1
|
Marolt N, Pavlič R, Kreft T, Gjogorska M, Rižner TL. Targeting estrogen metabolism in high-grade serous ovarian cancer shows promise to overcome platinum resistance. Biomed Pharmacother 2024; 177:117069. [PMID: 38968802 DOI: 10.1016/j.biopha.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.
Collapse
Affiliation(s)
- Nika Marolt
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tinkara Kreft
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marija Gjogorska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
3
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
4
|
Ng CW, Tsang YTM, Gershenson DM, Wong KK. The prognostic value of MEK pathway-associated estrogen receptor signaling activity for female cancers. Br J Cancer 2024; 130:1875-1884. [PMID: 38582811 PMCID: PMC11130254 DOI: 10.1038/s41416-024-02668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Other than for breast cancer, endocrine therapy has not been highly effective for gynecologic cancers. Endocrine therapy resistance in estrogen receptor positive gynecologic cancers is still poorly understood. In this retrospective study, we examined the estrogen receptor (ER) signaling pathway activities of breast, ovarian, endometrial, and cervical cancers to identify those that may predict endocrine therapy responsiveness. METHODS Clinical and genomic data of women with breast and gynecological cancers were downloaded from cBioPortal for Cancer Genomics. Estrogen receptor alpha (ESR1) expression level and sample-level pathway enrichment scores (EERES) were calculated to classify patients into four groups (low/high ESR1 and low/high EERES). Correlation between ESR1/EERES score and survival was further validated with RNAseq data from low-grade serous ovarian cancer. Pathway analyses were performed among different ESR1/EERES groups to identify genes that correlate with endocrine resistance, which are validated using Cancer Cell Line Encyclopedia gene expression and Genomics of Drug Sensitivity in Cancer data. RESULTS We identified a novel combined prognostic value of ESR1 expression and the corresponding estrogen response signaling (EERES score) for breast cancer. The combined prognostic value (ESR1/EERES) may be applicable to other gynecologic cancers. More importantly, we discovered that ER signaling can cross-regulate MEK pathway activation. We identified downstream genes in the MEK pathway (EPHA2, INAVA, MALL, MPZL2, PCDH1, and TNFRSF21) that are potential endocrine therapy response biomarkers. CONCLUSION This study demonstrated that targeting both the ER and the ER signaling activity related MEK pathway may aid the development of endocrine therapy strategies for personalized medicine.
Collapse
Affiliation(s)
- Chun Wai Ng
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yvonne T M Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Silverwood S, Kohler P, Kier Y. Ectopic production of beta-hCG in anal cancer: A case report. Clin Case Rep 2024; 12:e8612. [PMID: 38464575 PMCID: PMC10920316 DOI: 10.1002/ccr3.8612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Key Clinical Message Beta-hCG-producing anal cancer, though rare, poses significant diagnostic challenges and may resist standard therapies. Recognizing the potential for hormone production in anal cancer is important, as it underscores the need for more specialized diagnostic techniques and tailored treatments. Abstract This case report describes the second reported case of ectopic production of beta-hCG in anal cancer. A 53-year-old female presented with a new anal lesion. Biopsy showed a poorly differentiated squamous cell cancer (SCC) with undifferentiated sarcomatoid features, stage IIIA (cT2cN1cM0). Before starting concurrent chemotherapy and radiation, the patient had a positive urine pregnancy test. The beta-human chorionic gonadotropin (beta-hCG) production was attributed to the tumor, and upon completion of treatment, beta-hCG normalized. Six weeks from treatment completion, recurrence was noted along with a positive beta-hCG urine test. This case aims to highlight beta-hCG as an ectopic hormone that can indicate the presence of squamous cell anal cancer and discuss the potential implications it may have on management.
Collapse
Affiliation(s)
- Sierra Silverwood
- Michigan State University College of Human MedicineTraverse CityMichiganUSA
| | - Peter Kohler
- Cowell Cancer Center, Munson Healthcare FoundationTraverse CityMichiganUSA
| | - Yelena Kier
- Cowell Cancer Center, Munson Healthcare FoundationTraverse CityMichiganUSA
| |
Collapse
|
6
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
7
|
Venkata PP, Jayamohan S, He Y, Alejo S, Johnson JD, Palacios BE, Pratap UP, Chen Y, Liu Z, Zou Y, Lai Z, Suzuki T, Viswanadhapalli S, Weintraub ST, Palakurthi S, Valente PT, Tekmal RR, Kost ER, Vadlamudi RK, Sareddy GR. Pharmacological inhibition of KDM1A/LSD1 enhances estrogen receptor beta-mediated tumor suppression in ovarian cancer. Cancer Lett 2023; 575:216383. [PMID: 37714256 DOI: 10.1016/j.canlet.2023.216383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Ovarian cancer (OCa) is the most lethal gynecologic cancer. Emerging data indicates that estrogen receptor beta (ERβ) functions as a tumor suppressor in OCa. Lysine-specific histone demethylase 1A (KDM1A) is an epigenetic modifier that acts as a coregulator for steroid hormone receptors. However, it remain unknown if KDM1A interacts with ERβ and regulates its expression/functions in OCa. Analysis of TCGA data sets indicated KDM1A and ERβ expression showed an inverse relationship in OCa. Knockout (KO), knockdown (KD), or inhibition of KDM1A increased ERβ isoform 1 expression in established and patient-derived OCa cells. Further, KDM1A interacts with and functions as a corepressor of ERβ, and its inhibition enhances ERβ target gene expression via alterations of histone methylation marks at their promoters. Importantly, KDM1A-KO or -KD enhanced the efficacy of ERβ agonist LY500307, and the combination of KDM1A inhibitor (KDM1Ai) NCD38 with ERβ agonist synergistically reduced the cell viability, colony formation, and invasion of OCa cells. RNA-seq and DIA mass spectrometry analyses showed that KDM1A-KO resulted in enhanced ERβ signaling and that genes altered by KDM1A-KO and ERβ agonist were related to apoptosis, cell cycle, and EMT. Moreover, combination treatment significantly reduced the tumor growth in OCa orthotopic, syngeneic, and patient-derived xenograft models and proliferation in patient-derived explant models. Our results demonstrate that KDM1A regulates ERβ expression/functions, and its inhibition improves ERβ mediated tumor suppression. Overall, our findings suggest that KDM1Ai and ERβ agonist combination therapy is a promising strategy for OCa.
Collapse
Affiliation(s)
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, TX 78363, USA
| | - Philip T Valente
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Audie L. Murphy South Texas Veterans Health Care System, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Kozieł MJ, Piastowska-Ciesielska AW. Estrogens, Estrogen Receptors and Tumor Microenvironment in Ovarian Cancer. Int J Mol Sci 2023; 24:14673. [PMID: 37834120 PMCID: PMC10572993 DOI: 10.3390/ijms241914673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancer is one of the most common cancers in women and the most concerning issues in gynecological oncology in recent years. It is postulated that many factors may contribute to the development of ovarian cancer, including hormonal imbalance. Estrogens are a group of hormones that have an important role both in physiological and pathological processes. In ovarian cancer, they may regulate proliferation, invasiveness and epithelial to mesenchymal transition. Estrogen signaling also takes part in the regulation of the biology of the tumor microenvironment. This review summarizes the information connected with estrogen receptors, estrogens and their association with a tumor microenvironment. Moreover, this review also includes information about the changes in estrogen receptor expression upon exposition to various environmental chemicals.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
9
|
Sun L, Ji WX, Li Y, Li ZL, Duan CC, Xia BR, Xiao L. The PAPSS1 gene is a modulator of response to cisplatin by regulating estrogen receptor alpha signaling activity in ovarian cancer cells. J Ovarian Res 2023; 16:187. [PMID: 37684671 PMCID: PMC10486135 DOI: 10.1186/s13048-023-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cancer cells may develop resistance to cisplatin by various mechanisms. Yet, the exact mechanism of cisplatin in ovarian cancer remains unclear. Recent studies have shown that 3'-phospoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) inhibition combined with low-dose cisplatin increases DNA damage. The aim of this study was to determine the value of targeting PAPSS1 as a cisplatin modulator in epithelial ovarian cancer (EOC). RESULTS Increased expression of PAPSS1 was observed in both EOC cells and tissues. Also, its higher nuclear expression was distinctly associated with FIGO (The International Federation of Gynecology and Obstetrics) stage, histological subtype, metastasis, and recurrence. Down-regulation of the PAPSS1 gene increased the cisplatin sensitivity of EOC in vitro and in vivo. Expression of PAPSS1 was negatively correlated with estrogen receptor α (ERα) in EOC. Also, low nuclear PAPSS1 and high nuclear ERα expression in EOC were associated with longer overall survival and progression-free survival in all ovarian cancer and ovarian cancer patients who received platinum-based chemotherapy. PAPSS1 silencing increased the activity of ERα-signaling in EOC cells, thus sensitizing tumors to cisplatin. CONCLUSIONS These findings characterize a novel interplay between PAPSS1-mediated sulfation and ERα-signaling in EOC cisplatin resistance. PAPSS1 may be exploited as a cisplatin-sensitizing therapeutic target.
Collapse
Affiliation(s)
- Lei Sun
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Wei-Xue Ji
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, Hubei, P. R. China
| | - Ze-Lian Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Can-Can Duan
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Bai-Rong Xia
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, P. R. China.
| | - Lan Xiao
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China.
| |
Collapse
|
10
|
Quintela M, James DW, Garcia J, Edwards K, Margarit L, Das N, Lutchman-Singh K, Beynon AL, Rioja I, Prinjha RK, Harker NR, Gonzalez D, Steven Conlan R, Francis LW. In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer. Br J Cancer 2023; 129:163-174. [PMID: 37120667 PMCID: PMC10307814 DOI: 10.1038/s41416-023-02274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. METHODS We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. RESULTS Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. CONCLUSION Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.
Collapse
Affiliation(s)
- Marcos Quintela
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - David W James
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Jetzabel Garcia
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Lavinia Margarit
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
- Cwm Taf Morgannwg University Health Board, Swansea, SA2 8QA, UK
| | - Nagindra Das
- Swansea Bay University Health Board, Swansea, SA12 7BR, UK
| | | | | | - Inmaculada Rioja
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nicola R Harker
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Deyarina Gonzalez
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Lewis W Francis
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
11
|
Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol Ther Oncolytics 2023; 28:293-306. [PMID: 36911068 PMCID: PMC9999170 DOI: 10.1016/j.omto.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide. Receptor tyrosine kinases (RTKs) have long been sought as therapeutic targets for EOC, as they are frequently hyperactivated in primary tumors and drive disease relapse, progression, and metastasis. More recently, these oncogenic drivers have been implicated in EOC response to poly(ADP-ribose) polymerase (PARP) inhibitors and epigenome-interfering agents. This evidence revives RTKs as promising targets for therapeutic intervention of EOC. This review summarizes recent studies on the role of RTKs in EOC malignancy and the use of their inhibitors for clinical treatment. Our focus is on the ERBB family, c-Met, and VEGFR, as they are linked to drug resistance and targetable using commercially available drugs. The importance of these RTKs and their inhibitors is highlighted by their impact on signal transduction and intratumoral heterogeneity in EOC and successful use as maintenance therapy in the clinic through suppression of the VEGF/VEGFR axis. Finally, the therapeutic potential of RTK inhibitors is discussed in the context of combinatorial targeting via co-inhibiting proliferative and anti-apoptotic pathways, epigenomic/transcriptional programs, and harnessing the efficacy of PARP inhibitors and programmed cell death 1/ligand 1 immune checkpoint therapies.
Collapse
|
12
|
Sarwar S, Alamro A, Huq F, Alghamdi A. Insights Into the Role of Epigenetic Factors Determining the Estrogen Response in Estrogen-Positive Ovarian Cancer and Prospects of Combining Epi-Drugs With Endocrine Therapy. Front Genet 2022; 13:812077. [PMID: 35873467 PMCID: PMC9306913 DOI: 10.3389/fgene.2022.812077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignancies. The population at the risk is continually on the rise due to the acquired drug resistance, high relapse rate, incomplete knowledge of the etiology, cross-talk with other gynecological malignancies, and diagnosis at an advanced stage. Most ovarian tumors are thought to arise in surface epithelium somehow in response to changes in the hormonal environment. Prolonged treatment with hormone replacement therapy (HRT) is also considered a contributing factor. Estrogens influence the etiology and progression of the endocrine/hormone-responsive cancers in a patient-specific manner. The concept of hormonal manipulations got attention during the last half of the 20th century when tamoxifen was approved by the FDA as the first selective estrogen receptor modulator (SERM). Endocrine therapy that has been found to be effective against breast cancer can be an option for ovarian cancer. It is now established that global changes in the epigenetic landscape are not only the hallmark of tumor development but also contribute to the development of resistance to hormone therapy. A set of functionally related genes involved in epigenetic reprogramming are controlled by specific transcription factors (TFs). Thus, the activities of TFs mediate important mechanisms through which epigenetic enzymes and co-factors modify chromatin for the worst outcome in a site-specific manner. Furthermore, the role of epigenetic aberrations involving histone modifications is established in ovarian cancer pathogenesis. This review aims to provide insights on the role of key epigenetic determinants of response as well as resistance to the hormone therapy, the current status of research along with its limitations, and future prospects of epigenetic agents as biomarkers in early diagnosis, prognosis, and personalized treatment strategies. Finally, the possibility of small phytoestrogenic molecules in combination with immunotherapy and epi-drugs targeting ovarian cancer has been discussed.
Collapse
Affiliation(s)
- Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Sadia Sarwar,
| | - Abir Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fazlul Huq
- Eman Research Journal, Eman Research, Sydney, NSW, Australia
| | - Amani Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Silva EG, Lawson BC, Ramalingam P, Liu J, Shehabeldin A, Marques-Piubelli ML, Malpica A. Precursors in the Ovarian Stroma, Another Pathway to Explain the Origin of Ovarian Serous Neoplasms. Hum Pathol 2022; 127:136-145. [DOI: 10.1016/j.humpath.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
|
14
|
Mitra S, Lami MS, Ghosh A, Das R, Tallei TE, Fatimawali, Islam F, Dhama K, Begum MY, Aldahish A, Chidambaram K, Emran TB. Hormonal Therapy for Gynecological Cancers: How Far Has Science Progressed toward Clinical Applications? Cancers (Basel) 2022; 14:759. [PMID: 35159024 PMCID: PMC8833573 DOI: 10.3390/cancers14030759] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, hormone therapy has been shown to be a remarkable treatment option for cancer. Hormone treatment for gynecological cancers involves the use of medications that reduce the level of hormones or inhibit their biological activity, thereby stopping or slowing cancer growth. Hormone treatment works by preventing hormones from causing cancer cells to multiply. Aromatase inhibitors, anti-estrogens, progestin, estrogen receptor (ER) antagonists, GnRH agonists, and progestogen are effectively used as therapeutics for vulvar cancer, cervical cancer, vaginal cancer, uterine cancer, and ovarian cancer. Hormone replacement therapy has a high success rate. In particular, progestogen and estrogen replacement are associated with a decreased incidence of gynecological cancers in women infected with human papillomavirus (HPV). The activation of estrogen via the transcriptional functionality of ERα may either be promoted or decreased by gene products of HPV. Hormonal treatment is frequently administered to patients with hormone-sensitive recurring or metastatic gynecologic malignancies, although response rates and therapeutic outcomes are inconsistent. Therefore, this review outlines the use of hormonal therapy for gynecological cancers and identifies the current knowledge gaps.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Fatimawali
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health of Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
15
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
16
|
Xi Y, Liu J, Wang H, Li S, Yi Y, Du Y. New small-molecule compound Hu-17 inhibits estrogen biosynthesis by aromatase in human ovarian granulosa cancer cells. Cancer Med 2020; 9:9081-9095. [PMID: 33002342 PMCID: PMC7724309 DOI: 10.1002/cam4.3492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Estrogen-dependent cancers (breast, endometrial, and ovarian) are among the leading causes of morbidity and mortality in women worldwide. Aromatase is the main enzyme that catalyzes the biosynthesis of estrogen, which drives proliferation, and antiestrogens can inhibit the growth of these estrogen-dependent cancers. Hu-17, an aromatase inhibitor, is a novel small-molecule compound that suppresses viability of and promotes apoptosis in ovarian cancer cells. Therefore, this study aimed to predict targets of Hu-17 and assess its intracellular signaling in ovarian cancer cells. Using the Similarity Ensemble Approach software to predict the potential mechanism of Hu-17 and combining phospho-proteome arrays with western blot analysis, we observed that Hu-17 could inhibit the ERK pathway, resulting in reduced estrogen synthesis in KGN cells, a cell line derived from a patient with invasive ovarian granulosa cell carcinoma. Hu-17 reduced the expression of CYP19A1 mRNA, responsible for producing aromatase, by suppressing the phosphorylation of cAMP response element binding-1. Hu-17 also accelerated aromatase protein degradation but had no effect on aromatase activity. Therefore, Hu-17 could serve as a potential treatment for estrogen-dependent cancers albeit further investigation is warranted.
Collapse
Affiliation(s)
- Yang Xi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Central Laboratory, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Haiwei Wang
- Institute of Health Sciences, School of Medicine (SJTUSM)/Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanghua Yi
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
17
|
Mohan S, Patel S, Barlow D, Rojas AC. Assessing the predictive response of a simple and sensitive blood-based biomarker between estrogen-negative solid tumors. Adv Med Sci 2020; 65:424-428. [PMID: 32919119 DOI: 10.1016/j.advms.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE We investigated Nw-hydroxy l-Arginine (NOHA) predictive response in serous ovarian carcinoma based on estrogen-hormone receptor expression status; and assessed the distinctive NOHA response between estrogen-receptor-negative (ER-) tumor subtypes of ovarian and breast cancer. MATERIALS/METHODS Three-dimensional (3D) spheroids models of ER- and estrogen-receptor-positive (ER+) from breast and ovarian tumor, cultured for 9 weeks, were assayed for cellular levels of inducible nitric oxide synthase (NOS2), nitric oxide (as total nitrite) and l-Arginine, and compared to NOHA in culture medium. Statistical difference was set at p < 0.01. RESULTS Nine-week in vitro studies showed a progressive NOHA reduction in culture medium by at least 0.4-0.8 fold, and 0.65-0.92 fold only in the ER- breast tumor and ER- ovarian tumor 3D spheroids, respectively; with increases in cellular NOS2 and nitric-oxide levels, by at least 1.0-2.45 fold in both ER- tumor subtype 3D spheroids (p < 0.01; n = 6). Within ER- subtypes, medium NOHA decreased by ≥ 38.9% in ovarian cancer over breast cancer 3D-spheroids, with cellular increases in NOS2 (by ≥ 17.4%), and nitric oxide (by ≥ 18.8%). Cellular l-Arginine to medium NOHA ratio was higher, and by at least 6.5-22.5 fold in ER- breast tumor 3D-spheroids, and at least 10-70 fold in ER- ovarian tumor 3D spheroids, than in ER+ and control conditions; and was ≥48% higher in ER- ovarian cancer than in ER- breast cancer 3D-spheroids. CONCLUSIONS The present study shows NOHA as a sensitive and selective indicator differentiating and distinguishing ER- subtypes based on the tumor grade.
Collapse
|
18
|
Bhatia K, Bhumika, Das A. Combinatorial drug therapy in cancer - New insights. Life Sci 2020; 258:118134. [PMID: 32717272 DOI: 10.1016/j.lfs.2020.118134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer can arise due to mutations in numerous pathways present in our body and thus has many alternatives for getting aggravated. Due to this attribute, it gets difficult to treat cancer patients with monotherapy alone and has a risk of not being eliminated to the full extent. This necessitates the introduction of combinatorial therapy as it employs cancer treatment using more than one method and shows a greater success rate. Combinatorial therapy involves a complementary combination of two different therapies like a combination of radio and immunotherapy or a combination of drugs that can target more than one pathway of cancer formation like combining CDK targeting drugs with Growth factors targeting drugs. In this review, we discuss the various aspects of cancer which include, its causes; four regulatory mechanisms namely: apoptosis, cyclin-dependent kinases, tumor suppressor genes, and growth factors; some of the pathways involved; treatment: monotherapy and combinatorial therapy and combinatorial drug formulation in chemotherapy. The present review gives a holistic account of the different mechanisms of therapies and also drug combinations that may serve to not only complement the monotherapy but can also surpass the resistance against monotherapy agents.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Bhumika
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
19
|
Pathak S, Wilczyński JR, Paradowska E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers (Basel) 2020; 12:E561. [PMID: 32121320 PMCID: PMC7139377 DOI: 10.3390/cancers12030561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer death in women, with high-grade serous ovarian cancer (HGSOC) being the most lethal gynecologic malignancy among women. This high fatality rate is the result of diagnosis of a high number of new cases when cancer implants have already spread. The poor prognosis is due to our inadequate understanding of the molecular mechanisms preceding ovarian malignancy. Knowledge about the site of origination has been improved recently by the discovery of tube intraepithelial cancer (TIC), but the potential risk factors are still obscure. Due to high tumoral heterogeneity in OC, the establishment of early stage biomarkers is still underway. Microbial infection may induce or result in chronic inflammatory infection and in the pathogenesis of cancers. Microbiome research has shed light on the relationships between the host and microbiota, as well as the direct roles of host pathogens in cancer development, progression, and drug efficacy. While controversial, the detection of viruses within ovarian malignancies and fallopian tube tissues suggests that these pathogens may play a role in the development of OC. Genomic and proteomic approaches have enhanced the methods for identifying candidates in early screening. This article summarizes the existing knowledge related to the molecular mechanisms that lead to tumorigenesis in the ovary, as well as the viruses detected in OC cases and how they may elevate this process.
Collapse
Affiliation(s)
- Sudipta Pathak
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
20
|
Hao D, Li J, Wang J, Meng Y, Zhao Z, Zhang C, Miao K, Deng C, Tsang BK, Wang L, Di LJ. Non-classical estrogen signaling in ovarian cancer improves chemo-sensitivity and patients outcome. Theranostics 2019; 9:3952-3965. [PMID: 31281524 PMCID: PMC6587348 DOI: 10.7150/thno.30814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Deficiency in homologous recombination repair (HRR) is frequently associated with hormone-responsive cancers, especially the epithelial ovarian cancer (EOC) which shows defects of HRR in up to half of cases. However, whether there are molecular connections between estrogen signaling and HRR deficiency in EOC remains unknown. Methods: We analyzed the estrogen receptor α (ERα) binding profile in EOC cell lines and investigated its association with genome instability, HRR deficiency and sensitivity to chemotherapy using extensive public datasets and in vitro/in vivo experiments. Results: We found an inverse correlation between estrogen signaling and HRR activity in EOC, and the genome-wide collaboration between ERα and the co-repressor CtBP. Though the non-classical AP-1-mediated ERα signaling, their targets were highly enriched by HRR genes. We found that depleting ERα in EOC cells up-regulates HRR activity and HRR gene expression. Consequently, estrogen signaling enhances the sensitivity of ovarian cancer cells to chemotherapy agents in vitro and in vivo. Large-scale analyses further indicate that estrogen replacement and ESR1 expression are associated with chemo-sensitivity and the favorable survival of EOC patients. Conclusion: These findings characterize a novel role of ERα in mediating the molecular connection between hormone and HRR in EOC and encourage hormone replacement therapy for EOC patients.
Collapse
|
21
|
Temkin SM, Mallen A, Bellavance E, Rubinsak L, Wenham RM. The role of menopausal hormone therapy in women with or at risk of ovarian and breast cancers: Misconceptions and current directions. Cancer 2018; 125:499-514. [PMID: 30570740 DOI: 10.1002/cncr.31911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
For women who are candidates for menopausal hormone therapy (MHT), estrogen can provide relief from symptomatic menopause, decrease rates of chronic illnesses, and improve health-related quality of life. However, confusion surrounds the evidence regarding the impact of exogenous estrogen and progesterone on the breast and ovary. Available data regarding the risks of MHT (estrogen and/or progestin) related to the development of breast and ovarian cancer are often inconsistent or incomplete. Modern molecular and genetic techniques have improved our understanding of the heterogeneity of breast and ovarian cancer. This enhanced understanding of the disease has impacted our understanding of carcinogenesis. Treatment options have evolved to be more targeted toward hormonal therapy for certain subtypes of disease, whereas cytotoxic chemotherapy remains the standard for other histological and molecular subtypes. The role of MHT in the breast and ovarian cancer survivor, as well as women who are at high risk for the development of hereditary breast and ovarian cancer, remains controversial despite evidence that this treatment can improve quality of life and survival outcomes. Through this article, we examine the evidence for and against the use of MHT with a focus on women who have or are at high risk for breast and ovarian cancer.
Collapse
Affiliation(s)
- Sarah M Temkin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Adrianne Mallen
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Emily Bellavance
- Department of Surgery, Division of General and Oncologic Surgery, University of Maryland, Baltimore, Maryland
| | - Lisa Rubinsak
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert M Wenham
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
22
|
Pozios I, Knösel T, Zhao Y, Assmann G, Pozios I, Müller MH, Bruns CJ, Kreis ME, Seeliger H. Expression of phosphorylated estrogen receptor beta is an independent negative prognostic factor for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2018; 144:1887-1897. [PMID: 30046904 DOI: 10.1007/s00432-018-2717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE The role of estrogen receptor beta (ER-β) expression in pancreatic ductal adenocarcinoma (PDAC) is largely unknown. Ligand-independent phosphorylation and activation of ER-β may play a relevant role in the IL-6/STAT3 signaling pathway and, as a result, in tumor progression. Here, we examined the effect of ER-β, phosphorylated ER-β (pER-β), STAT3, phosphorylated STAT3 (pSTAT3) and IL-6 expression on the overall and recurrence-free survival in a cohort of patients with resected PDAC. METHODS We identified 175 patients who underwent pancreatic resection for PDAC. Tissue microarrays were constructed from the archival tumor specimens. These were stained with specific antibodies for the above molecules. The expression of the markers was then correlated with clinicopathological parameters and survival analysis was performed. RESULTS High nuclear expression of ER-β was found in 61.7% and pER-β in 80.6% of the tumors. STAT3 was expressed in 54.3% of the tumor samples, pSTAT3 in 68% and IL-6 in 76.6%. The median overall survival for patients with low pER-β expression was 29 months, whereas for patients with high pER-β expression was 15.1 months (p = 0.016). Multivariate analysis revealed that pER-β expression was an independent factor correlating with shorter overall survival (hazard ratio 1.9; p = 0.013) and disease-free survival (hazard ratio 1.9; p = 0.029). CONCLUSIONS Expression of pER-β constitutes an independent prognostic marker for PDAC and is correlated with poor prognosis. These data may help in identifying novel drug targets in PDAC and patients who could benefit from additional therapeutic regimens, including selective estrogen receptor modulators.
Collapse
Affiliation(s)
- Ioannis Pozios
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Gerald Assmann
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Iraklis Pozios
- Johns Hopkins Hypertrophic Cardiomyopathy Center of Excellence, Baltimore, MD, USA
| | - Mario H Müller
- Department of Surgery, Vivantes Neukölln Hospital, Berlin, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Martin E Kreis
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Hendrik Seeliger
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
23
|
Therapeutic utility of natural estrogen receptor beta agonists on ovarian cancer. Oncotarget 2018; 8:50002-50014. [PMID: 28654894 PMCID: PMC5564823 DOI: 10.18632/oncotarget.18442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/28/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Despite success with initial chemotherapy, the majority of patients relapse with an incurable disease. Development of chemotherapy resistance is a major factor for poor long-term survival in ovarian cancer. The biological effects of estrogens are mediated by estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Emerging evidence suggests that ovarian cancer cells express ERβ that functions as a tumor suppressor; however, the clinical utility of ERβ agonists in ovarian cancer remains elusive. We tested the utility of two natural ERβ agonists liquiritigenin (Liq), which is isolated from Glycyrrhiza uralensis and S-equol, which is isolated from soy isoflavone daidzein, for treating ovarian cancer. Both natural ERβ ligands had significant growth inhibition in cell viability and survival assays, reduced migration and invasion, and promoted apoptosis. Further, ERβ agonists showed tumor suppressive functions in therapy-resistant ovarian cancer model cells and sensitized ovarian cancer cells to cisplatin and paclitaxel treatment. Global RNA-Seq analysis revealed that ERβ agonists modulate several tumor suppressive pathways, including downregulation of the NF-κB pathway. Immunoprecipitation assays revealed that ERβ interacts with p65 subunit of NF-κB and ERβ overexpression reduced the expression of NF-κB target genes. In xenograft assays, ERβ agonists reduced tumor growth and promoted apoptosis. Collectively, our findings demonstrated that natural ERβ agonists have the potential to significantly inhibit ovarian cancer cell growth by anti-inflammatory and pro-apoptotic actions, and natural ERβ agonists represent novel therapeutic agents for the management of ovarian cancer.
Collapse
|
24
|
The positivity of estrogen receptor and progesterone receptor may not be associated with metastasis and recurrence in epithelial ovarian cancer. Sci Rep 2017; 7:16922. [PMID: 29208958 PMCID: PMC5717220 DOI: 10.1038/s41598-017-17265-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
The estrogen (ER) or progesterone receptors (PR) is positively associated with better clinical outcomes in ovarian cancer. Whether metastasis or recurrence of ovarian cancer is correlated with this association has not been investigated. Data on 894 women with epithelial ovarian cancer were collected and the association between ER or PR positivity and peritoneal or lymph node metastases or recurrence was analysed. ER or PR positivity was higher in high-grade, low-grade serous and endometrioid carcinoma, but lower in mucinous and clear-cell carcinoma. Significantly higher ER or PR positivity was seen in endometrioid carcinoma or high-grade serous carcinoma with peritoneal metastases, respectively, but not other subtypes. In addition, there was no significant difference in ER or PR positivity between cases with and without lymph node metastasis in these five subtypes. In recurrent high-grade serous carcinoma with peritoneal metastases (n = 103), the positivity of ER or PR was 86% and 55% respectively. Our data demonstrate that the association between ER or PR positivity and peritoneal metastases was only seen in endometrioid or high grade serous carcinoma, respectively. There was no association of ER or PR positivity and lymph node metastases. The majority of recurrent high-grade serous carcinoma with peritoneal metastases (86%) were ER positive.
Collapse
|
25
|
Chin YT, Wang LM, Hsieh MT, Shih YJ, Nana AW, Changou CA, Yang YCSH, Chiu HC, Fu E, Davis PJ, Tang HY, Lin HY. Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci 2017; 24:51. [PMID: 28750624 PMCID: PMC5532776 DOI: 10.1186/s12929-017-0356-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Obesity and its comorbidities constitute a serious health burden worldwide. Leptin plays an important role in diet control; however, it has a stimulatory potential on cancer cell proliferation. The OB3 peptide, a synthetic peptide, was shown to be more active than leptin in regulating metabolism but with no mitogenic effects in cancer cells. METHODS In this study, we investigated the proliferative effects, gene expressions and signaling pathways modulated by leptin and OB3 in human ovarian cancer cells. In addition, an animal study was performed. RESULTS Leptin, but not OB3, induced the proliferation of ovarian cancer cells. Interestingly, OB3 blocked the leptin-induced proliferative effect when it was co-applied with leptin. Both leptin and OB3 activated the phosphatidylinositol-3-kinase (PI3K) signal transduction pathway. In addition, leptin stimulated the phosphorylation of signal transducer and activator of transcription-3 (STAT3) Tyr-705 as well as estrogen receptor (ER)α, and the expression of ERα-responsive genes. Interestingly, all leptin-induced signal activation and gene expressions were blocked by the co-incubation with OB3 and the inhibition of extracellular signal-regulated kinase (ERK)1/2. Coincidently, leptin, but not OB3, increased circulating levels of follicle-stimulating hormone (FSH) which is known to play important roles in the initiation and proliferation of ovarian cancer cells. CONCLUSIONS In summary, our findings suggest that the OB3 peptide may prevent leptin-induced ovarian cancer initiation and progression by disrupting leptin-induced proliferative signals via STAT3 phosphorylation and ERα activation. Therefore, the OB3 peptide is a potential anticancer agent that might be employed to prevent leptin-induced cancers in obese people.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Le-Ming Wang
- Department of Obstetrics and Gynecology, Wan-Fang Hospital, Taipei, Taiwan
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - André Wendindondé Nana
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chun A Changou
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan. .,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
26
|
Chuffa LGDA, Lupi-Júnior LA, Costa AB, Amorim JPDA, Seiva FRF. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 2017; 118:93-108. [PMID: 28041951 DOI: 10.1016/j.steroids.2016.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/10/2016] [Accepted: 12/24/2016] [Indexed: 02/08/2023]
Abstract
Sex steroids have been widely described to be associated with a number of human diseases, including hormone-dependent tumors. Several studies have been concerned about the factors regulating the availability of sex steroids and its importance in the pathophysiological aspects of the reproductive cancers in women. In premenopausal women, large fluctuations in the concentration of circulating estradiol (E2) and progesterone (P4) orchestrate many events across the menstrual cycle. After menopause, the levels of circulating E2 and P4 decline but remain at high concentration in the peripheral tissues. Notably, there is a strong relationship between circulating sex hormones and female reproductive cancers (e.g. ovarian, breast, and endometrial cancers). These hormones activate a number of specific signaling pathways after binding either to estrogen receptors (ERs), especially ERα, ERα36, and ERβ or progesterone receptors (PRs). Importantly, the course of the disease will depend on particular transactivation pathway. Identifying ER- or PR-positive tumors will benefit patients in terms of proper endocrine therapy. Based on hormonal responsiveness, effective prevention methods for ovarian, breast, and endometrial cancers represent a special opportunity for women at risk of malignancies. Hormone replacement therapy (HRT) might significantly increase the risk of these cancer types, and endocrine treatments targeting ER signaling may be helpful against E2-dependent tumors. This review will present the role of sex steroids and their receptors associated with the risk of developing female reproductive cancers, with emphasis on E2 levels in pre and postmenopausal women. In addition, new therapeutic strategies for improving the survival rate outcomes in women will be addressed.
Collapse
Affiliation(s)
| | - Luiz Antonio Lupi-Júnior
- Department of Anatomy, IBB/UNESP, Institute of Biosciences of Botucatu, Univ. Estadual Paulista, SP, Brazil
| | - Aline Balandis Costa
- Department of Nursing, UENP/CLM - Universidade Estadual do Norte do Paraná, PR, Brazil
| | | | | |
Collapse
|
27
|
Ciucci A, Zannoni GF, Buttarelli M, Lisi L, Travaglia D, Martinelli E, Scambia G, Gallo D. Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers. Oncotarget 2016; 7:8155-71. [PMID: 26797759 PMCID: PMC4884983 DOI: 10.18632/oncotarget.6943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023] Open
Abstract
The notion that menopausal estrogen replacement therapy increases ovarian cancer risk, but only for the two more common types (i.e. serous and endometrioid), while possibly decreasing risk for clear cell tumors, is strongly suggestive of causality. However, whether estradiol (E2) is tumorigenic or promotes development of occult preexisting disease is unknown. The present study investigated molecular and cellular mechanisms by which E2 modulates the growth of high grade serous ovarian cancer (HGSOC). Results showed that ERα expression was necessary and sufficient to induce the growth of HGSOC cells in in vitro models. Conversely, in vivo experimental studies demonstrated that increasing the levels of circulating estrogens resulted in a significant growth acceleration of ERα-negative HGSOC xenografts, as well. Tumors from E2-treated mice had significantly higher proliferation rate, angiogenesis, and density of tumor-associated macrophage (TAM) compared to ovariectomized females. Accordingly, immunohistochemical analysis of ERα-negative tissue specimens from HGSOC patients showed a significantly greater TAM infiltration in premenopausal compared to postmenopausal women. This study describes novel insights into the impact of E2 on tumor microenvironment, independently of its direct effect on tumor cell growth, thus supporting the idea that multiple direct and indirect mechanisms drive estrogen-induced tumor growth in HGSOC.
Collapse
Affiliation(s)
- Alessandra Ciucci
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Department of Histopathology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Marianna Buttarelli
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Daniele Travaglia
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Enrica Martinelli
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Daniela Gallo
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
28
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
29
|
Sapiezynski J, Taratula O, Rodriguez-Rodriguez L, Minko T. Precision targeted therapy of ovarian cancer. J Control Release 2016; 243:250-268. [PMID: 27746277 DOI: 10.1016/j.jconrel.2016.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The review is aimed at describing modern approaches to detection as well as precision and personalized treatment of ovarian cancer. Modern methods and future directions of nanotechnology-based targeted and personalized therapy are discussed.
Collapse
Affiliation(s)
- Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, Oregon State University, Portland, OR 97239, United States
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Department of Obstetrics and Gynecology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States.
| |
Collapse
|
30
|
Matsumura S, Ohta T, Yamanouchi K, Liu Z, Sudo T, Kojimahara T, Seino M, Narumi M, Tsutsumi S, Takahashi T, Takahashi K, Kurachi H, Nagase S. Activation of estrogen receptor α by estradiol and cisplatin induces platinum-resistance in ovarian cancer cells. Cancer Biol Ther 2016; 18:730-739. [PMID: 27689466 DOI: 10.1080/15384047.2016.1235656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of Estrogen receptor (ER) α (α) promotes cell growth and influences the response of cancer cell to chemotherapeutic agents. However, the mechanism by which ERα activation antagonizes cells to chemotherapy-induced cytotoxicity remains unclear. Here, we investigated the effect of cisplatin on ERα activation. In addition, we examined whether down-regulation of ERα modulate cisplatin-mediated cytotoxicity using 2 human ovarian cancer cells (Caov-3 and Ovcar-3) transduced with ERα short hairpin RNA (shRNA). The proliferation assay showed that 17β-estradiol (E2) induced cell proliferation via activation of Akt and extracellular signal-regulated kinase (ERK) cascades, while shRNA mediated downregulation of ERα inhibited the cell proliferation. Immunoblot analysis revealed that cisplatin induced the phosphorylation of ERα at serine 118 via ERK cascade. Luciferase assay showed that cisplatin increases transcriptional activity of estrogen-responsive element (ERE). The E2-stimulated ERα activation attenuated cisplatin-induced cytotoxicity. Meanwhile, down-regulation of ERα inhibited E2-induced protective effect on cisplatin toxicity as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, Pretreatment with E2 followed by cisplatin decreased the expression of cleaved PARP, and increased the expression of anti-apoptotic protein Bcl-2. Collectively, our findings suggest that activation of ERα by E2 and cisplatin can induce platinum-resistance by increasing the expression of anti-apoptotic protein in ovarian cancer cells. Therefore, our findings provide valuable information that ERα might be a promising therapeutic target for platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Sohei Matsumura
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Tsuyoshi Ohta
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Keiko Yamanouchi
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Zhiyang Liu
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Takeshi Sudo
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Takanobu Kojimahara
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Manabu Seino
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Megumi Narumi
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Seiji Tsutsumi
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Toshifumi Takahashi
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Kazuhiro Takahashi
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| | - Hirohisa Kurachi
- b Osaka Medical Center and Research Institution for Maternal and Child Health , Osaka , Japan
| | - Satoru Nagase
- a Department of Obstetrics and Gynecology , Yamagata University, Faculty of Medicine , Yamagata , Japan
| |
Collapse
|
31
|
Karakas Y, Akin S, Dizdar O, Aksoy S. Analysis of the Adjuvant Hormone Therapy Randomized Trial. J Clin Oncol 2016; 34:2070. [DOI: 10.1200/jco.2015.65.4277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Hayes L, Weening A, Morey LM. Differential Effects of Estradiol and Bisphenol A on SET8 and SIRT1 Expression in Ovarian Cancer Cells. Dose Response 2016; 14:1559325816640682. [PMID: 27114721 PMCID: PMC4831029 DOI: 10.1177/1559325816640682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exposure to estrogenic compounds has been shown to epigenetically reprogram the female reproductive tract and may contribute to ovarian cancer. The goal of this study was to compare the effect of estradiol or bisphenol A (BPA) on the expression of histone-modifying enzymes (HMEs) in ovarian cancer cells. Using 2 human ovarian cancer cell lines, we examined the expression of SET8, a histone methyltransferase, and SIRT1, a histone deacetylase, after exposure to estrogen or BPA. These experiments were carried out in complete media (fetal bovine serum) that contain natural hormones to understand the impact of additional exposure to estrogen or BPA on HME expression. We found differential expression of the HMEs in the different models examined and between the different compounds. Further, we determined that the changes in gene expression occurred via estrogen receptor signaling using the estrogen receptor antagonist, ICI 182,780 (fulvestrant).
Collapse
Affiliation(s)
- Laura Hayes
- Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Allison Weening
- Vermont Department of Health Laboratory, Colchester, VT, USA
| | - Lisa M. Morey
- Department of Biology, Canisius College, Buffalo, NY, USA
| |
Collapse
|
33
|
Voutsadakis IA. Hormone Receptors in Serous Ovarian Carcinoma: Prognosis, Pathogenesis, and Treatment Considerations. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2016; 10:17-25. [PMID: 27053923 PMCID: PMC4814131 DOI: 10.4137/cmo.s32813] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Abstract
A few breakthroughs have been accomplished for the treatment of ovarian cancer, the most deadly gynecologic carcinoma, in the current era of targeted oncologic treatment. The estrogen receptor was the first target of such treatments with the introduction of tamoxifen four decades ago in breast cancer therapeutics. Attempts to duplicate the success of hormonal therapies in ovarian cancer met with mixed results, which may be due to an inferior degree of hormone dependency in this cancer. Alternatively, this may be due to the failure to clearly identify the subsets of ovarian cancer with hormone sensitivity. This article reviews the expression of hormone receptors by ovarian cancer cells, the prognostic value of these expressions, and their predictive capacity for response to hormonal agents. The possible ways ahead are briefly discussed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON, Canada.; Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
34
|
Cont NT, Ferrero A, Peccatori FA, D'Alonzo M, Codacci-Pisanelli G, Colombo N, Biglia N. Medical treatment of early stage and rare histological variants of epithelial ovarian cancer. Ecancermedicalscience 2015; 9:584. [PMID: 26557882 PMCID: PMC4631577 DOI: 10.3332/ecancer.2015.584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/07/2023] Open
Abstract
Epithelial ovarian cancer is often considered a single pathological entity, but increasing evidence suggests that it is rather a group of different neoplasms, each with unique pathological characteristics, molecular features, and clinical behaviours. This heterogeneity accounts for the different sensitivity to antineoplastic drugs and makes the treatment of ovarian tumours a challenge. For early-stage disease, as well as for heavily pre-treated patients with recurrent ovarian cancer, the benefit of chemotherapy remains uncertain. Clear-cell, mucinous, low-grade serous, and endometrioid carcinomas show different molecular characteristics, which require different therapeutic approaches. In the era of personalised cancer medicine, understanding the pathogenesis and the genetic background of each subtype of epithelial ovarian tumour may lead to a tailored therapy, maximising the benefits of specific treatments and possibly reducing the side effects. Furthermore, personal factors, such as the patient's performance status, should be taken into account in the management of ovarian cancer, with the aim of safeguarding the patients' quality of life.
Collapse
Affiliation(s)
- Nicoletta Tomasi Cont
- Academic Division of Gynaecology and Obstetrics, Mauriziano Hospital, University of Turin, Italy
| | - Annamaria Ferrero
- Academic Division of Gynaecology and Obstetrics, Mauriziano Hospital, University of Turin, Italy
| | - Fedro Alessandro Peccatori
- Fertility and Pregnancy Unit, Medical Gynaecologic Oncology Division, European Institute of Oncology, Milan, Italy
| | - Marta D'Alonzo
- Academic Division of Gynaecology and Obstetrics, Mauriziano Hospital, University of Turin, Italy
| | - Giovanni Codacci-Pisanelli
- Fertility and Pregnancy Unit, Medical Gynaecologic Oncology Division, European Institute of Oncology, Milan, Italy ; Department of Medical and Surgical Science and Biotechnology, University of Rome 'La Sapienza', Italy
| | - Nicoletta Colombo
- Medical Gynaecologic Oncology Division, European Institute of Oncology, University of Milan-Bicocca, Italy
| | - Nicoletta Biglia
- Academic Division of Gynaecology and Obstetrics, Mauriziano Hospital, University of Turin, Italy
| |
Collapse
|
35
|
Hew KE, Miller PC, El-Ashry D, Sun J, Besser AH, Ince TA, Gu M, Wei Z, Zhang G, Brafford P, Gao W, Lu Y, Mills GB, Slingerland JM, Simpkins F. MAPK Activation Predicts Poor Outcome and the MEK Inhibitor, Selumetinib, Reverses Antiestrogen Resistance in ER-Positive High-Grade Serous Ovarian Cancer. Clin Cancer Res 2015; 22:935-47. [PMID: 26482043 DOI: 10.1158/1078-0432.ccr-15-0534] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Although 67% of high-grade serous ovarian cancers (HGSOC) express the estrogen receptor (ER), most fail antiestrogen therapy. Because MAPK activation is frequent in ovarian cancer, we investigated if estrogen regulates MAPK and if MEK inhibition (MEKi) reverses antiestrogen resistance. EXPERIMENTAL DESIGN Effects of MEKi (selumetinib), antiestrogen (fulvestrant), or both were assayed in ER-positive HGSOC in vitro and in xenografts. Response biomarkers were investigated by gene expression microarray and reverse phase protein array (RPPA). Genes differentially expressed in two independent primary HGSOC datasets with high versus low pMAPK by RPPA were used to generate a "MAPK-activated gene signature." Gene signature components that were reversed by MEKi were then identified. RESULTS High intratumor pMAPK independently predicts decreased survival (HR, 1.7; CI > 95%,1.3-2.2; P = 0.0009) in 408 HGSOC from The Cancer Genome Atlas. A differentially expressed "MAPK-activated" gene subset was also prognostic. "MAPK-activated genes" in HGSOC differ from those in breast cancer. Combined MEK and ER blockade showed greater antitumor effects in xenografts than monotherapy. Gene set enrichment analysis and RPPA showed that dual therapy downregulated DNA replication and cell-cycle drivers, and upregulated lysosomal gene sets. Selumetinib reversed expression of a subset of "MAPK-activated genes" in vitro and/or in xenografts. Three of these genes were prognostic for poor survival (P = 0.000265) and warrant testing as a signature predictive of MEKi response. CONCLUSIONS High pMAPK is independently prognostic and may underlie antiestrogen failure. Data support further evaluation of fulvestrant and selumetinib in ER-positive HGSOC. The MAPK-activated HGSOC signature may help identify MEK inhibitor responsive tumors.
Collapse
Affiliation(s)
- Karina E Hew
- Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, Florida. Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Philip C Miller
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Dorraya El-Ashry
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Sun
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Alexandra H Besser
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Tan A Ince
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengnan Gu
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Gao Zhang
- Wistar Institute, Philadelphia, Pennsylvania
| | | | - Wei Gao
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Yiling Lu
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| | - Fiona Simpkins
- Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, Florida. Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Lipkowitz S, Kohn EC. To Treat or Not to Treat: The Use of Hormone Replacement Therapy in Patients With Ovarian Cancer. J Clin Oncol 2015; 33:4127-8. [PMID: 26438113 DOI: 10.1200/jco.2015.63.6670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stanley Lipkowitz
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elise C Kohn
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Li Y, Arao Y, Hall JM, Burkett S, Liu L, Gerrish K, Cavailles V, Korach KS. Research Resource: STR DNA profile and gene expression comparisons of human BG-1 cells and a BG-1/MCF-7 clonal variant. Mol Endocrinol 2015; 28:2072-81. [PMID: 25321415 DOI: 10.1210/me.2014-1229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human ovarian cancer BG-1 cells are a valuable in vitro model that has enabled several laboratories to study the estrogenic responses of ovarian cancers. We recently discovered that there are two different BG-1 cell lines being used for experiments, denoted here as BG-1 FR and BG-1 NIEHS, which exhibit striking morphological differences. The objective of this study was to methodically analyze these two BG-1 variants and compare their characteristics. Short tandem repeat analysis revealed that the DNA profile of BG-1 FR cells was unique, yet the Short tandem repeat pattern of BG-1 NIEHS was identical with that of MCF-7 cells. From a cytogenetic analysis, it became apparent that the BG-1 FR line had the same profile as previously reported, whereas the BG-1 NIEHS and MCF-7 cells share a similar genetic display. A significant number of unique chromosomal translocations were observed between the BG-1 NIEHS and MCF-7 cells, suggesting that acquired genotypic differences resulted in the formation of two lines from a common origin. Although all cell types demonstrated a similar estrogen responsiveness in reporter gene assays, a microarray analysis revealed distinct estrogen-responsive gene expression patterns with surprisingly moderate to low overlap. We conclude that BG-1 FR is the original ovarian cancer cell line, whereas the BG-1 NIEHS is a variant from the MCF-7 cells. These findings provide much needed clarification of the identities and characteristics of key cell line models that are widely used to study estrogen action in female reproductive cancers.
Collapse
Affiliation(s)
- Yin Li
- Laboratory of Reproductive and Developmental Toxicology (Y.L., Y.A., K.S.K.) and Molecular Genomics Core Facility (L.L., K.G.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; College of Pharmacy and Health Sciences (J.M.H.), Campbell University, Buies Creek, North Carolina 27506; Center for Cancer Research (S.B.), National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702; and Institut de Recherche en Cancérologie de Montpellier (V.C.), Institut de Recherche en Cancerologie de Montpellier and INSERM Unité 896, Universite Montpellier1, F-34298 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang ST, Zuo C, Li WN, Fu XQ, Xing S, Zhang XP. Identification of key genes associated with the effect of estrogen on ovarian cancer using microarray analysis. Arch Gynecol Obstet 2015; 293:421-7. [PMID: 26264810 DOI: 10.1007/s00404-015-3833-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify key genes related to the effect of estrogen on ovarian cancer. METHODS Microarray data (GSE22600) were downloaded from Gene Expression Omnibus. Eight estrogen and seven placebo treatment samples were obtained using a 2 × 2 factorial designs, which contained 2 cell lines (PEO4 and 2008) and 2 treatments (estrogen and placebo). Differentially expressed genes were identified by Bayesian methods, and the genes with P < 0.05 and |log2FC (fold change)| ≥0.5 were chosen as cut-off criterion. Differentially co-expressed genes (DCGs) and differentially regulated genes (DRGs) were, respectively, identified by DCe function and DRsort function in DCGL package. Topological structure analysis was performed on the important transcriptional factors (TFs) and genes in transcriptional regulatory network using tYNA. Functional enrichment analysis was, respectively, performed for DEGs and the important genes using Gene Ontology and KEGG databases. RESULTS In total, 465 DEGs were identified. Functional enrichment analysis of DEGs indicated that ACVR2B, LTBP1, BMP7 and MYC involved in TGF-beta signaling pathway. The 2285 DCG pairs and 357 DRGs were identified. Topological structure analysis showed that 52 important TFs and 65 important genes were identified. Functional enrichment analysis of the important genes showed that TP53 and MLH1 participated in DNA damage response and the genes (ACVR2B, LTBP1, BMP7 and MYC) involved in TGF-beta signaling pathway. CONCLUSION TP53, MLH1, ACVR2B, LTBP1 and BMP7 might participate in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Shi-tao Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Chao Zuo
- Department of Anesthesiology, The Fifth Affiliated Hospital of Zunyi Medical College, Zhu Hai, 519100, China
| | - Wan-nan Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Xue-qi Fu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Shu Xing
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Xiao-ping Zhang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
39
|
Mitochondrial estrogen receptor β2 drives antiapoptotic pathways in advanced serous ovarian cancer. Hum Pathol 2015; 46:1138-46. [DOI: 10.1016/j.humpath.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022]
|
40
|
Zhang Z, Li H, Manjanatha MG, Chen T, Mei N. Neonatal exposure of 17β-estradiol has no effects on mutagenicity of 7,12-dimethylbenz [a] anthracene in reproductive tissues of adult mice. Genes Environ 2015; 37:16. [PMID: 27350812 PMCID: PMC4918036 DOI: 10.1186/s41021-015-0011-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Biological studies in animals and epidemiological findings in humans clearly demonstrate that estrogens including 17β-estradiol (E2) are weak carcinogens via both genetic and epigenetic mechanisms. Carcinogenesis analyses have indicated that female mice exposed to E2 as neonates develop more mammary and ovarian tumors when compared to adult exposures. In the present study, Big Blue transgenic mice were used to investigate the effects of E2 on mutagenicity of 7,12-dimethylbenz [a] anthracene (DMBA), a genotoxic carcinogen, in mammary gland and ovary following neonatal exposure. RESULTS DMBA treatment resulted in significant increases in cII mutant frequencies (MFs) in both mammary glands and ovaries, with A:T → T:A transversion as the predominant type of mutation. However, co-exposure to E2 daily for the first 5 days after birth and to DMBA at 6 months of age did not significantly increase cII MFs compared to DMBA treatment alone. Further, there were also no significant differences in mutational spectra between DMBA exposure alone and E2 + DMBA treatment. CONCLUSION These results suggest that early life exposures of mice to estrogens like E2 do not enhance mutagenicity by subsequent exposure to a chemical like DMBA in later life.
Collapse
Affiliation(s)
- Zhuhong Zhang
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
- />Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Haifang Li
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
- />Xinjiang Institute for Food and Drug Control, Urumqi, Xinjiang 830004 China
| | - Mugimane G. Manjanatha
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| | - Tao Chen
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| | - Nan Mei
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| |
Collapse
|
41
|
Lim W, Song G. Discovery of prognostic factors for diagnosis and treatment of epithelial-derived ovarian cancer from laying hens. J Cancer Prev 2014; 18:209-20. [PMID: 25337548 PMCID: PMC4189469 DOI: 10.15430/jcp.2013.18.3.209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is a lethal gynecological cancer causing cancer-related deaths in women worldwide. It is difficult to diagnosis at an early stage when more than 90% patients can be cured because of lack of specific symptoms and early detection markers. Most of malignant ovarian tumors are originated from the germinal epithelium of the ovary. For investigation with animal models of epithelial-derived ovarian cancer (EOC), laying hens are the most relevant animal models because they spontaneously develop EOC as occurs in women through ovulating almost every day. As in women, EOC in the hen is age-related and grossly and histologically similar to that in women. However, domesticated animals are inappropriate for research human EOC due to multiple pregnancies and lactating or seasonally anestrous. In addition, the non-spontaneous nature of rodents EOC limits clinical relevance with human EOC. Recent studies have shown that ovarian cancer could arise from epithelium from the oviduct as oviduct-related genes are up-regulated in EOC of hens. Therefore, we showed in the review: 1) characterization and classification of EOC; 2) chicken models for EOC; 3) relationship estrogen with EOC; 4) candidate prognostic factors for EOC including serpin peptidase inhibior, clade B (ovalbumin), member 3 (SERPINB3), SERPINB11, gallicin 11 (GAL11), secreted phosphoprotein 1 (SPP1) and alpha 2 macroglobulin (A2M) in normal and cancerous ovaries of laying hens; 5) biological roles of microRNAs in development of EOC. Collectively, the present reviews indicate that expression of SERPINB3, SERPINB11, GAL11, SPP1 and A2M is clearly associated with the development of ovarian carcinogenesis. These results provide new insights into the prognostic biomarkers for EOC to diagnose and to evaluate responses to therapies for treating EOC of humans.
Collapse
Affiliation(s)
- Whasun Lim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Gwonhwa Song
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
42
|
Ribeiro JR, Freiman RN. Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 2014; 143:160-73. [PMID: 24565562 PMCID: PMC4127339 DOI: 10.1016/j.jsbmb.2014.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Resistance to anti-estrogen therapies is a prominent challenge in the treatment of ovarian cancer. Tumors develop endocrine resistance by acquiring adaptations that help them rely on alternative oncogenic signaling cascades, which crosstalk with estrogen signaling pathways. An understanding of estrogen signaling crosstalk with these growth promoting cascades is essential in order to maximize efficacy of anti-estrogen treatments in ovarian cancer. Herein, we provide an overview of estrogen signaling in ovarian cancer and discuss the major challenges associated with anti-estrogen therapies. We also review what is currently known about how genomic and non-genomic estrogen signaling pathways crosstalk with several major oncogenic signaling cascades. The insights provided here illustrate existing strategies for targeting endocrine resistant ovarian tumors and may help identify new strategies to improve the treatment of this disease.
Collapse
Affiliation(s)
- Jennifer R Ribeiro
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA.
| | - Richard N Freiman
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA; Brown University, Department of Molecular and Cellular Biology and Biochemistry, 70 Ship St., Providence, RI 02903, USA.
| |
Collapse
|
43
|
Matsuo K, Sheridan TB, Mabuchi S, Yoshino K, Hasegawa K, Studeman KD, Im DD, Rosenshein NB, Roman LD, Sood AK. Estrogen receptor expression and increased risk of lymphovascular space invasion in high-grade serous ovarian carcinoma. Gynecol Oncol 2014; 133:473-9. [PMID: 24674832 DOI: 10.1016/j.ygyno.2014.03.563] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Recent studies have demonstrated that lymphovascular space invasion (LVSI) is associated with increased risk of hematogenous and lymphatic metastasis and poor clinical outcome of women with epithelial ovarian cancer. Given the suspected role of estrogen in promoting ovarian cancer metastasis, we examined potential links between estrogen receptor and LVSI in high-grade serous ovarian carcinoma. METHODS Tumoral expression of ER, PR, p53, MDR1, EGFR, HER2, DNA ploidy, and S-phase fraction was examined for 121 cases of stage I-IV high-grade serous ovarian carcinoma samples obtained at primary cytoreductive surgery. Biomarker expression was correlated to LVSI and survival outcomes. RESULTS LVSI was observed in 101 (83.5%) of all cases. Immunohistochemistry of tested biomarkers showed ER (86.7%) to be the most commonly expressed followed by p53 (71.4%), HER2 (68.3%), EGFR (52.1%), MDR-1 (14.3%), and PR (8.9%). ER expression was positively correlated to PR expression (r=0.31, p=0.001). LVSI was only correlated with ER (odds ratio 6.27, 95%CI 1.93-20.4, p=0.002) but not with other biomarkers. In multivariate analysis, ER remained significantly associated with LVSI (p=0.039). LVSI remained a significant prognostic factor for decreased progression-free survival (HR 3.01, 95%CI 1.54-5.88, p=0.001) and overall survival (HR 2.69, 95%CI 1.18-6.23, p=0.021) while ER-expression did not remain as a significant variable in multivariate analysis. CONCLUSION Our data demonstrated that estrogen receptor was positively correlated with LVSI that was an independent prognostic indicator of poor survival outcomes of high-grade serous ovarian carcinoma. This study emphasizes the importance of estrogen pathway in promoting lymphatic or vascular spread of high-grade serous ovarian carcinoma.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Todd B Sheridan
- Department of Pathology, Mercy Medical Center, Baltimore, MD, USA
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Faculty of Medicine, Suita, Osaka, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University Faculty of Medicine, Suita, Osaka, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | | | - Dwight D Im
- Gynecologic Oncology Center, Mercy Medical Center, Baltimore, MD, USA
| | - Neil B Rosenshein
- Gynecologic Oncology Center, Mercy Medical Center, Baltimore, MD, USA
| | - Lynda D Roman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and non-Coding RNA, University of Texas, Houston, TX, USA
| |
Collapse
|
44
|
Hirakawa H, Yokoyama Y, Yoshida H, Mizunuma H. Inhibitory effects of aromatase inhibitor on estrogen receptor-alpha positive ovarian cancer in mice. J Ovarian Res 2014; 7:4. [PMID: 24410765 PMCID: PMC3895704 DOI: 10.1186/1757-2215-7-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background Estrogen causes proliferation of ovarian cancer cells. Although hormone therapy with an anti-estrogen agent is an optional therapy for recurrent epithelial ovarian cancers, both basic and clinical researches are insufficient. We here examine the efficacy of an aromatase inhibitor (AI) for peritonitis carcinomatosa, the late stage of ovarian cancer. Methods Estrogen receptor (ER)α was assayed in four ovarian cancer cell lines by the RT-PCR method. Using ovariectomized nude mice, peritonitis carcinomatosa consisting of OVCAR-3 cells with the strongest ERα expression or DISS cells with weaker ERα expression was prepared. The survival period was compared between the letrozole group (5 mg/kg/day orally; n = 10) and the control group (n = 10). In addition, the degree of angiogenesis and occurrence of apoptosis were compared using tumor tissue from the abdominal cavity. The expression of aromatase and the protein involving in ERα signaling were examined in tumors immunohistochemically. Results Survival period in OVCAR-3 tumors was significantly prolonged in the letrozole group, compared with the control group (P < 0.05), whereas that in DISS tumors was not different between the both groups. The microvessel density in tumors and expression of VEGF decreased significantly in the letrozole group compared to the control group. The incidence of apoptosis did not differ significantly between these groups. No adverse event was observed accompanying the administration of letrozole. The expressions of aromatase, ERα and FOXP1 that is associated with ERα signaling were reduced in tumors by letrozole administration. Conclusions Letrozole was effective for ovarian cancers with abundant expression of ERα. Inhibition of angiogenesis and of ascites production appeared to contribute to prolongation of the survival period.
Collapse
Affiliation(s)
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8261, Japan.
| | | | | |
Collapse
|
45
|
Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 2014; 14:26-38. [PMID: 24505618 DOI: 10.1038/nrc3622] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oestrogen receptor-α (ERα) is a master transcription factor that regulates cell proliferation and homeostasis in many tissues. Despite beneficial ERα functions, sustained oestrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Oestrogen–ERα interaction can trigger post-translational ERα modifications through crosstalk with signalling pathways to promote transcriptional activation and ubiquitin-mediated ERα proteolysis, with co-activators that have dual roles as ubiquitin ligases. These processes are reviewed herein. The elucidation of mechanisms whereby oestrogen drives both ERα transactivation and receptor proteolysis might have important therapeutic implications not only for breast cancer but also potentially for other hormone-regulated cancers.
Collapse
|
46
|
Schmid BC, Oehler MK. New perspectives in ovarian cancer treatment. Maturitas 2013; 77:128-36. [PMID: 24380827 DOI: 10.1016/j.maturitas.2013.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Ovarian cancer (OC) is increasingly understood as a heterogeneous disease comprising distinct subtypes of different origin that vary significantly with regard to molecular biology and clinical behaviour. Despite some limited progress in its treatment over the last decade, currently there are few therapeutic options and overall survival remains poor. Increasing knowledge about the molecular biology of ovarian cancer has led to the development of targeted therapies which promise to be more effective and to provide the basis for personalized treatment. The most successful strategies so far are employing anti-angiogenics (VEGF antibodies, tyrosine kinase inhibitors and angiopoietin antagonists) and polyadenosine diphosphate-ribose polymerase (PARP) inhibitors. Other approaches target aberrant OC signalling such as the PI3K/Akt/mTOR network, the epidermal growth factor receptor, the WEE1 tyrosine kinase and the folate receptor alpha. Immunotherapy is another promising new approach against ovarian cancer. In this area, immunotherapeutic modulation by administering autologous immune cells, such as dendritic cells (DCs), to stimulate antitumour host responses is of special interest. Finally, there is now growing evidence from clinical studies showing a survival advantage for intraperitoneal (IP) chemotherapy when compared to conventional intravenous treatment in the adjuvant setting. New strategies such as pressurized IP aerosol chemotherapy might further improve the efficacy of this approach.
Collapse
Affiliation(s)
- Bernd C Schmid
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia; Discipline of Obstetrics and Gynaecology, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide 5005, South Australia, Australia.
| |
Collapse
|
47
|
Yokoyama Y, Mizunuma H. Recurrent epithelial ovarian cancer and hormone therapy. World J Clin Cases 2013; 1:187-190. [PMID: 24303498 PMCID: PMC3845958 DOI: 10.12998/wjcc.v1.i6.187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/21/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023] Open
Abstract
The role of hormone therapy in the treatment of ovarian cancer is not clear. Data on the efficacy and safety of antiestrogens and aromatase inhibitors in recurrent ovarian cancer have been accumulated through phase II clinical studies. Most of these studies were conducted in platinum-resistant recurrent ovarian cancer, and although complete response rates were not high, reported adverse events were low. If administered to patients who are positive for estrogen receptors, hormone therapy may become a viable option for the treatment of recurrent ovarian cancer.
Collapse
|