1
|
Vorobjova T, Metsküla K, Salumäe L, Uibo O, Heilman K, Uibo R. Immunohistochemical evaluation of LGR5, CD71, CD138 and CXCR3 markers in the small bowel mucosa of participants with celiac disease and persons with normal bowel mucosa. J Mol Histol 2025; 56:64. [PMID: 39747719 DOI: 10.1007/s10735-024-10340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Celiac disease (CD) is a chronic autoimmune disease of the small bowel mucosa that develops because of the altered immune response to gluten, which leads to intestinal epithelium damage and villous atrophy. However, studies on regeneration of the damaged small bowel mucosa and density of intestinal stem cells (ISC) in CD persons are still scarce. We aimed to evaluate the number of small bowel mucosa cells positive for LGR5, CD138/Syndecan-1, CD71 and CXCR3 in CD and in controls with normal bowel mucosa; to find relationship between these markers and degree of small intestinal atrophy and to compare these results with our previous data about the number of CD103 + , IDO + DCs, FOXP3 + Tregs, enterovirus (EV) density and serum zonulin level. The paraffin sections of the small bowel biopsies were obtained from 26 children with CD (median age 6.5 years), and from 20 controls with normal intestinal mucosa (median age 14.2 years) and from the tissue bank of the Department of Pathology of Tartu University Hospital (from 18 participants with CD including 14 children (median age 13.2 years) and from 11subjects with normal small bowel mucosa, including one child aged 4.8 years. The number of LGR5 + , CD71 + , CD138 + , and CXCR3 + cells was evaluated using immunohistochemistry. The median number of CD138 + and CXCR3 + cells was significantly higher in the small bowel mucosa in CD compared with normal mucosa (p = 0.0002 for CD138 and p = 0.006 for CXCR3). The median number of CD71 + cells was significantly higher in normal small bowel mucosa (p = 0.005). The number of LGR5 + cells did not differ between persons with CD and those with normal small bowel mucosa (p = 0.7). A markedly increased number of CD138 + and CXCR3 + cells in the small bowel mucosa of participants with CD confirms their role in the pathogenesis of this disease. There was no expected marked difference in the density of any of the studied markers between lower or higher grade of small bowel atrophy and level of tTG-IgA in CD.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia.
| | - Kaja Metsküla
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| | - Liis Salumäe
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Oivi Uibo
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Centre of Clinical Nutrition, Tartu University Hospital, Tartu, Estonia
- Department of Paediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| |
Collapse
|
2
|
Gurumayum N, Devi MB, Khound P, Bhattacharya A, Sarma H, Khan MR, Devi R. Bioactive fraction of Musa balbisiana seed mitigates D-galactose-induced brain aging via SIRT1/PGC-1α/FoxO3a activation and intestinal barrier dysfunction by modulating gut microbiota and core metabolites. Free Radic Biol Med 2025; 226:43-55. [PMID: 39542187 DOI: 10.1016/j.freeradbiomed.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Aging is an inevitable biological process, and emerging research has highlighted the potential of dietary and pharmacological interventions to decelerate the trajectory of age-related diseases and prolong the health span. This study evaluates the protective effects of Musa balbisiana seed on healthy aging using D-galactose-induced accelerated aging rats. The results suggested that the bioactive ethyl acetate fraction of Musa balbisiana seed extract (BF) exhibited protective effects against aging-induced oxidative stress by reducing oxidative DNA damage, advanced glycation end-product formation, and malondialdehyde levels while restoring antioxidant and glyoxalase enzyme activities. BF also ameliorated neurodegeneration by decreasing acetylcholinesterase enzyme activity and amyloid beta plaque formation. Histopathological analysis demonstrated the protective effects of BF against brain aging, liver disruption, renal damage, and intestinal barrier dysfunction. BF further restored intestinal permeability by upregulating the tight junctions (zonula occludens 1 and 2, claudin 1,2,3 and 4, and occludin) and mucin (mucin 2 and mucin 5ac) gene expression while downregulating the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α). BF significantly induced the phosphorylation of FoxO3a proteins and upregulated the gene expression of SIRT1, PGC-1α, and TFAM in the hippocampus. Next-generation sequencing (NGS) of 16s rRNA amplicons of fecal metagenomics DNA and metabolites profiling showed that BF intervention restructured the gut microbiota and altered core metabolites related to cholesterol metabolism. Overall, our findings demonstrated the multifaceted protective effects of Musa balbisiana seed against D-galactose-induced aging.
Collapse
Affiliation(s)
- Nonibala Gurumayum
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - M Bidyarani Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Biotechnology, Gauhati University, Guwahati, 781014, India
| | - Puspanjali Khound
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Anupam Bhattacharya
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India
| | - Himangshu Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India
| | - Mojibur R Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India.
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, Assam, India; Department of Zoology, Gauhati University, Guwahati, 781014, India.
| |
Collapse
|
3
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2024; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
4
|
Duchesne C, Randuineau G, Le Normand L, Romé V, Laraqui S, Arnaud AP, Boudry G. Initial pig developmental stage influences intestinal organoid growth but not cellular composition. Animal Model Exp Med 2024; 7:944-954. [PMID: 39676218 DOI: 10.1002/ame2.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Intestinal organoids are promising tools in the context of animal experiment reduction but a thorough characterization of the impact of the origin of intestinal stem cells (ISC) on organoid phenotype is needed to routinely use this cellular model. Our objective was to evaluate the effect of ISC donor age on the growth, morphology and cellular composition of intestinal organoids derived from pig. METHODS Organoids were derived from jejunal and colonic ISC obtained from 1-, 7-, 28-, 36- and 180-day-old pigs and passaged three times. RESULTS We first confirmed by qPCR that the expression of 18% of the >80 studied genes related to various intestinal functions differed between jejunal and colonic organoids after two passages (p < 0.05). Growth and morphology of organoids depended on intestinal location (greater number and larger organoids derived from colonic than jejunal ISC, p < 0.05) but also pig age. Indeed, when ISC were derived from young piglets, the ratio of organoids to spheroids was greater (p < 0.05), spheroids were larger during the primary culture but smaller after two passages (p < 0.05) and organoids were smaller after one passage (p > 0.05) compared to ISC from older pigs. Finally, no difference in cellular composition, evaluated by immunostaining of markers of the major intestinal cell types (absorptive, enteroendocrine and goblet cells) was observed between organoids originating from 7- or 180-day-old pigs, but differences between intestinal site origins were noticed. CONCLUSION In conclusion, while the age of the tissue donor affected organoid growth and morphology, it did not influence the phenotype.
Collapse
Affiliation(s)
- Camille Duchesne
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
- CHU, Rennes, France
| | | | | | - Véronique Romé
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Samia Laraqui
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
- CHU, Rennes, France
| | | | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| |
Collapse
|
5
|
Landspersky T, Stein M, Saçma M, Geuder J, Braitsch K, Rivière J, Hettler F, Romero Marquez S, Vilne B, Hameister E, Richter D, Schönhals E, Tuckermann J, Verbeek M, Herhaus P, Hecker JS, Bassermann F, Götze KS, Enard W, Geiger H, Oostendorp RAJ, Schreck C. Targeting CDC42 reduces skeletal degeneration after hematopoietic stem cell transplantation. Blood Adv 2024; 8:5400-5414. [PMID: 39159429 PMCID: PMC11526086 DOI: 10.1182/bloodadvances.2024012879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.
Collapse
Affiliation(s)
- Theresa Landspersky
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Krischan Braitsch
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jennifer Rivière
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Franziska Hettler
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Sandra Romero Marquez
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Baiba Vilne
- Bioinformatics Laboratory, Rīga Stradiņš University, Riga, Lettland
| | - Erik Hameister
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Daniel Richter
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Emely Schönhals
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mareike Verbeek
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Judith S. Hecker
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Katharina S. Götze
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Robert A. J. Oostendorp
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Christina Schreck
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
8
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Olecka M, van Bömmel A, Best L, Haase M, Foerste S, Riege K, Dost T, Flor S, Witte OW, Franzenburg S, Groth M, von Eyss B, Kaleta C, Frahm C, Hoffmann S. Nonlinear DNA methylation trajectories in aging male mice. Nat Commun 2024; 15:3074. [PMID: 38594255 PMCID: PMC11004021 DOI: 10.1038/s41467-024-47316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.
Collapse
Affiliation(s)
- Maja Olecka
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Madlen Haase
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Silke Foerste
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefano Flor
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Marco Groth
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
10
|
Kang EJ, Kim JH, Kim YE, Lee H, Jung KB, Chang DH, Lee Y, Park S, Lee EY, Lee EJ, Kang HB, Rhyoo MY, Seo S, Park S, Huh Y, Go J, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim KS, Hwang JH, Jeong JS, Kwon HJ, Yoo HM, Son MY, Kim YG, Lee DH, Kim TY, Kwon HJ, Kim MH, Kim BC, Kim YH, Kang D, Lee CH. The secreted protein Amuc_1409 from Akkermansia muciniphila improves gut health through intestinal stem cell regulation. Nat Commun 2024; 15:2983. [PMID: 38582860 PMCID: PMC10998920 DOI: 10.1038/s41467-024-47275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/β-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/β-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.
Collapse
Affiliation(s)
- Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Livestock Products Analysis Division, Division of Animal health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon, 34146, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ho Bum Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Moon-Young Rhyoo
- Laboratory Animal Resource Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sohee Park
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yubin Huh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ji-Seon Jeong
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Measurement Science, Korea Research Institute of Standards and Science (KRISS) School of Precision Measurement, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bio-Molecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Applied Biological Engineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- HealthBiome Inc., Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Ramos-León J, Valencia C, Gutiérrez-Mariscal M, Rivera-Miranda DA, García-Meléndrez C, Covarrubias L. The loss of antioxidant activities impairs intestinal epithelium homeostasis by altering lipid metabolism. Exp Cell Res 2024; 437:113965. [PMID: 38378126 DOI: 10.1016/j.yexcr.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Reactive oxygens species (ROS) are common byproducts of metabolic reactions and could be at the origin of many diseases of the elderly. Here we investigated the role of ROS in the renewal of the intestinal epithelium in mice lacking catalase (CAT) and/or nicotinamide nucleotide transhydrogenase (NNT) activities. Cat-/- mice have delayed intestinal epithelium renewal and were prone to develop necrotizing enterocolitis upon starvation. Interestingly, crypts lacking CAT showed fewer intestinal stem cells (ISC) and lower stem cell activity than wild-type. In contrast, crypts lacking NNT showed a similar number of ISCs as wild-type but increased stem cell activity, which was also impaired by the loss of CAT. No alteration in the number of Paneth cells (PCs) was observed in crypts of either Cat-/- or Nnt-/- mice, but they showed an evident decline in the amount of lysozyme. Cat deficiency caused fat accumulation in crypts, and a fall in the remarkable high amount of adipose triglyceride lipase (ATGL) in PCs. Notably, the low levels of ATGL in the intestine of Cat -/- mice increased after a treatment with the antioxidant N-acetyl-L-cysteine. Supporting a role of ATGL in the regulation of ISC activity, its inhibition halt intestinal organoid development. These data suggest that the reduction in the renewal capacity of intestine originates from fatty acid metabolic alterations caused by peroxisomal ROS.
Collapse
Affiliation(s)
- Javier Ramos-León
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Concepción Valencia
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Mariana Gutiérrez-Mariscal
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David-Alejandro Rivera-Miranda
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Celina García-Meléndrez
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Luis Covarrubias
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico.
| |
Collapse
|
12
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
13
|
Forsyth CB, Shaikh M, Engen PA, Preuss F, Naqib A, Palmen BA, Green SJ, Zhang L, Bogin ZR, Lawrence K, Sharma D, Swanson GR, Bishehsari F, Voigt RM, Keshavarzian A. Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. FRONTIERS IN AGING 2024; 5:1352299. [PMID: 38501032 PMCID: PMC10945560 DOI: 10.3389/fragi.2024.1352299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Breanna A. Palmen
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Zlata R. Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Kristi Lawrence
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Garth R. Swanson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
14
|
Yonemoto Y, Nemoto Y, Morikawa R, Shibayama N, Oshima S, Nagaishi T, Mizutani T, Ito G, Fujii S, Okamoto R. Single cell analysis revealed that two distinct, unique CD4 + T cell subsets were increased in the small intestinal intraepithelial lymphocytes of aged mice. Front Immunol 2024; 15:1340048. [PMID: 38327516 PMCID: PMC10848332 DOI: 10.3389/fimmu.2024.1340048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Recent advances in research suggest that aging has a controllable chronic inflammatory disease aspect. Aging systemic T cells, which secrete pro-inflammatory factors, affect surrounding somatic cells, and accelerate the aging process through chronic inflammation, have attracted attention as potential therapeutic targets in aging. On the other hand, there are few reports on the aging of the intestinal immune system, which differs from the systemic immune system in many ways. In the current study, we investigated the age-related changes in the intestinal immune system, particularly in T cells. The most significant changes were observed in the CD4+ T cells in the small intestinal IEL, with a marked increase in this fraction in old mice and reduced expression of CD27 and CD28, which are characteristic of aging systemic T cells. The proliferative capacity of aging IEL CD4+ T cells was significantly more reduced than that of aging systemic T cells. Transcriptome analysis showed that the expression of inflammatory cytokines was not upregulated, whereas Cd8α, NK receptors, and Granzymes were upregulated in aging IEL CD4+ T cells. Functional analysis showed that aging IEL T cells had a higher cytotoxic function against intestinal tumor organoids in vitro than young IEL T cells. scRNAseq revealed that splenic T cells show a transition from naïve to memory T cells, whereas intestinal T cells show the emergence of a CD8αα+CD4+ T cell fraction in aged mice, which is rarely seen in young cells. Further analysis of the aging IEL CD4+ T cells showed that two unique subsets are increased that are distinct from the systemic CD4+ T cells. Subset 1 has a pro-inflammatory component, with expression of IFNγ and upregulation of NFkB signaling pathways. Subset 2 does not express IFNγ, but upregulates inhibitory molecules and nIEL markers. Expression of granzymes and Cd8a was common to both. These fractions were in opposite positions in the clustering by UMAP and had different TCR repertoires. They may be involved in the suppression of intestinal aging and longevity through anti-tumor immunity, elimination of senescent cells and stressed cells in the aging environment. This finding could be a breakthrough in aging research.
Collapse
Affiliation(s)
- Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Morikawa
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nana Shibayama
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagaishi
- Department of Advanced Therapeutics for Gastrointestinal Diseases, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
15
|
Guo LL, Yan RY, Du Z, Li HB, Li GL, Wu SH. Ginseng promotes the function of intestinal stem cells through the Wnt/β-catenin signaling pathway in D-galactose-induced aging mice. Exp Gerontol 2024; 185:112351. [PMID: 38135257 DOI: 10.1016/j.exger.2023.112351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Intestinal stem cells (ISCs) are the reservoir source of various types of intestinal cells, and the decline of stem cell function in the gut may be a potential factor for aging-related disease. The present study aimed to explore the regulatory mechanisms of Panax ginseng C.A.Meyer (Araliaceae, Panax genus) that could restore gut aging by enhancing intestinal function and regulating ISCs in aging mice based on the Wnt/β-catenin signaling pathway. METHODS A total of 60 ICR male mice were randomly divided into control, model, metformin, and ginseng water decoction (GWD) 3.6, 1.8, and 0.9 g/kg groups. The aging model was induced by 1 % D-galactose (s.c. 0.1 mL/10 g) for 28 days. Moreover, GWD was given to aging mice intragastrically (i.g.) once a day for 28 successive days. The learning memory ability, pathological status, and function in the ileum tissue, the activity of digestive enzymes, and short-chain fatty acid (SCFA) content in the colon were evaluated, and the related mechanism was investigated. RESULTS Ginseng can decrease the escape latency time and increase the swimming speed and the number of crossing platforms in aging mice. Moreover, the pathology of ileum tissue improved, the length of the intestinal villi increased, and the width of the villi and the depth of the crypts decreased. The activities of trypsin, α-amylase, and lipase increased in duodenal content and intestinal mucosa. In the colon, the content of SCFA, such as acetic acid, propionic acid and butyric acid, increased, indicating that ginseng significantly improves intestinal function impairment. The mRNA expressions and protein levels of β-catenin, C-myc, GSK-3β, Lgr5, and Olfm4 were upregulated in the ginseng group. CONCLUSIONS Ginseng improves intestinal function and regulates the function of ISCs in order to protect intestinal health by activating the Wnt/β-catenin signaling pathway in aging mice.
Collapse
Affiliation(s)
- Lu Lu Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ru Yu Yan
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zheng Du
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Han Bing Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Gen Lin Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Su Hui Wu
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
16
|
Tian J, Li Y, Bao X, Yang F, Tang X, Jiang Q, Yang C, Yin Y, Yao K. Glutamine boosts intestinal stem cell-mediated small intestinal epithelial development during early weaning: Involvement of WNT signaling. Stem Cell Reports 2023:S2213-6711(23)00191-1. [PMID: 37327782 PMCID: PMC10362502 DOI: 10.1016/j.stemcr.2023.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023] Open
Abstract
Early weaning usually causes small intestine epithelial development abnormality, increasing the risk of gastrointestinal diseases. Glutamine (Gln), enriching in plasma and milk, is widely reported to benefit intestinal health. However, whether Gln affects intestinal stem cell (ISC) activity in response to early weaning is unclear. Here, both the early weaning mice and intestinal organoids were used to study the role of Gln in regulating ISC activities. Results showed that Gln ameliorated early weaning-induced epithelial atrophy and augmented the ISC-mediated epithelial regeneration. Gln deprivation disabled ISC-mediated epithelial regeneration and crypt fission in vitro. Mechanistically, Gln augmented WNT signaling in a dose-dependent manner to regulate ISC activity, while WNT signaling blockage abolished the effects of Gln on ISCs. Together, Gln accelerates stem cell-mediated intestinal epithelial development associated with the augmentation of WNT signaling, which provides novel insights into the mechanism by which Gln promotes intestinal health.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yuying Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiongzhuo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China.
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China; University of Chinese Academy of Sciences, Beijing 100008, China.
| |
Collapse
|
17
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
18
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
19
|
Choi J, Houston M, Wang R, Ye K, Li W, Zhang X, Huffman DM, Augenlicht LH. Intestinal stem cell aging at single-cell resolution: Transcriptional perturbations alter cell developmental trajectory reversed by gerotherapeutics. Aging Cell 2023; 22:e13802. [PMID: 36864750 PMCID: PMC10186593 DOI: 10.1111/acel.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
The intestinal epithelium consists of cells derived from continuously cycling Lgr5hi intestinal stem cells (Lgr5hi ISCs) that mature developmentally in an ordered fashion as the cells progress along the crypt-luminal axis. Perturbed function of Lgr5hi ISCs with aging is documented, but the consequent impact on overall mucosal homeostasis has not been defined. Using single-cell RNA sequencing, the progressive maturation of progeny was dissected in the mouse intestine, which revealed that transcriptional reprogramming with aging in Lgr5hi ISCs retarded the maturation of cells in their progression along the crypt-luminal axis. Importantly, treatment with metformin or rapamycin at a late stage of mouse lifespan reversed the effects of aging on the function of Lgr5hi ISCs and subsequent maturation of progenitors. The effects of metformin and rapamycin overlapped in reversing changes of transcriptional profiles but were also complementary, with metformin more efficient than rapamycin in correcting the developmental trajectory. Therefore, our data identify novel effects of aging on stem cells and the maturation of their daughter cells contributing to the decline of epithelial regeneration and the correction by geroprotectors.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Michele Houston
- Department of Cell BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ruixuan Wang
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Kenny Ye
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wenge Li
- Department of Cell BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Xusheng Zhang
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Derek M. Huffman
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Leonard H. Augenlicht
- Department of Cell BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
20
|
Yang S, Xiu M, Li X, Shi Y, Wang S, Wan S, Han S, Yang D, Liu Y, He J. The antioxidant effects of hedysarum polybotrys polysaccharide in extending lifespan and ameliorating aging-related diseases in Drosophila melanogaster. Int J Biol Macromol 2023; 241:124609. [PMID: 37105250 DOI: 10.1016/j.ijbiomac.2023.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Hedysarum polybotrys polysaccharide (HPS) is one of the main active ingredients of Hedysarum with many health-beneficial properties, including antioxidant property, immunomodulatory, anti-inflammatory, and anti-tumor. However, the effect of HPS on anti-aging is still unclear. This study was to explore the protective function of HPS on aging and age-related diseases using Drosophila melanogaster. The results demonstrated that HPS supplementation promoted hatchability and prolonged lifespan by enhancing the antioxidative capacity. Administraction of HPS ameliorated age-related symptoms such as imbalanced intestinal homeostasis, sleep disturbances, and beta-amyloid (Aβ) induced Alzheimer's disease (AD) in flies, but did not modulate neurobehavioral deficits in the AD model of tauopathy and the Parkinson's disease (PD) model of Pink1 mutation. Overall, this study reveals that HPS has strong potential in the prevention of aging and age-related diseases, and provided a new candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shengfang Wan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Dan Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
21
|
Fall of PARP3 restrains Lgr5 + intestinal stem cells proliferation and mucosal renovation in intestinal aging. Mech Ageing Dev 2023; 211:111796. [PMID: 36870456 DOI: 10.1016/j.mad.2023.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The regeneration ability of intestinal epithelium is degenerated in aging. The determining factor is leucine-rich repeat-containing G-protein-coupled receptor 5-positive intestinal stem cells (Lgr5+ ISCs). Lgr5-EGFP (enhanced green fluorescence protein) knock-in in transgenic mice at three different ages (young group: 3-6 months; middle group: 12-14 months; old group: 22-24 months) were used to examined Lgr5+ ISCs at three different timepoints. The jejunum samples were collected for histology, immunofluorescence analysis, western blotting and PCR. In tissue, crypt depth, proliferating cells and Lgr5+ ISC numbers were increased in the middle group (12-14 months) and decreased in the old group (22-24 months). The number of proliferating Lgr5+ ISCs gradually decreased as the mice aged. In organoids, the budding number, projected area, and Lgr5+ ISC ratio decreased as the mice aged. The gene expression of poly (ADP-ribose) polymerase 3 (Parp3) and the protein expression of PARP3 were increased in the middle- and old-aged groups. PARP3 inhibitors slowed organoid growth in the middle group. In conclusion, PARP3 is upregulated in aging, and the inhibition of PARP3 reduces the proliferation of aging Lgr5+ ISCs.
Collapse
|
22
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
23
|
Zheng H, Zhang C, Wang Q, Feng S, Fang Y, Zhang S. The impact of aging on intestinal mucosal immune function and clinical applications. Front Immunol 2022; 13:1029948. [PMID: 36524122 PMCID: PMC9745321 DOI: 10.3389/fimmu.2022.1029948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Immune cells and immune molecules in the intestinal mucosa participate in innate and adaptive immunity to maintain local and systematic homeostasis. With aging, intestinal mucosal immune dysfunction will promote the emergence of age-associated diseases. Although there have been a number of studies on the impact of aging on systemic immunity, relatively fewer studies have been conducted on the impact of aging on the intestinal mucosal immune system. In this review, we will briefly introduce the impact of aging on the intestinal mucosal barrier, the impact of aging on intestinal immune cells as well as immune molecules, and the process of interaction between intestinal mucosal immunity and gut microbiota during aging. After that we will discuss potential strategies to slow down intestinal aging in the elderly.
Collapse
Affiliation(s)
- Han Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianqian Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Shuo Zhang,
| |
Collapse
|
24
|
Zhang J, Li J, Yan P, He L, Zhang X, Wang X, Shi Y, Deng L, Zhang Z, Zhao B. In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome. J Tissue Eng Regen Med 2022; 16:1032-1046. [PMID: 36128613 DOI: 10.1002/term.3351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/13/2023]
Abstract
Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, "natural" organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.
Collapse
Affiliation(s)
- Juntao Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Juanjuan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Penghui Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Laizeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuemei Zhang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, Henan, China
| | - Xiaolong Wang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, Henan, China
| | - Yake Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - ZhiPing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Gao Y, Chen H, Cang X, Chen H, Di Y, Qi J, Cai H, Luo K, Jin S. Transplanted hair follicle mesenchymal stem cells alleviated small intestinal ischemia–reperfusion injury via intrinsic and paracrine mechanisms in a rat model. Front Cell Dev Biol 2022; 10:1016597. [PMID: 36274835 PMCID: PMC9581151 DOI: 10.3389/fcell.2022.1016597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Small intestinal ischemia-reperfusion (IR) injury is a common intestinal disease with high morbidity and mortality. Mesenchymal stem cells (MSCs) have been increasingly used in various intestinal diseases. This study aimed to evaluate the therapeutic effect of hair follicle MSCs (HFMSCs) on small intestinal IR injury. Methods: We divided Sprague–Dawley rats into three groups: the sham group, IR group and IR + HFMSCs group. A small intestinal IR injury rat model was established by clamping of the superior mesenteric artery (SMA) for 30 min and reperfusion for 2 h. HFMSCs were cultured in vitro and injected into the rats through the tail vein. Seven days after treatment, the intrinsic homing and differentiation characteristics of the HFMSCs were observed by immunofluorescence and immunohistochemical staining, and the paracrine mechanism of HFMSCs was assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Results: A small intestinal IR injury model was successfully established. HFMSCs could home to damaged sites, express proliferating cell nuclear antigen (PCNA) and intestinal stem cell (ISC) markers, and promote small intestinal ISC marker expression. The expression levels of angiopoietin-1 (ANG1), vascular endothelial growth factor (VEGF) and insulin growth factor-1 (IGF1) in the IR + HFMSCs group were higher than those in the IR group. HFMSCs could prevent IR-induced apoptosis by increasing B-cell lymphoma-2 (Bcl-2) expression and decreasing Bcl-2 homologous antagonist/killer (Bax) expression. Oxidative stress level detection showed that the malondialdehyde (MDA) content was decreased, while the superoxide dismutase (SOD) content was increased in the IR + HFMSCs group compared to the IR group. An elevated diamine oxidase (DAO) level reflected the potential protective effect of HFMSCs on the intestinal mucosal barrier. Conclusion: HFMSCs are beneficial to alleviate small intestinal IR injury through intrinsic homing to the small intestine and by differentiating into ISCs, via a paracrine mechanism to promote angiogenesis, reduce apoptosis, regulate the oxidative stress response, and protect intestinal mucosal function potentially. Therefore, this study suggests that HFMSCs serve as a new option for the treatment of small intestinal IR injury.
Collapse
|
26
|
Ibañez-Solé O, Ascensión AM, Araúzo-Bravo MJ, Izeta A. Lack of evidence for increased transcriptional noise in aged tissues. eLife 2022; 11:80380. [PMID: 36576247 PMCID: PMC9934862 DOI: 10.7554/elife.80380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is often associated with a loss of cell type identity that results in an increase in transcriptional noise in aged tissues. If this phenomenon reflects a fundamental property of aging remains an open question. Transcriptional changes at the cellular level are best detected by single-cell RNA sequencing (scRNAseq). However, the diverse computational methods used for the quantification of age-related loss of cellular identity have prevented reaching meaningful conclusions by direct comparison of existing scRNAseq datasets. To address these issues we created Decibel, a Python toolkit that implements side-to-side four commonly used methods for the quantification of age-related transcriptional noise in scRNAseq data. Additionally, we developed Scallop, a novel computational method for the quantification of membership of single cells to their assigned cell type cluster. Cells with a greater Scallop membership score are transcriptionally more stable. Application of these computational tools to seven aging datasets showed large variability between tissues and datasets, suggesting that increased transcriptional noise is not a universal hallmark of aging. To understand the source of apparent loss of cell type identity associated with aging, we analyzed cell type-specific changes in transcriptional noise and the changes in cell type composition of the mammalian lung. No robust pattern of cell type-specific transcriptional noise alteration was found across aging lung datasets. In contrast, age-associated changes in cell type composition of the lung were consistently found, particularly of immune cells. These results suggest that claims of increased transcriptional noise of aged tissues should be reformulated.
Collapse
Affiliation(s)
- Olga Ibañez-Solé
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine GroupDonostia-San SebastiánSpain,Biodonostia Health Research Institute, Tissue Engineering groupDonostia-San SebastiánSpain
| | - Alex M Ascensión
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine GroupDonostia-San SebastiánSpain,Biodonostia Health Research Institute, Tissue Engineering groupDonostia-San SebastiánSpain
| | - Marcos J Araúzo-Bravo
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine GroupDonostia-San SebastiánSpain,Biodonostia Health Research Institute, Computational Biomedicine Data Analysis PlatformDonostia-San SebastiánSpain,CIBER of Frailty and Healthy Aging (CIBERfes)MadridSpain,IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering groupDonostia-San SebastiánSpain,Tecnun-University of NavarraDonostia-San SebastiánSpain
| |
Collapse
|