1
|
Ridha-Salman H, Shihab EM, Hasan HK, Abbas AH, Khorsheed SM, Ayad Fakhri S. Mitigative Effects of Topical Norfloxacin on an Imiquimod-Induced Murine Model of Psoriasis. ACS Pharmacol Transl Sci 2024; 7:2739-2754. [PMID: 39296262 PMCID: PMC11406690 DOI: 10.1021/acsptsci.4c00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Psoriasis is a chronic, inflammatory dermatosis characterized by thickened, reddened, and scaly skin lesions. Norfloxacin is a fluoroquinolone antibiotic with enhanced antioxidant, anti-inflammatory, and immunomodulatory bioactivities. The aim of this study was to figure out the possible impact of topical norfloxacin on an imiquimod-induced model of psoriasis in mice. Thirty albino-type mice were split into five distinct groups of six animals each. The control group included healthy mice that had not received any treatment. The induction group was given the vehicle 2 h after the topical imiquimod, once daily for 8 days. Two hours after receiving topical imiquimod, the treatment groups including calcipotriol, norfloxacin 2.5%, and norfloxacin 5% were given topical ointments containing calcipotriol 0.005%, norfloxacin 2.5%, and norfloxacin 5%, for 8 days. Topical norfloxacin ointment significantly reduced the severity of imiquimod-exacerbated psoriatic lesions including erythema, shiny-white scaling, and acanthosis and fixed histological abnormalities. Furthermore, imiquimod-subjected mice treated with a higher concentration of norfloxacin ointment exhibited dramatically lower skin levels of inflammation-related biomarkers like IFN-γ, TNF-α, IL-6, IL-17A, IL-23, and TGF-β but higher levels of IL-10. They also demonstrated a notable decrease in angiogenesis parameters such as VEGF and IL-8, a substantial reduction in oxidative indicators like MDA and MPO, and a considerable rise in antioxidant enzymes like SOD and CAT. This study offers novel evidence that norfloxacin may assist in controlling inflammatory dermatoses like psoriasis by minimizing the severity of psoriatic plaques, correcting histological alterations, and diminishing the production of inflammatory, oxidative, and angiogenetic parameters.
Collapse
Affiliation(s)
- Hayder Ridha-Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | - Elaf Mahmood Shihab
- Department of Pharmacology, College of Pharmacy, Al-Esraa University, Baghdad +964, Iraq
| | - Hasanain Kamil Hasan
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | - Alaa Hamza Abbas
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | | | - Salar Ayad Fakhri
- Department of Pharmacology, College of Pharmacy, Al-Esraa University, Baghdad +964, Iraq
| |
Collapse
|
2
|
Cheng K, Yang G, Huang M, Wang Y, Huang Y, Wang C. Physiological and transcriptomic analysis revealed the alleviating effect of 1,25(OH) 2D 3 on environmental iron overloading induced ferroptosis in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123626. [PMID: 38395136 DOI: 10.1016/j.envpol.2024.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Iron overload in the aquatic environment can cause damage in fish bodies. Vitamin D3 (VD3) has been proven to have antioxidant and regulatory effects on iron transport. The current research investigated the effects of environmental iron overload on larval zebrafish and explored the effects of 1,25(OH)2D3 on ferroptosis in zebrafish larvae and zebrafish liver cells (ZFL) caused by iron overload in the environment and its possible regulatory mechanisms. The results showed that 1,25(OH)2D3 alleviated liver damage in zebrafish larvae and mitochondrial damage in ZFL after excessive ammonium ferric citrate (FAC) treatment, and improved the survival rate of ZFL. 1,25(OH)2D3 cleared and inhibited excessive FAC induced abnormal accumulation of ROS, lipid ROS, MDA, and Fe2+ in zebrafish larvae and ZFL, as well as enhanced the activity of antioxidant enzyme GPx4. Transcriptomic analysis showed that 1,25(OH)2D3 can regulate ferroptosis in ZFL by regulating signaling pathways related to oxidative stress, iron homeostasis, mitochondrial function, and ERS, mainly including ferroptosis, neoptosis, p53 signaling pathway, apoptosis, FoxO signaling pathway. Validation of transcriptome data showed that 1,25(OH)2D3 inhibits ferroptosis in zebrafish larvae and ZFL caused by excessive FAC via promoting the expression of slc40a1 and hmox1a genes and increasing SLC40A1 protein levels. In summary, 1,25(OH)2D3 can resist ferroptosis in zebrafish caused by iron overload in the environment mainly via regulating antioxidant capacity and iron ion transport.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yijia Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
3
|
Piotrowska A, Nowak JI, Wierzbicka JM, Domżalski P, Górska-Arcisz M, Sądej R, Popiel D, Wieczorek M, Żmijewski MA. Fibroblast Growth Factor Receptor Inhibitors Decrease Proliferation of Melanoma Cell Lines and Their Activity Is Modulated by Vitamin D. Int J Mol Sci 2024; 25:2505. [PMID: 38473753 DOI: 10.3390/ijms25052505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.
Collapse
Affiliation(s)
- Anna Piotrowska
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Joanna I Nowak
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Justyna M Wierzbicka
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Paweł Domżalski
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Monika Górska-Arcisz
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-384 Gdańsk, Poland
| | - Rafał Sądej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-384 Gdańsk, Poland
| | - Delfina Popiel
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał A Żmijewski
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| |
Collapse
|
4
|
Olszewska AM, Nowak JI, Król O, Flis D, Żmijewski MA. Different impact of vitamin D on mitochondrial activity and morphology in normal and malignant keratinocytes, the role of genomic pathway. Free Radic Biol Med 2024; 210:286-303. [PMID: 38040270 DOI: 10.1016/j.freeradbiomed.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland.
| |
Collapse
|
5
|
Nowak JI, Olszewska AM, Piotrowska A, Myszczyński K, Domżalski P, Żmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D 3 in squamous cell carcinoma of the skin. Steroids 2023; 199:109288. [PMID: 37549780 DOI: 10.1016/j.steroids.2023.109288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| | - Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| |
Collapse
|
6
|
Nowak JI, Olszewska AM, Król O, Żmijewski MA. Protein Disulfide Isomerase Family A Member 3 Knockout Abrogate Effects of Vitamin D on Cellular Respiration and Glycolysis in Squamous Cell Carcinoma. Nutrients 2023; 15:4529. [PMID: 37960182 PMCID: PMC10650882 DOI: 10.3390/nu15214529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
PDIA3 is an endoplasmic reticulum disulfide isomerase, which is involved in the folding and trafficking of newly synthesized proteins. PDIA3 was also described as an alternative receptor for the active form of vitamin D (1,25(OH)2D3). Here, we investigated an impact of PDIA3 in mitochondrial morphology and bioenergetics in squamous cell carcinoma line A431 treated with 1,25(OH)2D3. It was observed that PDIA3 deletion resulted in changes in the morphology of mitochondria including a decrease in the percentage of mitochondrial section area, maximal diameter, and perimeter. The 1,25(OH)2D3 treatment of A431∆PDIA3 cells partially reversed the effect of PDIA3 deletion increasing aforementioned parameters; meanwhile, in A431WT cells, only an increase in mitochondrial section area was observed. Moreover, PDIA3 knockout affected mitochondrial bioenergetics and modulated STAT3 signaling. Oxygen consumption rate (OCR) was significantly increased, with no visible effect of 1,25(OH)2D3 treatment in A431∆PDIA3 cells. In the case of Extracellular Acidification Rate (ECAR), an increase was observed for glycolysis and glycolytic capacity parameters in the case of non-treated A431WT cells versus A431∆PDIA3 cells. The 1,25(OH)2D3 treatment had no significant effect on glycolytic parameters. Taken together, the presented results suggest that PDIA3 is strongly involved in the regulation of mitochondrial bioenergetics in cancerous cells and modulation of its response to 1,25(OH)2D3, possibly through STAT3.
Collapse
Affiliation(s)
- Joanna I. Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.)
| | - Anna M. Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.)
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.)
| |
Collapse
|
7
|
Nosal BM, Sakaki JR, Mofrad MD, Macdonald Z, Mahoney KJ, Thornton SN, Patel D, Drossman J, Lee ECH, Chun OK. Blackcurrant Anthocyanins Improve Blood Lipids and Biomarkers of Inflammation and Oxidative Stress in Healthy Women in Menopause Transition without Changing Body Composition. Biomedicines 2023; 11:2834. [PMID: 37893207 PMCID: PMC10604580 DOI: 10.3390/biomedicines11102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recent cell and animal studies suggest the potential of blackcurrants (BCs; Ribes nigrum) as a dietary agent that may reduce the risk of cardiovascular disease (CVD) by improving dyslipidemia, oxidative stress, and inflammation. This study aimed to examine the effects of BC anthocyanin (ACN) extract supplementation on biomarkers of CVD risk in healthy adult women in menopause transition. The effects of BC ACN supplementation on body composition, fasting blood lipids and biomarkers of inflammation and oxidative stress were evaluated using anthropometric measures and blood samples collected from a pilot randomized controlled clinical trial in peri- and early postmenopausal women. Thirty-eight eligible peri- and early postmenopausal women aged 45-60 completed the entire trial, in which they were randomly assigned into one of three treatment groups: placebo (control group), 392 mg/day (low BC group), or 784 mg/day (high BC group) for six months. The significance of differences in outcomes was tested using repeated-measures ANOVA. Overall, following six-month BC consumption, significantly decreased triglyceride (TG) levels were observed between treatment groups (p < 0.05) in a dose-dependent manner. Plasma interleukin-1β (IL-1β) was significantly reduced in a dose and time dependent manner (p < 0.05). Significant decreases in thiobarbituric acid reactive substances (TBARS) levels were also observed between treatment groups (p < 0.05) in a dose-dependent manner. Six-month change in oxidized LDL was inversely correlated with changes in catalase (CAT) and total antioxidant capacity (TAC) (p < 0.05), while C-reactive protein (hs-CRP) change was positively correlated with changes in TG and IL-1β (p < 0.01). Together, these findings suggest that daily BC consumption for six months effectively improved dyslipidemia, inflammation, and lipid peroxidation, thus potentially mitigating the risk of postmenopausal CVD development in study participants. Future studies with larger sample sizes and at-risk populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Briana M. Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Junichi R. Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Manije Darooghegi Mofrad
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Zachary Macdonald
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Kyle J. Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Staci N. Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Dave Patel
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Joseph Drossman
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| | - Elaine Choung-Hee Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (Z.M.); (K.J.M.); (S.N.T.); (E.C.-H.L.)
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (J.R.S.); (M.D.M.); (D.P.); (J.D.)
| |
Collapse
|
8
|
Piotrowska A, Zaucha R, Król O, Żmijewski MA. Vitamin D Modulates the Response of Patient-Derived Metastatic Melanoma Cells to Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24098037. [PMID: 37175742 PMCID: PMC10178305 DOI: 10.3390/ijms24098037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is considered a lethal and treatment-resistant skin cancer with a high risk of recurrence, making it a major clinical challenge. Our earlier studies documented that 1,25(OH)2D3 and its low-calcaemic analogues potentiate the effectiveness of dacarbazine and cediranib, a pan-VEGFR inhibitor. In the current study, a set of patient-derived melanoma cultures was established and characterised as a preclinical model of human melanoma. Thus, patient-derived cells were preconditioned with 1,25(OH)2D3 and treated with cediranib or vemurafenib, a BRAF inhibitor, depending on the BRAF mutation status of the patients enrolled in the study. 1,25(OH)2D3 preconditioning exacerbated the inhibition of patient-derived melanoma cell growth and motility in comparison to monotherapy with cediranib. A significant decrease in mitochondrial respiration parameters, such as non-mitochondrial oxygen consumption, basal respiration and ATP-linked respiration, was observed. It seems that 1,25(OH)2D3 preconditioning enhanced cediranib efficacy via the modulation of mitochondrial bioenergetics. Additionally, 1,25(OH)2D3 also decreased the viability and mobility of the BRAF+ patient-derived cells treated with vemurafenib. Interestingly, regardless of the strict selection, cancer-derived fibroblasts (CAFs) became the major fraction of cultured cells over time, suggesting that melanoma growth is dependent on CAFs. In conclusion, the results of our study strongly emphasise that the active form of vitamin D, 1,25(OH)2D3, might be considered as an adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Oliwia Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | |
Collapse
|
9
|
Al-Griw MA, Balog HN, Shaibi T, Elmoaket MF, AbuGamja ISA, AlBadawi AB, Shamlan G, Alfarga A, Eskandrani AA, Alnajeebi AM, Babteen NA, Alansari WS, Alghazeer R. Therapeutic potential of vitamin D against bisphenol A-induced spleen injury in Swiss albino mice. PLoS One 2023; 18:e0280719. [PMID: 36893148 PMCID: PMC9997876 DOI: 10.1371/journal.pone.0280719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/07/2023] [Indexed: 03/10/2023] Open
Abstract
Bisphenol A (BPA), a ubiquitous plasticizer, is capable of producing oxidative splenic injury, and ultimately led to spleen pathology. Further, a link between VitD levels and oxidative stress was reported. Hence the role of VitD in BPA-induced oxidative splenic injury was investigated in this study. Sixty male and female Swiss albino mice (3.5 weeks old) were randomly divided into control and treated groups 12 mice in each (six males and six females). The control groups were further divided into sham (no treatment) and vehicle (sterile corn oil), whereas the treatment group was divided into VitD (2,195 IU/kg), BPA (50 μg/kg), and BPA+VitD (50 μg/kg + 2,195 IU/kg) groups. For six weeks, the animals were dosed intraperitoneally (i.p). One week later, at 10.5 weeks old, mice were sacrificed for biochemical and histological analyses. Findings showed BPA triggered neurobehavioral abnormalities and spleen injury with increased apoptotic indices (e.g. DNA fragmentation) in both sexes. A significant increase was found in lipid peroxidation marker, MDA in splenic tissue, and leukocytosis. Conversely, VitD treatment altered this scenario into motor performance preservation, reducing oxidative splenic injury with a decrease in the percent apoptotic index. This protection was significantly correlated with preserving leukocyte counts and reduced MDA levels in both genders. It can be concluded from the above findings that VitD treatment has an ameliorative effect on oxidative splenic injury induced by BPA, highlighting the continuous crosstalk between oxidative stress and the VitD signaling pathway.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Hanan N. Balog
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | | | | | - Ahlam Bashir AlBadawi
- Tripoli Medical Center, Hematology Department, University of Tripoli, Tripoli, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ammar Alfarga
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Afnan M. Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rabia Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
10
|
Al-Griw MA, Zaed SM, Hdud IM, Shaibi T. Vitamin D ameliorates liver pathology in mice caused by exposure to endocrine disruptor bisphenol A. Open Vet J 2023; 13:90-98. [PMID: 36777431 PMCID: PMC9897508 DOI: 10.5455/ovj.2023.v13.i1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background Increasing evidence suggests that bisphenol A (BPA) induces liver pathological changes. Further, an association between BPA and circulating vitamin D (VitD) levels were documented. Aim The role of VitD in BPA-induced liver pathological changes was explored in this study. Methods Healthy 4.5-week-old male (n = 35) and female (n = 35) Swiss albino mice were used in this study. The animals were randomly divided into control and treated groups. The control groups were further divided into sham (no treatment) and vehicle (corn oil), whereas the treated groups were also divided into VitD (2195 U/kg), BPA (50 μg/kg), and BPA + VitD (50 μg/kg + 2195 U/kg) groups. For 6 weeks (twice a week), the animals were dosed intraperitoneally. One week later (at 10.5-weeks-old), the animals were sacrificed for biochemical and histological analyses. Results BPA produced a considerable rise in the body and liver weights in both genders of mice when compared to control mice. BPA also caused significant increases in the liver damage markers alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT). It also induced liver histopathological changes, including higher apoptotic indices in both genders. On the other hand, treatment with VitD considerably reduced liver damage and slightly decreased the apoptotic index rate. The ALP, ALT, and GGT levels were also markedly reduced. VitD has been proven to have a protective effect on both genders. Conclusions According to our findings, VitD protects mice from BPA-induced liver damage, possibly via suppressing liver damage markers.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Suhila M. Zaed
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya,Corresponding Author: Taher Shaibi. Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya.
| |
Collapse
|
11
|
Brożyna AA, Slominski RM, Nedoszytko B, Zmijewski MA, Slominski AT. Vitamin D Signaling in Psoriasis: Pathogenesis and Therapy. Int J Mol Sci 2022; 23:ijms23158575. [PMID: 35955731 PMCID: PMC9369120 DOI: 10.3390/ijms23158575] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, chronic, immune-mediated disease that affects approximately 2–3% of the world’s population. The etiology and pathophysiology of psoriasis are still unknown, but the activation of the adaptive immune system with the main role of T-cells is key in psoriasis pathogenesis. The modulation of the local neuroendocrine system with the downregulation of pro-inflammatory and the upregulation of anti-inflammatory messengers represent a promising adjuvant treatment in psoriasis therapies. Vitamin D receptors and vitamin D-mediated signaling pathways function in the skin and are essential in maintaining the skin homeostasis. The active forms of vitamin D act as powerful immunomodulators of clinical response in psoriatic patients and represent the effective and safe adjuvant treatments for psoriasis, even when high doses of vitamin D are administered. The phototherapy of psoriasis, especially UVB-based, changes the serum level of 25(OH)D, but the correlation of 25(OH)D changes and psoriasis improvement need more clinical trials, since contradictory data have been published. Vitamin D derivatives can improve the efficacy of psoriasis phototherapy without inducing adverse side effects. The anti-psoriatic treatment could include non-calcemic CYP11A1-derived vitamin D hydroxyderivatives that would act on the VDR or as inverse agonists on RORs or activate alternative nuclear receptors including AhR and LXRs. In conclusion, vitamin D signaling can play an important role in the natural history of psoriasis. Selective targeting of proper nuclear receptors could represent potential treatment options in psoriasis.
Collapse
Affiliation(s)
- Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Correspondence: (A.A.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bogusław Nedoszytko
- Department of Dermatology, Allergology and Venerology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
- Cytogeneticr Laboratory, Invicta Fertility and Reproductive Centre, 80-850 Gdańsk, Poland
| | - Michal A. Zmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Laboratory Service, VA Medical Center at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (A.A.B.); (A.T.S.)
| |
Collapse
|
12
|
Piotrowska A, Beserra FP, Wierzbicka JM, Nowak JI, Żmijewski MA. Vitamin D Enhances Anticancer Properties of Cediranib, a VEGFR Inhibitor, by Modulation of VEGFR2 Expression in Melanoma Cells. Front Oncol 2022; 11:763895. [PMID: 35004285 PMCID: PMC8740239 DOI: 10.3389/fonc.2021.763895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
Regardless of the recent groundbreaking introduction of personalized therapy, melanoma continues to be one of the most lethal skin malignancies. Still, a substantial proportion of patients either fail to respond to the therapy or will relapse over time, representing a challenging clinical problem. Recently, we have shown that vitamin D enhances the effectiveness of classical chemotherapeutics in the human malignant melanoma A375 cell line. In search for new combination strategies and adjuvant settings to improve melanoma patient outcomes in the current study, the effects of cediranib (AZD2171), an oral tyrosine kinase inhibitor of VEGFR1-3, PDGFR, and c-KIT, used in combination either with 1,25(OH)2D3 or with low-calcemic analog calcipotriol were tested on four human malignant melanoma cell lines (A375, MNT-1, RPMI-7951, and SK-MEL-28). Melanoma cells were pretreated with vitamin D and subsequently exposed to cediranib. We observed a marked decrease in melanoma cell proliferation (A375 and SK-MEL-28), G2/M cell cycle arrest, and a significant decrease in melanoma cell mobility in experimental conditions used (A375). Surprisingly, concurrently with a very desirable decrease in melanoma cell proliferation and mobility, we noticed the upregulation of VEGFR2 at both protein and mRNA levels. No effect of vitamin D was observed in MNT-1 and RPMI-7951 melanoma cells. It seems that vitamin D derivatives enhance cediranib efficacy by modulation of VEGFR2 expression in melanoma cells expressing VEGFR2. In conclusion, our experiments demonstrated that vitamin D derivatives hold promise as novel adjuvant candidates to conquer melanoma, especially in patients suffering from vitamin D deficiency. However, further extensive research is indispensable to reliably assess their potential benefits for melanoma patients.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Joanna Irena Nowak
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
13
|
Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA. Mitochondrial potassium channels: A novel calcitriol target. Cell Mol Biol Lett 2022; 27:3. [PMID: 34979905 PMCID: PMC8903690 DOI: 10.1186/s11658-021-00299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calcitriol (an active metabolite of vitamin D) modulates the expression of hundreds of human genes by activation of the vitamin D nuclear receptor (VDR). However, VDR-mediated transcriptional modulation does not fully explain various phenotypic effects of calcitriol. Recently a fast non-genomic response to vitamin D has been described, and it seems that mitochondria are one of the targets of calcitriol. These non-classical calcitriol targets open up a new area of research with potential clinical applications. The goal of our study was to ascertain whether calcitriol can modulate mitochondrial function through regulation of the potassium channels present in the inner mitochondrial membrane. METHODS The effects of calcitriol on the potassium ion current were measured using the patch-clamp method modified for the inner mitochondrial membrane. Molecular docking experiments were conducted in the Autodock4 program. Additionally, changes in gene expression were investigated by qPCR, and transcription factor binding sites were analyzed in the CiiiDER program. RESULTS For the first time, our results indicate that calcitriol directly affects the activity of the mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa) from the human astrocytoma (U-87 MG) cell line but not the mitochondrial calcium-independent two-pore domain potassium channel (mitoTASK-3) from human keratinocytes (HaCaT). The open probability of the mitoBKCa channel in high calcium conditions decreased after calcitriol treatment and the opposite effect was observed in low calcium conditions. Moreover, using the AutoDock4 program we predicted the binding poses of calcitriol to the calcium-bound BKCa channel and identified amino acids interacting with the calcitriol molecule. Additionally, we found that calcitriol influences the expression of genes encoding potassium channels. Such a dual, genomic and non-genomic action explains the pleiotropic activity of calcitriol. CONCLUSIONS Calcitriol can regulate the mitochondrial large-conductance calcium-regulated potassium channel. Our data open a new chapter in the study of non-genomic responses to vitamin D with potential implications for mitochondrial bioenergetics and cytoprotective mechanisms.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland.
| |
Collapse
|
14
|
Tuckey RC, Tang EKY, Chen YA, Slominski AT. Selective ability of rat 7-Dehydrocholesterol reductase (DHCR7) to act on some 7-Dehydrocholesterol metabolites but not on lumisterol metabolites. J Steroid Biochem Mol Biol 2021; 212:105929. [PMID: 34098080 PMCID: PMC8403650 DOI: 10.1016/j.jsbmb.2021.105929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
7-Dehydrocholesterol reductase (DHCR7) catalyses the final step of cholesterol biosynthesis in the Kandutsch-Russel pathway, the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. 7DHC can be acted on by a range of other enzymes including CYP27A1 and CYP11A1, as well as by UVB radiation, producing a number of derivatives including hydroxy-metabolites, some of which retain the C7-C8 double bond and are biologically active. These metabolites include lumisterol (L3) which is a stereoisomer of 7DHC produced in the skin by UVB radiation of 7DHC, as well as vitamin D3. The aim of this study was to test whether these metabolites could act as substrates or inhibitors of DHCR7 in rat liver microsomes. To initially screen the ability of these metabolites to interact with the active site of DHCR7, their ability to inhibit the conversion of ergosterol to brassicasterol was measured. Sterols that significantly inhibited this reaction included 7DHC (as expected), 20S(OH)7DHC, 27(OH)DHC, 8DHC, 20S(OH)L3 and 22(OH)L3 but not 7-dehydropregnenolone (7DHP), 25(OH)7DHC, L3 or vitamin D3 and its hydroxyderivatives. Sterols that inhibited ergosterol reduction were directly tested as substrates for DHCR7. 20S(OH)7DHC, 27(OH)DHC and 7-dehydrodesmosterol were confirmed to be substrates, giving the expected product with the C7-C8 double bond removed. No products were observed from 8DHC or 20S(OH)L3 indicating that these sterols are inhibitors and not substrates of DHCR7. The resistance of lumisterol and 7DHP to reduction by DHCR7 in cells will permit other enzymes to metabolise these sterols to their active forms retaining the C7-C8 double bond, conferring specificity to their biological actions.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yunzhi A Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA
| |
Collapse
|
15
|
Al-Griw MA, Marwan ZM, Hdud IM, Shaibi T. Vitamin D mitigates adult onset diseases in male and female mice induced by early-life exposure to endocrine disruptor BPA. Open Vet J 2021; 11:407-417. [PMID: 34722204 PMCID: PMC8541727 DOI: 10.5455/ovj.2021.v11.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022] Open
Abstract
Background During early development, environmental compounds can induce adult onset diseases and disrupt the circulating vitamin D (VitD) levels. Aim This study aimed to examine the protective role of VitD against the adverse effects of BPA on male and female mice. Methods A total of 60 male and female Swiss Albino mice (3 weeks old) were randomly divided into 5 groups; each consisted of 12 mice (6 males and 6 females) and was treated as follows: Group I received no treatment (sham control); Group II, sterile corn oil only (vehicle control); Group III, BPA (400 μg/kg); Group IV, VitD (2,195 IU/kg); and Group V, BPA + VitD. At 10.5 weeks, the animals were sacrificed to conduct histological examinations. Results BPA-exposed mice were found to have neurobehavioral abnormalities, heart, kidney, and lung diseases with increased apoptotic indices in both sexes. On the other hand, the treatment of BPA mice with VitD altered this scenario with modulated motor activity, enhanced body and organ weights, and preserved the heart, kidney, and lung architecture, alongside a decreased percent apoptotic index. Conclusion Our findings illustrate that VitD protects mice against BPA-induced heart, kidney, and lung abnormalities.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Zohour M. Marwan
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
16
|
Martín Giménez VM, Bergam I, Reiter RJ, Manucha W. Metal ion homeostasis with emphasis on zinc and copper: Potential crucial link to explain the non-classical antioxidative properties of vitamin D and melatonin. Life Sci 2021; 281:119770. [PMID: 34197883 DOI: 10.1016/j.lfs.2021.119770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Metal ion homeostasis is an essential physiological mechanism necessary for achieving an adequate balance of these ions' concentrations in the different cellular compartments. This fact is of great importance because both an excess and a deficiency of cellular metal ion levels are usually equally harmful due to the exacerbated increase in oxidative stress that may occur in both cases. Metal ion homeostasis ensures an equilibrium among multiple functions associated with the body's antioxidative defense network controlled by metallic micronutrients such as zinc and copper, some of the central regulators of redox processes. These micronutrients significantly modulate the activity of some isoforms of superoxide dismutase (SOD) and other enzymes such as metallothioneins (MTs) and ceruloplasmin (CP), which are directly or indirectly involved in the regulation of redox homeostasis. Although it is well known that both melatonin (MEL) and vitamin D have important roles as natural antioxidants, often some of these effects are related to their actions on antioxidative processes dependent on metal ions. Thus, in addition to their classical antioxidative properties usually associated with mitochondrial effects, it is known that MEL and vitamin D modulate the expression and activity of Cu/Zn-dependent SOD isoforms, MTs and CP; function as copper chelators and regulate genomic and non-genomic mechanisms related to the zinc transport. This review summarizes the main findings related to the crucial participation of zinc and copper in physiological antioxidative status and their relationship with the non-classical antioxidant effects of MEL and vitamin D, suggesting a potential synergism among these four micronutrients.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Ivana Bergam
- CROATIA Osiguranje Pension Company for Voluntary Pension Fund Management D.O.O., Zagreb, Croatia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
17
|
Gao S, Guo K, Chen Y, Zhao J, Jing R, Wang L, Li X, Hu Z, Xu N, Li X. Keratinocyte Growth Factor 2 Ameliorates UVB-Induced Skin Damage via Activating the AhR/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:655281. [PMID: 34163354 PMCID: PMC8215442 DOI: 10.3389/fphar.2021.655281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: Exposure to ultraviolet B (UVB) can cause skin damage through oxidative stress, DNA damage, and apoptosis. Keratinocyte growth factor (KGF) has been shown to reduce the content of intracellular reactive oxygen species (ROS) following UVB exposure, a role that is crucial for the efficient photoprotection of skin. The present study evaluated the photoprotective effect of KGF-2 on UVB-induced skin damage and explored its potential molecular mechanism. Methods: To evaluate the effect of KGF-2 on UVB-induced damage ex vivo, a human epidermal full-thickness skin equivalent was pretreated without or with KGF-2 and then exposed to UVB and the levels of histopathological changes, DNA damage, inflammation, and apoptosis were then evaluated. The ability of KGF-2 to protect the cells against UVB-inflicted damage and its effect on ROS production, apoptosis, and mitochondrial dysfunction were determined in HaCaT cells. Results: Pretreatment of the epidermis with KGF-2 ameliorated the extent of photodamage. At the cellular level, KGF-2 could attenuate ROS production, apoptosis, DNA damage, and mitochondrial dysfunction caused by UVB exposure. KGF-2 could also activate the aryl hydrocarbon receptor (AhR) to trigger the Nrf2 signaling pathway. Conclusion: Taken together, our findings suggested that KGF-2 could ameliorate UVB-induced skin damage through inhibiting apoptosis, reducing oxidative stress, and preventing DNA damage and mitochondrial dysfunction via regulating AhR/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yu Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuenan Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Bilska B, Schedel F, Piotrowska A, Stefan J, Zmijewski M, Pyza E, Reiter RJ, Steinbrink K, Slominski AT, Tulic MK, Kleszczyński K. Mitochondrial function is controlled by melatonin and its metabolites in vitro in human melanoma cells. J Pineal Res 2021; 70:e12728. [PMID: 33650175 DOI: 10.1111/jpi.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.
Collapse
Affiliation(s)
- Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Fiona Schedel
- Department of Dermatology, University of Münster, Münster, Germany
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Stefan
- Department of Oncology, Nicolaus Copernicus University Medical College, Bydgoszcz, Poland
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michal Zmijewski
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | - Meri K Tulic
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
19
|
Zhang C, Huang C, Yang P, Li C, Li M. Eldecalcitol induces apoptosis and autophagy in human osteosarcoma MG-63 cells by accumulating ROS to suppress the PI3K/Akt/mTOR signaling pathway. Cell Signal 2020; 78:109841. [PMID: 33217539 DOI: 10.1016/j.cellsig.2020.109841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Eldecalcitol (ED-71) is a new type of vitamin D analog, and vitamin D has been reported to have therapeutic effects in infectious disease, autoimmune disease, and cancer. However, the anti-cancer effect of ED-71 remains unclear. The objective of this study was to explore the anti-cancer effect of ED-71 in human osteosarcoma cells and to identify the related mechanism. The CCK8 assay results showed that ED-71 inhibited MG-63 cell viability in dose and time dependent manners. Cloning and Transwell invasion assays showed that ED-71 inhibited clonal and invasion ability of MG-63 cells. Flow cytometry results showed ED-71 the G2/M cycle arrest rate, apoptosis, and intracellular ROS. Western blot was used to detect cleaved-caspase-3, Bax, Bcl-2, LC3-II/LC3-I, and P62 levels and the mTOR pathway. The increase of LC3-II and P62 indicated that ED-71 induced the formation of autophagosomes and inhibited autophagy flux. Furthermore, ED-71-induced apoptosis was weakened after adding 3-methyladenine and ED-71-induced early autophagy was weakened by caspase-3 inhibitor (Z-VAD-FMK), which indicated the two processes active each other in the presence of ED-71. Furthermore, N-acetylcysteine (NAC) pretreatment reversed the ED-71-treatment outcomes, including increased apoptosis and autophagy and inhibition of the PI3K/Akt/mTOR pathway. In conclusion, our results reveal that ED-71 induced G2/M arrest, apoptosis and autophagy in MG-63 cells by accumulating ROS to suppress the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chaotao Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Cancan Huang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Congshan Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.
| |
Collapse
|
20
|
Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants (Basel) 2020; 9:antiox9090897. [PMID: 32967329 PMCID: PMC7555731 DOI: 10.3390/antiox9090897] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high degree of contagiousness and like almost no other virus, SARS-CoV-2 has put the health of the world population on alert. COVID-19 can provoke an acute inflammatory process and uncontrolled oxidative stress, which predisposes one to respiratory syndrome, and in the worst case, death. Recent evidence suggests the mechanistic role of mitochondria and vitamin D in the development of COVID-19. Indeed, mitochondrial dynamics contribute to the maintenance of cellular homeostasis, and its uncoupling involves pathological situations. SARS-CoV-2 infection is associated with altered mitochondrial dynamics with consequent oxidative stress, pro-inflammatory state, cytokine production, and cell death. Furthermore, vitamin D deficiency seems to be associated with increased COVID-19 risk. In contrast, vitamin D can normalize mitochondrial dynamics, which would improve oxidative stress, pro-inflammatory state, and cytokine production. Furthermore, vitamin D reduces renin–angiotensin–aldosterone system activation and, consequently, decreases ROS generation and improves the prognosis of SARS-CoV-2 infection. Thus, the purpose of this review is to deepen the knowledge about the role of mitochondria and vitamin D directly involved in the regulation of oxidative stress and the inflammatory state in SARS-CoV-2 infection. As future prospects, evidence suggests enhancing the vitamin D levels of the world population, especially of those individuals with additional risk factors that predispose to the lethal consequences of SARS-CoV-2 infection.
Collapse
|
21
|
Guizzardi S, Picotto G, Rodriguez V, Welsh J, Narvaez C, Bohl L, Tolosa de Talamoni N. Combined treatment of menadione and calcitriol increases the antiproliferative effect by promoting oxidative/nitrosative stress, mitochondrial dysfunction, and autophagy in breast cancer MCF-7 cells. Can J Physiol Pharmacol 2020; 98:548-556. [PMID: 32762631 DOI: 10.1139/cjpp-2019-0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to determine new insights into the molecular mechanisms involved in the antiproliferative action of menadione + calcitriol (MEN+D) on MCF-7 cells. After 24 h, MEN+D inhibited the cell growth but was not observed with each single treatment. The combined drugs reduced the mitochondrial respiration at that time, as judged by an increase in the proton leak and a decrease in the ATP generation and coupling efficiency. At longer times, 48 or 96 h, either D or MEN reduced the proliferation, but the effect was higher when both drugs were used together. The combined treatment increased the superoxide anion ([Formula: see text]) and nitric oxide (NO•) contents as well as acidic vesicular organelles (AVOs) formation. The percentage of cells showing the lower mitochondrial membrane potential (ΔΨm) was highly increased by the combined therapy. LC3-II protein expression was enhanced by any treatment. In conclusion, the antiproliferative action of MEN+D involves oxidative/nitrosative stress, mitochondrial alteration, and autophagy. This combined therapy could be useful to treat breast cancer cells because it inhibits multiple oncogenic pathways more effectively than each single agent.
Collapse
Affiliation(s)
- Solange Guizzardi
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - Valeria Rodriguez
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - JoEllen Welsh
- University at Albany Cancer Research Center, Rensselaer, NY, USA
| | - Carmen Narvaez
- University at Albany Cancer Research Center, Rensselaer, NY, USA
| | - Luciana Bohl
- Centro de Investigaciones y Transferencia Villa María (CITVM-CONICET), Universidad Nacional Villa María, Villa María, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
22
|
Ji MT, Nie J, Nie XF, Hu WT, Pei HL, Wan JM, Wang AQ, Zhou GM, Zhang ZL, Chang L, Li BY. 1α,25(OH) 2D 3 Radiosensitizes Cancer Cells by Activating the NADPH/ROS Pathway. Front Pharmacol 2020; 11:945. [PMID: 32848720 PMCID: PMC7426479 DOI: 10.3389/fphar.2020.00945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The radioresistance of tumors affect the outcome of radiotherapy. Accumulating data suggest that 1α,25(OH)2D3 is a potential anti-oncogenic molecule in various cancers. In the present study, we investigated the radiosensitive effects and underlying mechanisms of 1α,25(OH)2D3 in vitro and in vivo. We found that 1α,25(OH)2D3 enhanced the radiosensitivity of lung cancer and ovarian cancer cells by promoting the NADPH oxidase-ROS-apoptosis axis. Compared to the group that only received radiation, the survival fraction and self-renewal capacity of cancer cells treated with a combination of 1α,25(OH)2D3 and radiation were decreased. Both apoptosis and ROS were significantly increased in the combination group compared with the radiation only group. Moreover, N-acetyl-L-cysteine, a scavenger of intracellular ROS, reversed the apoptosis and ROS induced by 1α,25(OH)2D3, indicating that 1α,25(OH)2D3 enhanced the radiosensitivity of cancer cells in vitro by promoting ROS-induced apoptosis. Moreover, our results demonstrated that 1α,25(OH)2D3 promoted the ROS level via activating NADPH oxidase complexes, NOX4, p22phox, and p47phox. In addition, knockdown of the vitamin D receptor (VDR) abolished the radiosensitization of 1α,25(OH)2D3, which confirmed that 1α,25(OH)2D3 radiosensitized tumor cells that depend on VDR. Similarly, our study also evidenced that vitamin D3 enhanced the radiosensitivity of cancer cells in vivo and extended the overall survival of mice with tumors. In summary, these results demonstrate that 1α,25(OH)2D3 enhances the radiosensitivity depending on VDR and activates the NADPH oxidase-ROS-apoptosis axis. Our findings suggest that 1α,25(OH)2D3 in combination with radiation enhances lung and ovarian cell radiosensitivity, potentially providing a novel combination therapeutic strategy.
Collapse
Affiliation(s)
- Min-Tao Ji
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xue-Fei Nie
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Wen-Tao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Hai-Long Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jian-Mei Wan
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Ai-Qing Wang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guang-Ming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zeng-Li Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing-Yan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| |
Collapse
|
23
|
Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 2020; 29:876-884. [PMID: 32654294 DOI: 10.1111/exd.14147] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The genomic actions of the vitamin D are mediated via its biologically most potent metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) and the transcription factor vitamin D receptor (VDR). Activation of VDR by 1,25(OH)2 D3 leads to change in the expression of more 1000 genes in various human tissues. Based on (epi)genome, transcriptome and crystal structure data the molecular details of this nuclear vitamin D signalling pathway are well understood. Vitamin D is known for its role on calcium homeostasis and bone formation, but it also modulates energy metabolism, innate and adaptive immunity as well as cellular growth, differentiation and apoptosis. The observation of rapid, non-genomic effects of 1,25(OH)2 D3 at cellular membranes and in the cytosol initiated the question, whether there are alternative vitamin D-binding proteins in these cellular compartments. So far, the best candidate is the enzyme PDIA3 (protein disulphide isomerase family A member 3), which is found at various subcellular locations. Furthermore, also VDR seems to play a role in membrane-based responses to vitamin D. In this viewpoint, we will dispute whether these rapid, non-genomic pathways are a meaningful addition to the genome-wide effects of vitamin D.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Piotrowska A, Wierzbicka J, Kwiatkowska K, Chodyński M, Kutner A, Żmijewski MA. Antiproliferative activity of side-chain truncated vitamin D analogs (PRI-1203 and PRI-1204) against human malignant melanoma cell lines. Eur J Pharmacol 2020; 881:173170. [PMID: 32445704 DOI: 10.1016/j.ejphar.2020.173170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
Vitamin D compounds are versatile molecules widely considered as promising agents in cancer prevention and treatment, including melanoma. Previously we investigated series of double point modified vitamin D2 analogs as well as non-calcemic 20S-hydroxyvitamin D3 and 21-hydroxypregnacalciferol as to their anti-melanoma activity. Surprisingly, short side-chain vitamin D analogs were found to be biologically active compounds. Thus, here we tested novel derivatives of pregnacalciferol with an additional hydroxyl at the end of the truncated side chain, PRI-1203 and PRI-1204, as to their potency against human melanoma A375 and RPMI7951 cell lines. Tested compounds are geometric isomers, with 19-methylene positioned in PRI-1203 like in a calcitriol molecule, but reversed in the PRI-1204 analog to the (5E,7E) geometry (5,6-trans). We noticed a decrease in cells viability exerted by PRI-1203. The antiproliferative effect of PRI-1204 was very low, emphasizing the importance of the natural 19-methylene geometry in the PRI-1203. PRI-1203 was also effective in inhibition of A375 melanoma cells migration. PRI-1203, but not PRI-1204, increased the percentage of A375 and RPMI7951 melanoma cells in the G0/G1 phase of cell cycle, possibly in a p21 and p27 independent manner. Both, analogs have very low effect on the level of CYP24A1 mRNA, in comparison to active form of vitamin D - 1.25(OH)2D3. In addition, both tested compounds failed to elicit VDR translocation to the nucleus. Thus, it could be postulated that side chain shortening strongly affects binding of analogs to VDR and activation of genomic responses, however do not impair their antiproliferative activities.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Kamila Kwiatkowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland
| | - Michał Chodyński
- Department of Chemistry, Pharmaceutical Research Institute, 8 Rydygiera, Warsaw, 01-793, Poland.
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, Warsaw, 02-097, Poland.
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| |
Collapse
|
25
|
Karavaeva TM, Fefelova EM, Maximenya MV, Putneva AS, Fedorenko EV, Tereshkov PP. [Determination of some indicators of immunity and lipoperoxidation in the oral fluid in persons with a low vitamin D level.]. Klin Lab Diagn 2020; 64:753-757. [PMID: 32040900 DOI: 10.18821/0869-2084-2019-64-12-753-757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022]
Abstract
Oral fluid is a unique biological environment, containing a wide range of substances, coming from local and systemic sources, which makes it possible to use it as an object for assessing pathological changes in the body both at the local and systemic levels. In comparison with the traditional method of blood analysis, the advantage of evaluating the parameters of the oral fluid is the non-invasive of this method of obtaining material. All patients underwent oral fluid sampling using special plastic containers with a swab, which facilitate the selection of material, eliminating the penetration of mucin into a clean test sample, which helps to obtain more accurate analysis results. The amount of secretory IgA, lipopolysaccharide-binding protein (LBP), TBA-active products, the level of total antioxidant activity in the oral fluid in individuals with a low level of 25(OH)D before and after taking the native solution of vitamin D "Aqua Trim" were determined. The concentrations of secretory immunoglobulin A, lipopolysaccharide, binding protein and the level of total antioxidant activity are reduced in the oral fluid of people with vitamin D deficiency, but the number of intermediate products of lyoperoxidation increases. The course intake of the native solution of vitamin D (International Nonproprietary Name - Colecalciferol) normalizes the functioning of the immunity of the oral cavity and restores the balance of the "lipid peroxidation-antioxidants" system.
Collapse
Affiliation(s)
- T M Karavaeva
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| | - E M Fefelova
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| | - M V Maximenya
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| | - A S Putneva
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| | - E V Fedorenko
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| | - P P Tereshkov
- The Chita State Medical Academy Healthcare Ministry of Russia, 672000, Chita, Russia
| |
Collapse
|
26
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Chaiprasongsuk A, Janjetovic Z, Kim TK, Jarrett SG, D'Orazio JA, Holick MF, Tang EKY, Tuckey RC, Panich U, Li W, Slominski AT. Protective effects of novel derivatives of vitamin D 3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol 2019; 24:101206. [PMID: 31039479 PMCID: PMC6488822 DOI: 10.1016/j.redox.2019.101206] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Abstract
We tested whether novel CYP11A1-derived vitamin D3- and lumisterol-hydroxyderivatives, including 1,25(OH)2D3, 20(OH)D3, 1,20(OH)2D3, 20,23(OH)2D3, 1,20,23(OH)3D3, lumisterol, 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3, can protect against UVB-induced damage in human epidermal keratinocytes. Cells were treated with above compounds for 24 h, then subjected to UVB irradiation at UVB doses of 25, 50, 75, or 200 mJ/cm2, and then examined for oxidant formation, proliferation, DNA damage, and the expression of genes at the mRNA and protein levels. Oxidant formation and proliferation were determined by the DCFA-DA and MTS assays, respectively. DNA damage was assessed using the comet assay. Expression of antioxidative genes was evaluated by real-time RT-PCR analysis. Nuclear expression of CPD, phospho-p53, and Nrf2 as well as its target proteins including HO-1, CAT, and MnSOD, were assayed by immunofluorescence and western blotting. Treatment of cells with the above compounds at concentrations of 1 or 100 nM showed a dose-dependent reduction in oxidant formation. At 100 nM they inhibited the proliferation of cultured keratinocytes. When keratinocytes were irradiated with 50–200 mJ/cm2 of UVB they also protected against DNA damage, and/or induced DNA repair by enhancing the repair of 6-4PP and attenuating CPD levels and the tail moment of comets. Treatment with test compounds increased expression of Nrf2-target genes involved in the antioxidant response including GR, HO-1, CAT, SOD1, and SOD2, with increased protein expression for HO-1, CAT, and MnSOD. The treatment also stimulated the phosphorylation of p53 at Ser-15, increased its concentration in the nucleus and enhanced Nrf2 translocation into the nucleus. In conclusion, pretreatment of keratinocytes with 1,25(OH)2D3 or CYP11A1-derived vitamin D3- or lumisterol hydroxy-derivatives, protected them against UVB-induced damage via activation of the Nrf2-dependent antioxidant response and p53-phosphorylation, as well as by the induction of the DNA repair system. Thus, the new vitamin D3 and lumisterol hydroxy-derivatives represent promising anti-photodamaging agents. Vitamin D3 and lumisterol derivatives stimulate antioxidative responses in skin. Vitamin D3 and lumisterol derivatives protect against UVB-induced DNA damage. Vitamin D3 and lumisterol derivatives target p53 and Nrf2-antioxidant pathways. Vitamin D3 and lumisterol derivatives promise to be skin photoprotectors
Collapse
Affiliation(s)
- Anyamanee Chaiprasongsuk
- Department of Dermatology, University of Alabama at Birmingham, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, USA
| | - Stuart G Jarrett
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A D'Orazio
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
28
|
Cruciani S, Santaniello S, Garroni G, Fadda A, Balzano F, Bellu E, Sarais G, Fais G, Mulas M, Maioli M. Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Molecules 2019; 24:E1515. [PMID: 30999678 PMCID: PMC6515124 DOI: 10.3390/molecules24081515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory response represents one of the main mechanisms of healing and tissue function restoration. On the other hand, chronic inflammation leads to excessive secretion of pro-inflammatory cytokines involved in the onset of several diseases. Oxidative stress condition may contribute in worsening inflammatory state fall, increasing reactive oxygen species (ROS) production and cytokines release. Polyphenols can counteract inflammation and oxidative stress, modulating the release of toxic molecules and interacting with physiological defenses, such as cytochromes p450 enzymes. In this paper, we aimed at evaluating the anti-inflammatory properties of different concentrations of Myrtus communis L. pulp and seeds extracts, derived from liquor industrial production, on human fibroblasts. We determined ROS production after oxidative stress induction by H2O2 treatment, and the gene expression of different proinflammatory cytokines. We also analyzed the expression of CYP3A4 and CYP27B1 genes, in order to evaluate the capability of Myrtus polyphenols to influence the metabolic regulation of other molecules, including drugs, ROS, and vitamin D. Our results showed that Myrtus extracts exert a synergic effect with vitamin D in reducing inflammation and ROS production, protecting cells from oxidative stress damages. Moreover, the extracts modulate CYPs expression, preventing chronic inflammation and suggesting their use in development of new therapeutic formulations.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Angela Fadda
- Institute of Sciences of Food Production (ISPA), Consiglio Nazionale delle Ricerche (CNR), traversa la Crucca, 3, 07100 Sassari, Italy.
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Giacomo Fais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Maurizio Mulas
- Department of Agriculture, University of Sassari, Via De Nicola 9, I-07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Center for Developmental Biology and Reprogramming- CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
29
|
Ramaraj S, Sakthivel M, Chen SM, Lou BS, Ho KC. Defect and Additional Active Sites on the Basal Plane of Manganese-Doped Molybdenum Diselenide for Effective Enzyme Immobilization: In Vitro and in Vivo Real-Time Analyses of Hydrogen Peroxide Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7862-7871. [PMID: 30698948 DOI: 10.1021/acsami.8b22389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The defect engineering makes the new concepts and designs to further enhance the electrocatalytic activity of layered structures. In this work, we demonstrated the synthesis of Mn-doped MoSe2 and reported the resultant defective sites. Subsequently, the MnMoSe2 was developed as a new type of electrocatalyst for electrochemical biosensors. The formation of defect/distortion and effective immobilization of myoglobin (Mb) were evidently confirmed by using the transmission electron microscopy and UV-vis spectroscopy analyses, respectively. The result of electrochemical impedance spectroscopy analysis reveals that the Mn doping not only helps to enzyme immobilization but also enhances the electronic conductivity of layered material. Owing to the multiple signal amplification strategies, the proposed Mb-immobilized MnMoSe2 (Mb@MnMoSe2) exhibited an ultralow detection limit (0.004 μM) and a higher sensitivity (222.78 μA μM-1 cm-2) of H2O2. In real-sample analysis, the Mb@MnMoSe2 showed a feasible recovery range of H2O2 detection in human serum (95.6-102.1%), urine (101.2-102.3%), and rain water (100.7-102.1%) samples. On the other hand, an in vivo study using HaCaT (7.1 × 105/mL) and RAW 264.7 (1 × 106/mL) living cells showed the feasible current responses of 0.096 and 0.085 μA, respectively. Finally, the Mn doping gives a new opportunity to fabricate a promising electrocatalyst for H2O2 biosensing.
Collapse
Affiliation(s)
- Sukanya Ramaraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | | | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education , Chang Gung University , Taoyuan 333 , Taiwan
- Department of Nuclear Medicine and Molecular Imaging Center , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | | |
Collapse
|
30
|
Piotrowska A, Wierzbicka J, Rybarczyk A, Tuckey RC, Slominski AT, Żmijewski MA. Vitamin D and its low calcemic analogs modulate the anticancer properties of cisplatin and dacarbazine in the human melanoma A375 cell line. Int J Oncol 2019; 54:1481-1495. [PMID: 30968156 PMCID: PMC6411347 DOI: 10.3892/ijo.2019.4725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma represents a significant challenge in cancer treatment due to the high drug resistance of melanomas and the patient mortality rate. This study presents data indicating that nanomolar concentrations of the hormonally active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], its non-calcemic analogues 20S-hydroxyvitamin D3 and 21-hydroxypregnacalciferol, as well as the low-calcemic synthetic analog calcipotriol, modulate the efficacy of the anticancer drugs cisplatin and dacarbazine. It was observed that vitamin D analogs sensitized melanoma A375 cells to hydrogen peroxide used as an inducer of oxidative stress. On the other hand, only 1α,25(OH)2D3 resulted in a minor, but significant effect on the proliferation of melanoma cells treated simultaneously with dacarbazine, but not cisplatin. Notably, cisplatin (300 µM) exhibited a higher overall antiproliferative activity than dacarbazine. Cisplatin treatment of melanoma cells resulted in an induction of apoptosis as demonstrated by flow cytometry (accumulation of cells at the subG1 phase of the cell cycle), whereas dacarbazine caused G1/G0 cell cycle arrest, with the effects being improved by pre-treatment with vitamin D analogs. Treatment with cisplatin resulted in an initial increase in the level of reactive oxygen species (ROS). Dacarbazine caused transient stimulation of ROS levels and the mitochondrial membrane potential (Δψm) (after 1 or 3 h of treatment, respectively), but the effect was not detectable following prolonged (24 h) incubation with the drug. Vitamin D exhibited modulatory effects on the cells treated with dacarbazine, decreasing the half maximal inhibitory concentration (IC50) for the drug, stimulating G1/G0 arrest and causing a marked decrease in Δψm. Finally, cisplatin, dacarbazine and 1α,25(OH)2D3 displayed modulatory effects on the expression of ROS and vitamin D-associated genes in the melanoma A375 cells. In conclusion, nanomolar concentrations of 1,25(OH)2D3 only had minor effects on the proliferation of melanoma cells treated with dacarbazine, decreasing the relative IC50 value. However, co-treatment with vitamin D analogs resulted in the modulation of cell cycle and ROS responses, and affected gene expression, suggesting possible crosstalk between the signaling pathways of vitamin D and the anticancer drugs used in this study.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Agnieszka Rybarczyk
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Robert C Tuckey
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| |
Collapse
|
31
|
Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21. [PMID: 30205156 PMCID: PMC6342654 DOI: 10.1016/j.jsbmb.2018.09.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
32
|
Abstract
Vitamin D is currently one of the hottest topics in research and clinics, as well as in everyday life. Over the past decades, scientists gathered overwhelming evidence indicating that the observed global vitamin D deficiency not only has a negative impact on human skeletal system, but also facilitates development and progression of multiple disease of civilization, including cardiovascular diseases, diabetes, autoimmune disease, and cancer. This Special Issue, entitled “Vitamin D and Human Health”, summarizes recent advances in our understanding of pleiotropic activity of vitamin D in the form of eight comprehensive reviews. Furthermore, eight research papers provide new insight into vitamin D research and highlight new directions.
Collapse
Affiliation(s)
- Michal A Zmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| |
Collapse
|
33
|
Slominski AT, Kim TK, Janjetovic Z, Brożyna AA, Żmijewski MA, Xu H, Sutter TR, Tuckey RC, Jetten AM, Crossman DK. Differential and Overlapping Effects of 20,23(OH)₂D3 and 1,25(OH)₂D3 on Gene Expression in Human Epidermal Keratinocytes: Identification of AhR as an Alternative Receptor for 20,23(OH)₂D3. Int J Mol Sci 2018; 19:ijms19103072. [PMID: 30297679 PMCID: PMC6213311 DOI: 10.3390/ijms19103072] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A novel pathway of vitamin D activation by CYP11A has previously been elucidated. To define the mechanism of action of its major dihydroxy-products, we tested the divergence and overlap between the gene expression profiles of human epidermal keratinocytes treated with either CYP11A1-derived 20,23(OH)2D3 or classical 1,25(OH)2D3. Both secosteroids have significant chemical similarity with the only differences being the positions of the hydroxyl groups. mRNA was isolated and examined by microarray analysis using Illumina’s HumanWG-6 chip/arrays and subsequent bioinformatics analyses. Marked differences in the up- and downregulated genes were observed between 1,25(OH)2D3- and 20,23(OH)2D3-treated cells. Hierarchical clustering identified both distinct, opposite and common (overlapping) gene expression patterns. CYP24A1 was a common gene strongly activated by both compounds, a finding confirmed by qPCR. Ingenuity pathway analysis identified VDR/RXR signaling as the top canonical pathway induced by 1,25(OH)2D3. In contrast, the top canonical pathway induced by 20,23(OH)2D3 was AhR, with VDR/RXR being the second nuclear receptor signaling pathway identified. QPCR analyses validated the former finding by revealing that 20,23(OH)2D3 stimulated CYP1A1 and CYP1B1 gene expression, effects located downstream of AhR. Similar stimulation was observed with 20(OH)D3, the precursor to 20,23(OH)2D3, as well as with its downstream metabolite, 17,20,23(OH)3D3. Using a Human AhR Reporter Assay System we showed marked activation of AhR activity by 20,23(OH)2D3, with weaker stimulation by 20(OH)D3. Finally, molecular modeling using an AhR LBD model predicted vitamin D3 hydroxyderivatives to be good ligands for this receptor. Thus, our microarray, qPCR, functional studies and molecular modeling indicate that AhR is the major receptor target for 20,23(OH)2D3, opening an exciting area of investigation on the interaction of different vitamin D3-hydroxyderivatives with AhR and the subsequent downstream activation of signal transduction pathways in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Veteran Administration Medical Center, Birmingham, AL 35294, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Anna A Brożyna
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland.
| | - Michal A Żmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Hui Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Thomas R Sutter
- Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152 USA.
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Anton M Jetten
- Immunity, Inflammation, and Disease Laboratory/Cell Biology Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - David K Crossman
- Howell and Elizabeth Heflin Center for Human Genetics, Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Podgorska E, Sniegocka M, Mycinska M, Trybus W, Trybus E, Kopacz-Bednarska A, Wiechec O, Krzykawska-Serda M, Elas M, Krol T, Urbanska K, Slominski A. Acute hepatologic and nephrologic effects of calcitriol in Syrian golden hamster (Mesocricetus auratus). Acta Biochim Pol 2018; 65:351-358. [PMID: 30148509 DOI: 10.18388/abp.2018_2626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Abstract
Although vitamin D is included in the group of fat-soluble vitamins, it must be considered as a prohormone. Its active forms, including calcitriol, have pleiotropic effects and play an important role in the regulation of cell proliferation, differentiation and apoptosis, as well as in hormone secretion, and they demonstrate anti-cancer properties. Since calcitriol delivery can be beneficial for the organism, and Syrian golden hamsters represent a unique experimental model, we decided to investigate its toxicity in this species. In this study, we injected calcitriol intraperitoneally at doses 0 (control), 0.180±0.009 µg/kg and 0.717±0.032 µg/kg. Animal behavior was observed for 72 hrs after injection, and afterwards blood, liver and kidneys were collected for post-mortem examination, electron microscopy, and hematology analyses. The highest dose of calcitriol induced a change in animal behavior from calm to aggressive, and the liver surface showed morphological signs of damage. Following injection of calcitriol, ultrastructural changes were also observed in the liver and kidneys, e.g. vacuolization and increased number of mitochondria. There was also a trend for increased serum levels of aspartate aminotransferase (AST), but not of alanine aminotransferase (ALT) or GGTP (gamma-glutamyl transpeptidase). There was no change in Ca, Mg and P levels, as well as in blood morphology between experimental and control groups. These results indicate that calcitriol at 0.717, but not at 0.180 µg/kg, may induce acute damage to the liver and kidneys, without inducing calcemia. We propose that the hepatotoxic effect of calcitriol in hamster constitutes the primary cause of behavioral changes.
Collapse
Affiliation(s)
- Ewa Podgorska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Sniegocka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Marianna Mycinska
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Anna Kopacz-Bednarska
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Olga Wiechec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Krzykawska-Serda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Teodora Krol
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Krystyna Urbanska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
36
|
Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int J Mol Sci 2018; 19:ijms19061672. [PMID: 29874855 PMCID: PMC6032156 DOI: 10.3390/ijms19061672] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Vitamin D receptor (VDR) mediates many genomic and non-genomic effects of vitamin D. Recently, the mitochondrial effects of vitamin D have been characterized in many cell types. In this article, we investigated the importance of VDR not only in mitochondrial activity and integrity but also in cell health. The silencing of the receptor in different healthy, non-transformed, and cancer cells initially decreased cell growth and modulated the cell cycle. We demonstrated that, in silenced cells, the increased respiratory activity was associated with elevated reactive oxygen species (ROS) production. In the long run, the absence of the receptor caused impairment of mitochondrial integrity and, finally, cell death. Our data reveal that VDR plays a central role in protecting cells from excessive respiration and production of ROS that leads to cell damage. Because we confirmed our observations in different models of both normal and cancer cells, we conclude that VDR is essential for the health of human tissues.
Collapse
Affiliation(s)
- Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Alessia Aillon
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Daniela Alotto
- Department of Chirurgia Generale e Specialistiche, Banca della Cute, AOU Città della Salute e della Scienza Torino, Via Zuretti 29, 10126 Torino, Italy.
| | - Carlotta Castagnoli
- Department of Chirurgia Generale e Specialistiche, Banca della Cute, AOU Città della Salute e della Scienza Torino, Via Zuretti 29, 10126 Torino, Italy.
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| |
Collapse
|
37
|
Slominski AT, Kim TK, Hobrath JV, Oak ASW, Tang EKY, Tieu EW, Li W, Tuckey RC, Jetten AM. Endogenously produced nonclassical vitamin D hydroxy-metabolites act as "biased" agonists on VDR and inverse agonists on RORα and RORγ. J Steroid Biochem Mol Biol 2017; 173:42-56. [PMID: 27693422 PMCID: PMC5373926 DOI: 10.1016/j.jsbmb.2016.09.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The classical pathway of vitamin D activation follows the sequence D3→25(OH)D3→1,25(OH)2D3 with the final product acting on the receptor for vitamin D (VDR). An alternative pathway can be started by the action of CYP11A1 on the side chain of D3, primarily producing 20(OH)D3, 22(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3 and 17,20,23(OH)3D3. Some of these metabolites are hydroxylated by CYP27B1 at C1α, by CYP24A1 at C24 and C25, and by CYP27A1 at C25 and C26. The products of these pathways are biologically active. In the epidermis and/or serum or adrenals we detected 20(OH)D3, 22(OH)D3, 20,22(OH)2D3, 20,23(OH)2D3, 17,20,23(OH)3D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,22(OH)3D3, 20,24(OH)2D3, 1,20,24(OH)3D3, 20,25(OH)2D3, 1,20,25(OH)3D3, 20,26(OH)2D3 and 1,20,26(OH)3D3. 20(OH)D3 and 20,23(OH)2D3 are non-calcemic, while the addition of an OH at C1α confers some calcemic activity. Molecular modeling and functional assays show that the major products of the pathway can act as "biased" agonists for the VDR with high docking scores to the ligand binding domain (LBD), but lower than that of 1,25(OH)2D3. Importantly, cell based functional receptor studies and molecular modeling have identified the novel secosteroids as inverse agonists of both RORα and RORγ receptors. Specifically, they have high docking scores using crystal structures of RORα and RORγ LBDs. Furthermore, 20(OH)D3 and 20,23(OH)2D3 have been tested in a cell model that expresses a Tet-on RORα or RORγ vector and a RORE-LUC reporter (ROR-responsive element), and in a mammalian 2-hybrid model that test interactions between an LBD-interacting LXXLL-peptide and the LBD of RORα/γ. These assays demonstrated that the novel secosteroids have ROR-antagonist activities that were further confirmed by the inhibition of IL17 promoter activity in cells overexpressing RORα/γ. In conclusion, endogenously produced novel D3 hydroxy-derivatives can act both as "biased" agonists of the VDR and/or inverse agonists of RORα/γ. We suggest that the identification of large number of endogenously produced alternative hydroxy-metabolites of D3 that are biologically active, and of possible alternative receptors, may offer an explanation for the pleiotropic and diverse activities of vitamin D, previously assigned solely to 1,25(OH)2D3 and VDR.
Collapse
MESH Headings
- Animals
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Humans
- Hydroxycholecalciferols/metabolism
- Hydroxycholecalciferols/pharmacology
- Models, Molecular
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/metabolism
- Vitamins/metabolism
- Vitamins/pharmacology
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | | | - Judith V Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - Edith K Y Tang
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Elaine W Tieu
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences University of Tennessee HSC, Memphis, TN 38163, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
38
|
Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Sci Rep 2017; 7:11434. [PMID: 28900196 PMCID: PMC5595834 DOI: 10.1038/s41598-017-10202-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved.
Collapse
|
39
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|