1
|
Kancheva R, Hill M, Velíková M, Kancheva L, Včelák J, Ampapa R, Židó M, Štětkářová I, Libertínová J, Vosátková M, Kubala Havrdová E. Altered Steroidome in Women with Multiple Sclerosis. Int J Mol Sci 2024; 25:12033. [PMID: 39596101 PMCID: PMC11593676 DOI: 10.3390/ijms252212033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) mainly afflicting young women. Various steroids can influence the onset and development of the disease or, on the contrary, mitigate its course; however, a systematic review of steroidomic changes in MS patients is lacking. Based on the gas chromatography tandem mass spectrometry (GC-MS/MS) platform and, in the case of estradiol, also using immunoassay, this study performed a comprehensive steroidomic analysis in 25 female MS patients aged 39(32, 49) years compared to 15 female age-matched controls aged 38(31, 46) years. A significant trend towards higher ratios of conjugated steroids to their unconjugated counterparts was found in patients, which is of particular interest in terms of the balance between excitatory and inhibitory steroid modulators of ionotropic receptors. Patients showed altered metabolic pathway to cortisol with decreased conversion of pregnenolone to 17-hydroxypregnenolone and 17-hydroxypregnenolone to 17-hydroxyprogesterone and increased conversion of 17-hydroxypregnenolone to dehydroepiandrosterone (DHEA), resulting in lower levels of 17-hydroxyprogesterone, as well as indications of impaired conversion of 11-deoxy-steroids to 11β-hydroxy-steroids but reduced conversion of cortisol to cortisone. Due to over-activation of hypothalamic-pituitary-adrenal axis (HPAA), however, cortisol and cortisone levels were higher in patients with indications of depleted cortisol synthesizing enzymes. Patients showed lower conversion of DHEA to androstenedione, androstenedione to testosterone, androstenedione to estradiol in the major pathway, and testosterone to estradiol in the minor pathway for estradiol synthesis at increased conversion of androstenedione to testosterone. They also showed lower conversion of immunoprotective Δ5 androstanes to their more potent 7α/β-hydroxy metabolites and had lower circulating allopregnanolone and higher ratio 3β-hydroxy-steroids to their neuroprotective 3α-hydroxy-counterparts.
Collapse
Affiliation(s)
- Radmila Kancheva
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Martin Hill
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Marta Velíková
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Ludmila Kancheva
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Josef Včelák
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Radek Ampapa
- MS Center, Jihlava Hospital, 58633 Jihlava, Czech Republic;
| | - Michal Židó
- Department of Neurology 3FM CU and UHKV, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic; (M.Ž.); (I.Š.)
| | - Ivana Štětkářová
- Department of Neurology 3FM CU and UHKV, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic; (M.Ž.); (I.Š.)
| | - Jana Libertínová
- MS Center, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic;
| | - Michala Vosátková
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Eva Kubala Havrdová
- Department of Neurology, First Faculty of Medicine, Charles University, 12008 Prague, Czech Republic;
| |
Collapse
|
2
|
Hill M, Velíková M, Hovorková T, Bulant J, Janšáková K, Valeš K. Steroidomics in Men with Schizophrenia. Int J Mol Sci 2024; 25:8729. [PMID: 39201417 PMCID: PMC11354902 DOI: 10.3390/ijms25168729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Schizophrenia is associated with numerous abnormalities, including imbalances in all hormonal axes, among which steroids play a major role. Steroidomic studies therefore represent a promising tool for early diagnosis and appropriate treatment of schizophrenia. A total of 51 adult male schizophrenics aged 27 (22, 34) years (shown as median with quartiles) and 16 healthy controls (HCs) aged 28 (25, 32) years were enrolled into this study. Our results showed the effective differentiation of men with schizophrenia from controls based on steroidomic profiles. We also found an altered metabolic pathway from pregnenolone and its sulfate (PREG/S) to cortisol in schizophrenics with several metabolic bottlenecks such as lower PREG levels due to increased PREG sulfation and/or suppressed PREGS desulfation and attenuated conversion of 17-hydroxy-PREG to 17-hydroxy-progesterone, as well as the results suggestive of suppressed CYP11B1 activity. In contrast, steroid molar ratios suggested two counterregulatory steps involving increased conversion of PREG/S to 17-hydroxy-PREG/S and decreased conversion of cortisol to cortisone, which may maintain unchanged basal cortisol levels but may not ensure a sufficient cortisol response to stress. Our data also indicated a trend to higher 7α-, 7β-, and 16α-hydroxylation that may counteract the autoimmune complications and proinflammatory processes accompanying schizophrenia. Finally, a possible suppression of HSD17B3 activity was suggested, resulting in decreased circulating testosterone levels with increased androstenedione levels.
Collapse
Affiliation(s)
- Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Marta Velíková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Tereza Hovorková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Josef Bulant
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Katarína Janšáková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia;
| | - Karel Valeš
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic;
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| |
Collapse
|
3
|
Kaňková Š, Dlouhá D, Ullmann J, Velíková M, Včelák J, Hill M. Association between Disgust Sensitivity during Pregnancy and Endogenous Steroids: A Longitudinal Study. Int J Mol Sci 2024; 25:6857. [PMID: 38999978 PMCID: PMC11241696 DOI: 10.3390/ijms25136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The emotion of disgust protects individuals against pathogens, and it has been found to be elevated during pregnancy. Physiological mechanisms discussed in relation to these changes include immune markers and progesterone levels. This study aimed to assess the association between steroids and disgust sensitivity in pregnancy. Using a prospective longitudinal design, we analyzed blood serum steroid concentrations and measured disgust sensitivity via text-based questionnaires in a sample of 179 pregnant women during their first and third trimesters. We found positive correlations between disgust sensitivity and the levels of C19 steroids (including testosterone) and its precursors in the Δ5 pathway (androstenediol, DHEA, and their sulfates) and the Δ4 pathway (androstenedione). Additionally, positive correlations were observed with 5α/β-reduced C19 steroid metabolites in both trimesters. In the first trimester, disgust sensitivity was positively associated with 17-hydroxypregnanolone and with some estrogens. In the third trimester, positive associations were observed with cortisol and immunoprotective Δ5 C19 7α/β-hydroxy-steroids. Our findings show that disgust sensitivity is positively correlated with immunomodulatory steroids, and in the third trimester, with steroids which may be related to potential maternal-anxiety-related symptoms. This study highlights the complex relationship between hormonal changes and disgust sensitivity during pregnancy.
Collapse
Affiliation(s)
- Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (Š.K.); (D.D.); (J.U.)
| | - Daniela Dlouhá
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (Š.K.); (D.D.); (J.U.)
| | - Jana Ullmann
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (Š.K.); (D.D.); (J.U.)
| | - Marta Velíková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národní 8, 116 94 Prague, Czech Republic;
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, Národní 8, 116 94 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národní 8, 116 94 Prague, Czech Republic;
| |
Collapse
|
4
|
Bulant J, Hill M, Velíková M, Yamamotová A, Martásek P, Papežová H. Changes of BMI, steroid metabolome and psychopathology in patients with anorexia nervosa during hospitalization. Steroids 2020; 153:108523. [PMID: 31622616 DOI: 10.1016/j.steroids.2019.108523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
Abstract
Anorexia nervosa (AN) is associated with various alterations including the dysfunction of the HPA axis and consequently the hypercortisolemia and deficit in sex hormones but the comprehensive evaluation of changes in circulating steroids during the hospitalization of AN patients is lacking. We investigated the effect of realimentation of women with AN during hospitalization on 45 circulating steroids, the relationships between BMI, its change during hospitalization and physical activity, on one side and initial levels and their changes for two adipokines, circulating steroids, anorexia-specific (hunger, appetite and satiety), and anorexia non-specific symptoms (anxiety, depression fatigue, sleep, and body pain) on the other side. We included 33 women with anorexia who were hospitalized for 38(35, 44) days (median with quartiles). The increase of BMI from the initial value 15.2 (13.2, 16.6) kg/m2 was 1.69 (1.37, 2.66) kg/m2. The patients with more severe anorexia showed higher activity in 7β-, and 16α-hydroxylation of androgen precursors, which declined during hospitalization. Otherwise, the 7α-hydroxylation activity is higher in AN patients with less severe malnutrition and the ratio of 5-androstene-3β,7α,17β-triol to 5-androstene-3β,7β,17β-triol increased during the realimentation. Our data allow to speculate that the intensive 7β-, and 16α- and possibly also the 7α-hydroxylation of C19 Δ5 steroids participate in the pathophysiology of anorexia by additional catabolism of substrates available for synthesis of active androgens and estrogens. However, the question remains whether the synthetic analogues of 7α/β- and 16α-hydroxy-steroids prevent the catabolism of the sex steroid precursors, or further activate the "energy wasting" mitochondrial thermogenic metabolism.
Collapse
Affiliation(s)
- Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Institute of Endocrinology, Prague, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Prague, Czech Republic.
| | | | - Anna Yamamotová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Czech Republic.
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
5
|
Kozłowska E, Urbaniak M, Hoc N, Grzeszczuk J, Dymarska M, Stępień Ł, Pląskowska E, Kostrzewa-Susłow E, Janeczko T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci Rep 2018; 8:13449. [PMID: 30194436 PMCID: PMC6128828 DOI: 10.1038/s41598-018-31665-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Natalia Hoc
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
6
|
Chen H, Liang X, Sun T, Qiao X, Zhan Z, Li Z, He C, Ya H, Yuan M. Synthesis and biological evaluation of estrone 3-O-ether derivatives containing the piperazine moiety. Steroids 2018; 134:101-109. [PMID: 29476759 DOI: 10.1016/j.steroids.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022]
Abstract
A series of new estrone derivatives were designed and synthesized, and their structures were confirmed by spectroscopic methods. All new estrone derivatives were investigated for their in vitro cytotoxic efficacies against a panel of three human prostate cancer cell lines (PC-3, LNCaP, and DU145). The derivatives 6, 7, 10, 15, 16, 20, 21, 22, 24 and 26 showed important cytotoxic actions against individual carcinoma cell line collections. Moreover, antagonistic activities of compounds (7, 15, 16 and 21) towards a1-ARs (α1A, α1B, and α1D) were further evaluated using dual-luciferase reporter assays, and the compounds 16 and 21 exhibited better a1-ARs subtype selectivity. The structure-activity relationship (SAR) suggested that the substitute's type and position on the phenyl group leads to the interesting variations within pharmacological effects of resultant molecular systems.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xue Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621# Gangwan Road, Guangzhou 510700, Guangdong Province, China
| | - Tao Sun
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xiaoguang Qiao
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Zhou Zhan
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Ziyong Li
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Chaojun He
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China.
| | - Mu Yuan
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 511436, Guangdong Province, China.
| |
Collapse
|
7
|
ŠTERZL I, HILL M, STÁRKA L, VELÍKOVÁ M, KANČEVA R, JEMELKOVÁ J, CZERNEKOVÁ L, KOSZTYU P, ZADRAŽIL J, MATOUŠOVIC K, VONDRÁK K, RAŠKA M. Patients With IgA Nephropathy Have Altered Levels of Immunomodulatory C19 Steroids. Glucocorticoid Therapy With Addition of Adrenal Androgens May Be the Choice. Physiol Res 2017; 66:S433-S442. [DOI: 10.33549/physiolres.933732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoid (GC) therapy is one of the methods of choices for treatment of autoimmune diseases (ADs). In addition, adrenal androgens are known as immunoprotective GC-antagonists. Adrenal steroids preferentially influence the Th1-components over the Th2 ones. We investigated steroid metabolome (using gas chromatography-mass spectrometry) in healthy controls (H), GC-untreated patients with ADs different from IgA nephropathy (U), GC-treated patients with ADs different from IgA nephropathy (T) and in patients with IgA nephropathy (IgAN), which were monitored on the beginning (N0), after one week (N1) and after one month (N2) of prednisolone therapy (60 mg of prednisolone/day/m2 of body surface). Between-group differences were assessed by one-way ANOVA, while the changes during the therapy were evaluated by repeated measures ANOVA. The ANOVA testing was followed by Duncan’s multiple comparisons. IgAN patients and patients with other ADs exhibited lack of adrenal androgens due to attenuated activity of adrenal zona reticularis (ZR). Androgen levels including their 7α-, 7β-, and 16α-hydroxy-metabolites were further restrained by GC-therapy. Based on these results and data from the literature, we addressed the question, whether a combination of GCs with Δ5-steroids or their more stable synthetic derivatives may be optimal for the treatment of antibodies-mediated ADs.
Collapse
Affiliation(s)
| | - M. HILL
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hill M, Řípová D, Mohr P, Kratochvílová Z, Velíková M, Dušková M, Bičíková M, Stárka L. Circulating C19 steroids and progesterone metabolites in women with acute depression and anxiety disorders. Horm Mol Biol Clin Investig 2017; 26:153-64. [PMID: 27092655 DOI: 10.1515/hmbci-2016-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
Depression and anxiety disorders are highly prevalent in women. Although several studies have reported altered circulating steroids accompanying various mental disturbances, knowledge about alterations in the peripheral steroid pattern in such pathologies is incomplete. Therefore, we attempted to add to this knowledge using the simultaneous quantification of circulating steroids by gas chromatography mass spectrometry (GC-MS) in groups of premenopausal women in the follicular phase of the menstrual cycle (22 women with depression, 17 with anxiety disorders, 17 healthy controls). In addition to age-adjusted analysis of covariance (ANCOVA) followed by multiple comparisons, we developed models to successfully discriminate these groups from each other on the basis of steroid levels. Women with depression showed a reduced sulfoconjugation of steroids as well as lower levels of 7α-, 7β- and 16α-hydroxy-metabolites of C19 Δ5 steroids. Women with depression have significantly lower circulating levels of 5α/β-reduced pregnane steroids (with exception of free isopregnanolone) than women with anxiety or controls. Finally, our data indicate higher levels of estrogens in women with anxiety disorders when compared to women with depression.
Collapse
|
9
|
Kozłowska E, Urbaniak M, Kancelista A, Dymarska M, Kostrzewa-Susłow E, Stępień Ł, Janeczko T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Adv 2017. [DOI: 10.1039/c7ra04608a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Study on the ability of selected filamentous fungus species to transform dehydroepiandrosterone was performed (DHEA) and interesting DHEA derivatives were obtained with high yield.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology
- Wrocław University of Environmental and Life Sciences
- 51-630 Wrocław
- Poland
| | - Monika Dymarska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Tomasz Janeczko
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| |
Collapse
|
10
|
Świzdor A, Panek A, Milecka-Tronina N. Biohydroxylation of 7-oxo-DHEA, a natural metabolite of DHEA, resulting in formation of new metabolites of potential pharmaceutical interest. Chem Biol Drug Des 2016; 88:844-849. [DOI: 10.1111/cbdd.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Alina Świzdor
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Anna Panek
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Natalia Milecka-Tronina
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| |
Collapse
|
11
|
Wang CZ, Yu C, Wen XD, Chen L, Zhang CF, Calway T, Qiu Y, Wang Y, Zhang Z, Anderson S, Wang Y, Jia W, Yuan CS. American Ginseng Attenuates Colitis-Associated Colon Carcinogenesis in Mice: Impact on Gut Microbiota and Metabolomics. Cancer Prev Res (Phila) 2016; 9:803-811. [PMID: 27443884 DOI: 10.1158/1940-6207.capr-15-0372] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease is a risk factor for colorectal cancer initiation and development. In this study, the effects of American ginseng on chemically induced colitis and colon carcinogenesis were evaluated using an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model. During the acute phase on day 15, the oral administration of ginseng (15 and 30 mg/kg/day) significantly suppressed AOM/DSS-induced colitis, as demonstrated by the disease activity index and colon tissue histology. During the chronic phase in week 13, AOM/DSS-induced tumor multiplicity was significantly suppressed by ginseng. Ginseng significantly attenuated the increase of inflammatory cytokines, such as IL1α, IL1β, IL6, G-CSF, and GM-CSF. Serum metabolomics data in the PCA plots showed good separation between the AOM/DSS model and ginseng-treated mice, and the most important endogenous metabolite changes were identified. The 16S rRNA data showed that after AOM/DSS, the microbiome community in the model group was obviously changed, and ginseng inhibited these changes. Fecal metabolomics analysis supported these findings. In conclusion, oral ginseng significantly decreased AOM/DSS-induced colitis and colon carcinogenesis by inhibiting inflammatory cytokines and restoring the metabolomics and microbiota profiles accordingly. Selective endogenous small molecules could be used as biomarkers to elucidate the effects of ginseng treatment. Cancer Prev Res; 9(10); 803-11. ©2016 AACR.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lina Chen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Yunping Qiu
- Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yunwei Wang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Samantha Anderson
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois. Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Vaňková M, Hill M, Velíková M, Včelák J, Vacínová G, Dvořáková K, Lukášová P, Vejražková D, Rusina R, Holmerová I, Jarolímová E, Vaňková H, Kancheva R, Bendlová B, Stárka L. Preliminary evidence of altered steroidogenesis in women with Alzheimer's disease: Have the patients "OLDER" adrenal zona reticularis? J Steroid Biochem Mol Biol 2016; 158:157-177. [PMID: 26704533 DOI: 10.1016/j.jsbmb.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) represents more than half of total dementias. Various factors including altered steroid biosynthesis may participate in its pathophysiology. We investigated how the circulating steroids (measured by GC-MS and RIA) may be altered in the presence of AD. Sixteen women with AD and 22 age- and BMI-corresponding controls aged over 65 years were enrolled in the study. The steroid levels (47 steroids and steroid polar conjugates) and their ratios in AD female patients indicated increased CYP11A1 activity, weakened activity of the CYP17A1C17,20 lyase metabolic step and attenuated sulfotransferase SULT2A1 activity at higher activity of the CYP17A1 17-hydroxylase step. The patients showed diminished HSD3B2 activity for C21 steroids, abated conversion of 17-hydroxyprogesterone to cortisol, and significantly elevated cortisol. The women with AD had also attenuated steroid 7α-hydroxylation forming immunoprotective Δ(5)-C19 steroids, attenuated aromatase activity forming estradiol that induces autoimmunity and a shift from the 3β-hydroxy-5α/β-reduced C19 steroids to their neuroinhibitory and antiinflammatory GABAergic 3α-hydroxy- counterparts and showed higher levels of the 3α-hydroxy-5α/β-reduced C21 steroids and pregnenolone sulfate (improves cognitive abilities but may be both protective and excitotoxic). Our preliminary data indicated functioning of alternative "backdoor" pathway in women with AD showing higher levels of both 5α/β-reduced C21 steroids but reduced levels of both 5α/β-reduced C21 steroids, which implied that the alternative "backdoor" pathway might include both 5α- and 5β-reduced steroids. Our study suggested relationships between AD status in women based on the age of subjects and levels of 10 steroids measured by GC-MS.
Collapse
Affiliation(s)
- Markéta Vaňková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Marta Velíková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Josef Včelák
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Gabriela Vacínová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Petra Lukášová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Robert Rusina
- Department of Neurology, Thomayer's Hospital, Vídeňská 800, Prague 140 59, Czech Republic.
| | - Iva Holmerová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Eva Jarolímová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Hana Vaňková
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Radmila Kancheva
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Běla Bendlová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Luboslav Stárka
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| |
Collapse
|
13
|
Berényi Á, Minorics R, Iványi Z, Ocsovszki I, Ducza E, Thole H, Messinger J, Wölfling J, Mótyán G, Mernyák E, Frank É, Schneider G, Zupkó I. Synthesis and investigation of the anticancer effects of estrone-16-oxime ethers in vitro. Steroids 2013; 78:69-78. [PMID: 23127813 DOI: 10.1016/j.steroids.2012.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022]
Abstract
An expanding body of evidence indicates the possible role of estrane derivatives as useful anticancer agents. The aim of this study was to describe the cytotoxic effects of 63 newly synthetized estrone-16-oxime ethers on human cancer cell lines (cervix carcinoma HeLa, breast carcinoma MCF7 and skin epidermoid carcinoma A431), studied by means of the MTT assay. Four of the most promising compounds were selected for participation in additional experiments in order to characterize the mechanism of action, including cell cycle analysis, morphological study and the 5-bromo-2'-deoxyuridine incorporation assay. The cancer selectivity was tested on a noncancerous fibroblast cell line (MRC-5). Since apoptosis and cell cycle disturbance were observed, caspase-3 activities were further assayed for the two most effective agents. These estrone-16-oxime analogs activated caspase-3 and changed the mRNA level expression of endogenous factors regulating the G1-S phase transition (retinoblastoma protein, CDK4 and p16). The repression of retinoblastoma protein was reinforced at a protein level too. These experimental data lead to the conclusion that estrone-16-oxime ethers may be regarded as potential starting structures for the design of novel anticancer agents.
Collapse
Affiliation(s)
- Ágnes Berényi
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports. Steroids 2012; 77:10-26. [PMID: 22037250 DOI: 10.1016/j.steroids.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 12/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.
Collapse
Affiliation(s)
- Laïla El Kihel
- Université de Caen Basse-Normandie, UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, FR CNRS INC3M, Caen, France.
| |
Collapse
|
15
|
Ahlem CN, Auci DL, Nicoletti F, Pieters R, Kennedy MR, Page TM, Reading CL, Enioutina EY, Frincke JM. Pharmacology and immune modulating properties of 5-androstene-3β,7β,17β-triol, a DHEA metabolite in the human metabolome. J Steroid Biochem Mol Biol 2011; 126:87-94. [PMID: 21570467 DOI: 10.1016/j.jsbmb.2011.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/23/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
Androst-5-ene-3β,7β,17β-triol (βAET) is an anti-inflammatory metabolite of DHEA that is found naturally in humans, but in rodents only after exogenous DHEA administration. Unlike DHEA, C-7-oxidized DHEA metabolites cannot be metabolized into potent androgens or estrogens, and are not peroxisome proliferators in rodents. The objective of our current studies was to characterize the pharmacology of βAET to enable clinical trials in humans. The pharmacology of βAET was characterized by pharmacokinetics, drug metabolism, nuclear hormone receptor interactions, androgenicity, estrogenicity, and systemic toxicity studies. βAET's acute anti-inflammatory activity and immune modulating characteristics were measured in vitro in RAW264.7 cells and in vivo in murine models with parenteral administration. βAET was rapidly metabolized and cleared from circulation in mice and monkeys. βAET was weakly androgenic and estrogenic in immature rodents, but not bound by androgen, estrogen, progesterone, or glucocorticoid nuclear hormone receptors. βAET did not induce peroxisome proliferation, nor was it systemically toxic or trophic for sex hormone responsive tissues in mature rats and monkeys. βAET significantly attenuated acute inflammation both in vitro and in vivo, augmented immune responses in adult mice, and reversed immune senescence in aged mice. βAET may contribute to the anti-inflammatory activity in rodents attributed to DHEA. Unlike DHEA, βAET's anti-inflammatory activity cannot be ascribed to activation of PPARs, androgen, or estrogen nuclear hormone receptors. Exogenous βAET is unlikely to produce untoward toxicity or hormonal perturbations in humans.
Collapse
|
16
|
Ahlem CN, White SK, Page TM, Frincke JM. Differential metabolism of androst-5-ene-3β,17β-diol between rats, canines, monkeys and humans. Steroids 2011; 76:669-74. [PMID: 21420992 DOI: 10.1016/j.steroids.2011.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/10/2011] [Accepted: 03/13/2011] [Indexed: 12/16/2022]
Abstract
The potent anti-inflammatory activity of exogenous dehydroepiandrosterone (DHEA) in rodents has not translated to humans. This disparity in pharmacological effects has been attributed to factors such as differences in expression and function of molecular targets and differential metabolism. Hepatocytes from rats, dogs, monkeys, and humans were used to measure species-specific metabolism of a related compound, androst-5-ene-3β,17β-diol (5-AED) using reversed-phase radio-HPLC, to explore the metabolic contribution to this interspecies disparity. We found that rat hepatocytes transformed 5-AED predominantly into an array of highly oxidized metabolites. Canine metabolites overlapped with rat, but contained a greater abundance of less hydrophilic species. Monkey and human metabolites were strikingly less hydrophilic, dominated by 5-AED and DHEA conjugates. From the accumulating evidence indicating that the DHEA anti-inflammatory activity may actually reside in its more highly oxidized metabolites, we advance a hypothesis that the virtual absence of these metabolites in humans is central to the failure of exogenous DHEA to produce a potent pharmacological effect in clinical investigations. Accordingly, emulation of its anti-inflammatory activity in humans will require administration of an active native metabolite or a synthetic pharmaceutical derivative.
Collapse
Affiliation(s)
- Clarence N Ahlem
- Harbor BioSciences, Inc., 9171 Towne Centre Drive, Suite 180, San Diego, CA 92122, United States.
| | | | | | | |
Collapse
|