral level. However, the role of OE stem cells in the spontaneous recovery and in the improvement of olfactory function after OT in TBI is still unknown. In this review, we describe the physiology of the olfactory system, and the olfactory dysfunction after TBI. We highlight the possible role for the SVZ neurogenesis and DAergic OB interneurons in the recovery of the olfactory function. In addition, we point out the relevance of the OE neurogenesis process as a future target for the research in the pathophysiological mechanisms involved in the olfactory dysfunction in TBI. The potential of basal stem cells as a promising candidate for replacement therapies is also described.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.
| | - Cristóbal Langdon
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Isam Alobid
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain. .,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Kanninen KM, Lampinen R, Rantanen LM, Odendaal L, Jalava P, Chew S, White AR. Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration. Neurochem Int 2020; 136:104729. [PMID: 32201281 DOI: 10.1016/j.neuint.2020.104729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
Air pollution is a major, global public health concern. A growing body of evidence shows that exposure to air pollutants may impair the brain. Living in highly polluted areas has been linked to several neurodegenerative diseases, where exposure to complex mixtures of air pollutants in urban environments may have harmful effects on brain function. These harmful effects are thought to originate from elevated inflammation and oxidative stress. The olfactory epithelium is a key entry site of air pollutants into the brain as the particles are deposited in the upper airways and the nasal region. A potential source of patient-derived cells for study of air pollutant effects is the olfactory mucosa, which constitutes a central part of the olfactory epithelium. This review first summarizes the current literature on the available in vitro models of the olfactory epithelium. It then describes how alterations of the olfactory mucosa are linked to neurodegeneration and discusses potential therapeutic applications of these cells for neurodegenerative diseases. Finally, it reviews the research performed on the effects of air pollutant exposure in cells of the olfactory epithelium. Patient-derived olfactory epithelial models hold great promise for not only elucidating the molecular and cellular pathophysiology of neurodegenerative disorders, but for providing key understanding about air pollutant particle entry and effects at this key brain entry site.
Collapse
Affiliation(s)
- K M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - R Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - L M Rantanen
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - L Odendaal
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - P Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - A R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| |
Collapse
|
27
|
Van De Water TR. A Regenerative Medicine Approach to the Treatment of Hearing, Balance, and Olfactory Disorders: What Is in the Future for Otolaryngology? Anat Rec (Hoboken) 2020; 303:385-389. [PMID: 31916408 DOI: 10.1002/ar.24337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Regenerative medicine is being applied to many fields of medicine and is now starting to be considered and developed for application to treat hearing, balance, olfaction, and voice disorders. This special issue of the Anatomical Record with a series of over 20 papers covers many aspects of gene and stem cell therapies as they are developed for clinical applications in both in vitro and in vivo laboratory studies. These studies cover a wide range of approaches from gene editing in zebrafish with the latest technology (i.e., CRISPR/Cas9) to the isolation of human inner ear progenitor cells, to tracking transplanted human umbilical cord stem cells in mini pigs, to the in vitro building of graft tissues to repair tracheal defects with adipose tissue-derived stem cells. Anat Rec, 303:385-389, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Thomas R Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|