1
|
Zhang BX, Liu FF, Liu F, Sun YX, Rao XJ. Dual RNA Sequencing of Beauveria bassiana-Infected Spodoptera frugiperda Reveals a Fungal Protease with Entomopathogenic and Antiphytopathogenic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12757-12774. [PMID: 37602431 DOI: 10.1021/acs.jafc.3c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Insect pests and phytopathogens significantly impact crop yield and quality. The fall armyworm (FAW) Spodoptera frugiperda and the phytopathogen Fusarium graminearum cause substantial economic losses in crops like barley and wheat. However, the entomopathogen Beauveria bassiana shows limited efficacy against FAW, and its antiphytopathogenic activities against F. graminearum remain unclear. Here, dual RNA sequencing was performed to identify differentially expressed genes in B. bassiana-infected FAW larvae. We found that the BbAorsin gene was significantly upregulated at 36 and 48 h post-infection. BbAorsin encodes a serine-carboxyl protease and is mainly expressed in blastospores and hyphae. Overexpression of BbAorsin in B. bassiana ARSEF2860 enhanced virulence against Galleria mellonella and FAW larvae and inhibited F. graminearum growth. The recombinant BbAorsin protein induced apoptosis and necrosis in FAW hemocytes and inhibited F. graminearum spore germination. These findings shed light on transcriptomic mechanisms governing insect-pathogen interactions, which could aid in developing dual-functional entomopathogens and anti-phytopathogens.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
- Department of Scientific Research, Chuzhou University, Chuzhou 239000, China
| | - Fang-Fang Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Feng Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| |
Collapse
|
2
|
Ramoneda J, Stallard-Olivera E, Hoffert M, Winfrey CC, Stadler M, Niño-García JP, Fierer N. Building a genome-based understanding of bacterial pH preferences. SCIENCE ADVANCES 2023; 9:eadf8998. [PMID: 37115929 PMCID: PMC10146879 DOI: 10.1126/sciadv.adf8998] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The environmental preferences of many microbes remain undetermined. This is the case for bacterial pH preferences, which can be difficult to predict a priori despite the importance of pH as a factor structuring bacterial communities in many systems. We compiled data on bacterial distributions from five datasets spanning pH gradients in soil and freshwater systems (1470 samples), quantified the pH preferences of bacterial taxa across these datasets, and compiled genomic data from representative bacterial taxa. While taxonomic and phylogenetic information were generally poor predictors of bacterial pH preferences, we identified genes consistently associated with pH preference across environments. We then developed and validated a machine learning model to estimate bacterial pH preferences from genomic information alone, a model that could aid in the selection of microbial inoculants, improve species distribution models, or help design effective cultivation strategies. More generally, we demonstrate the value of combining biogeographic and genomic data to infer and predict the environmental preferences of diverse bacterial taxa.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Corresponding author. (J.R.); (N.F.)
| | - Elias Stallard-Olivera
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Michael Hoffert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Claire C. Winfrey
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Masumi Stadler
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Juan Pablo Niño-García
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
- Escuela de Microbiología, Universidad de Antioquia, Ciudad Universitaria Calle 67 No 12 53-108, Medellín, Colombia
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Corresponding author. (J.R.); (N.F.)
| |
Collapse
|
3
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination. Biochem J 2020; 477:1459-1478. [PMID: 32242623 PMCID: PMC7200643 DOI: 10.1042/bcj20190875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.
Collapse
|
5
|
Orts F, Ten Have A. Structure-function analysis of Sedolisins: evolution of tripeptidyl peptidase and endopeptidase subfamilies in fungi. BMC Bioinformatics 2018; 19:464. [PMID: 30514213 PMCID: PMC6278154 DOI: 10.1186/s12859-018-2404-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Sedolisins are acid proteases that are related to the basic subtilisins. They have been identified in all three superkingdoms but are not ubiquitous, although fungi that secrete acids as part of their lifestyle can have up to six paralogs. Both TriPeptidyl Peptidase (TPP) and endopeptidase activity have been identified and it has been suggested that these correspond to separate subfamilies. Results We studied eukaryotic sedolisins by computational analysis. A maximum likelihood tree shows one major clade containing non-fungal sequences only and two major as well as two minor clades containing only fungal sequences. One of the major fungal clades contains all known TPPs whereas the other contains characterized endosedolisins. We identified four Cluster Specific Inserts (CSIs) in endosedolisins, of which CSIs 1, 3 and 4 appear as solvent exposed according to structure modeling. Part of CSI2 is exposed but a short stretch forms a novel and partially buried α-helix that induces a conformational change near the binding pocket. We also identified a total of 15 specificity determining positions (SDPs) of which five, identified in two independent analyses, form highly connected SDP sub-networks. Modeling of virtual mutants suggests a key role for the W307A or F307A substitution. The remaining four key SDPs physically interact at the interface of the catalytic domain and the enzyme’s prosegment. Modeling of virtual mutants suggests these SDPs are indeed required to compensate the conformational change induced by CSI2 and the A307. One of the two small fungal clades concerns a subfamily that contains 213 sequences, is mostly similar to the major TPP subfamily but differs, interestingly, in position 307, showing mostly isoleucine and threonine. Conclusions Analysis confirms there are at least two sedolisin subfamilies in fungi: TPPs and endopeptidases, and suggests a third subfamily with unknown characteristics. Sequence and functional diversification was centered around buried SDP307 and resulted in a conformational change of the pocket. Mutual Information network analysis forms a useful instrument in the corroboration of predicted SDPs. Electronic supplementary material The online version of this article (10.1186/s12859-018-2404-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Facundo Orts
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
6
|
QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis. Sci Rep 2018; 8:7042. [PMID: 29728674 PMCID: PMC5935664 DOI: 10.1038/s41598-018-25471-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
It is a grand attraction for contemporary biochemists to computationally design enzymes for novel chemical transformation or improved catalytic efficiency. Rosetta by Baker et al. is no doubt the leading software in the protein design society. Generally, optimization of the transition state (TS) is part of the Rosetta’s protocol to enhance the catalytic efficiency of target enzymes, since TS stabilization is the determining factor for catalytic efficiency based on the TS theory (TST). However, it is confusing that optimization of the reactant state (RS) also results in significant improvement of catalytic efficiency in some cases, such as design of gluten hydrolase (Kuma030). Therefore, it is interesting to uncover underlying reason why a better binding in the RS leading to an increased kcat. In this study, the combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (PMF) simulations, pKa calculation, and the statistical analysis such as the ANOVA test were carried out to shed light on the interesting but elusive question. By integration of our computational results and general acid/base theory, we answered the question why optimization of RS stabilization leads to a better TS stabilization in the general acid/base catalysis. In addition, a new and simplified protein-design strategy is proposed for the general acid/base catalysis. The idea, that application of traditional well-defined enzyme mechanism to protein design strategy, would be a great help for methodology development of protein design.
Collapse
|
7
|
Hiding in Plain Sight: Mining Bacterial Species Records for Phenotypic Trait Information. mSphere 2017; 2:mSphere00237-17. [PMID: 28776041 PMCID: PMC5541158 DOI: 10.1128/msphere.00237-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
Cultivation in the laboratory is key for understanding the phenotypic characteristics, growth requirements, metabolism, and environmental preferences of bacteria. However, oftentimes, phenotypic information is not easily accessible. Here, we compiled phenotypic and environmental tolerance information for >5,000 bacterial strains described in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). We demonstrate how this database can be used to link bacterial taxonomy, phylogeny, or specific genes to measured phenotypic traits and environmental preferences. The phenotypic database can be freely accessed (https://doi.org/10.6084/m9.figshare.4272392), and we have included instructions for researchers interested in adding new entries or curating existing ones. Cultivation in the laboratory is essential for understanding the phenotypic characteristics and environmental preferences of bacteria. However, basic phenotypic information is not readily accessible. Here, we compiled phenotypic and environmental tolerance information for >5,000 bacterial strains described in the International Journal of Systematic and Evolutionary Microbiology (IJSEM) with all information made publicly available in an updatable database. Although the data span 23 different bacterial phyla, most entries described aerobic, mesophilic, neutrophilic strains from Proteobacteria (mainly Alpha- and Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes isolated from soils, marine habitats, and plants. Most of the routinely measured traits tended to show a significant phylogenetic signal, although this signal was weak for environmental preferences. We demonstrated how this database could be used to link genomic attributes to differences in pH and salinity optima. We found that adaptations to high salinity or high-pH conditions are related to cell surface transporter genes, along with previously uncharacterized genes that might play a role in regulating environmental tolerances. Together, this work highlights the utility of this database for associating bacterial taxonomy, phylogeny, or specific genes to measured phenotypic traits and emphasizes the need for more comprehensive and consistent measurements of traits across a broader diversity of bacteria. IMPORTANCE Cultivation in the laboratory is key for understanding the phenotypic characteristics, growth requirements, metabolism, and environmental preferences of bacteria. However, oftentimes, phenotypic information is not easily accessible. Here, we compiled phenotypic and environmental tolerance information for >5,000 bacterial strains described in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). We demonstrate how this database can be used to link bacterial taxonomy, phylogeny, or specific genes to measured phenotypic traits and environmental preferences. The phenotypic database can be freely accessed (https://doi.org/10.6084/m9.figshare.4272392), and we have included instructions for researchers interested in adding new entries or curating existing ones.
Collapse
|
8
|
Yao J, Luo H, Wang X. Understanding the Catalytic Mechanism and the Substrate Specificity of an Engineered Gluten Hydrolase by QM/MM Molecular Dynamics and Free Energy Simulations. J Chem Inf Model 2017; 57:1179-1186. [DOI: 10.1021/acs.jcim.7b00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianzhuang Yao
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Haixia Luo
- Key
Laboratory of Ministry of Education for Conservation and Utilization
of Special Biological Resources in the Western China, Life Science
School, Ningxia University, Yinchuan 750021, P. R. China
| | - Xia Wang
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
9
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
10
|
Ferreira RM, Moreira LM, Ferro JA, Soares MR, Laia ML, Varani AM, de Oliveira JC, Ferro MIT. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016; 4:e1734. [PMID: 26925342 PMCID: PMC4768671 DOI: 10.7717/peerj.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Citrus canker is a major disease affecting citrus production in Brazil. It's mainly caused by Xanthomonas citri subsp. citri strain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild type Xac and an asymptomatic mutant for hrpB4 (ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4 mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.
Collapse
Affiliation(s)
- Rafael M. Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas—Núcleo de Pesquisas em Ciências Biológicas-NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Marcia R.R. Soares
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo L. Laia
- Departamento de Engenharia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Julio C.F. de Oliveira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Maria Ines T. Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
11
|
Subbian E, Williamson DM, Shinde U. Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular Pro-Subtilisin E Maturation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Sirin S, Pearlman DA, Sherman W. Physics-based enzyme design: predicting binding affinity and catalytic activity. Proteins 2014; 82:3397-409. [PMID: 25243583 DOI: 10.1002/prot.24694] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/11/2022]
Abstract
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.
Collapse
Affiliation(s)
- Sarah Sirin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02140
| | | | | |
Collapse
|
13
|
Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G. Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 2014; 28:1780-93. [PMID: 24421400 DOI: 10.1096/fj.13-241737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.
Collapse
Affiliation(s)
- Misty L Kuhn
- 2G.G., Novartis Vaccines, via Fiorentina 1, 53100, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhu H, Xu BL, Liang X, Yang YR, Tang XF, Tang B. Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp. WF146. J Biol Chem 2013; 288:34826-38. [PMID: 24145031 DOI: 10.1074/jbc.m113.498774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proform of the WF146 protease, an extracellular subtilase produced by thermophilic Bacillus sp. WF146, matures efficiently at high temperatures. Here we report that the proform, which contains an N-terminal propeptide composed of a core domain (N*) and a linker peptide, is intrinsically able to mature via multiple pathways. One autocatalytic pathway is initiated by cis-processing of N* to generate an autoprocessed complex N*-I(WT), and this step is followed by truncation of the linker peptide and degradation of N*. Another autocatalytic pathway is initiated by trans-processing of the linker peptide followed by degradation of N*. Unlike most reported subtilases, the maturation of the WF146 protease occurs not only autocatalytically but also hetero-catalytically whereby heterogeneous proteases accelerate the maturation of the WF146 protease via trans-processing of the proform and N*-I(WT). Although N* acts as an intramolecular chaperone and an inhibitor of the mature enzyme, the linker peptide is susceptible to proteolysis, allowing the trans-processing reaction to occur auto- and hetero-catalytically. These studies also demonstrate that the WF146 protease undergoes subtle structural adjustments during the maturation process and that the binding of Ca(2+) is required for routing the proform to mature properly at high temperatures. Interestingly, under Ca(2+)-free conditions, the proform is cis-processed into a unique propeptide-intermediate complex (N*-I(E)) capable of re-synthesis of the proform. Based on the basic catalytic principle of serine proteases and these experimental results, a mechanism for the cis-processing/re-synthesis equilibrium of the proform and the role of the linker peptide in regulation of this equilibrium has been proposed.
Collapse
Affiliation(s)
- Hui Zhu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
15
|
Yao J, Wlodawer A, Guo H. Understanding the autocatalytic process of pro-kumamolisin activation from molecular dynamics and quantum mechanical/molecular mechanical (QM/MM) free-energy simulations. Chemistry 2013; 19:10849-52. [PMID: 23821374 DOI: 10.1002/chem.201301310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Jianzhuang Yao
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
16
|
Abstract
Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes.
Collapse
|
17
|
Veillard F, Sztukowska M, Mizgalska D, Ksiazek M, Houston J, Potempa B, Enghild JJ, Thogersen IB, Gomis-Rüth FX, Nguyen KA, Potempa J. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Biochim Biophys Acta Gen Subj 2013; 1830:4218-28. [PMID: 23583629 DOI: 10.1016/j.bbagen.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. METHODS Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. RESULTS PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2nM to 0.85nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. CONCLUSION Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. GENERAL SIGNIFICANCE Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.
Collapse
Affiliation(s)
- Florian Veillard
- University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yao J, Xu Q, Guo H. QM/MM and free-energy simulations of deacylation reaction catalysed by sedolisin, a serine-carboxyl peptidase. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.714467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 2013; 9:e1003165. [PMID: 23408892 PMCID: PMC3567191 DOI: 10.1371/journal.ppat.1003165] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022] Open
Abstract
Spores are the major transmissive form of the nosocomial pathogen Clostridium difficile, a leading cause of healthcare-associated diarrhea worldwide. Successful transmission of C. difficile requires that its hardy, resistant spores germinate into vegetative cells in the gastrointestinal tract. A critical step during this process is the degradation of the spore cortex, a thick layer of peptidoglycan surrounding the spore core. In Clostridium sp., cortex degradation depends on the proteolytic activation of the cortex hydrolase, SleC. Previous studies have implicated Csps as being necessary for SleC cleavage during germination; however, their mechanism of action has remained poorly characterized. In this study, we demonstrate that CspB is a subtilisin-like serine protease whose activity is essential for efficient SleC cleavage and C. difficile spore germination. By solving the first crystal structure of a Csp family member, CspB, to 1.6 Å, we identify key structural domains within CspB. In contrast with all previously solved structures of prokaryotic subtilases, the CspB prodomain remains tightly bound to the wildtype subtilase domain and sterically occludes a catalytically competent active site. The structure, combined with biochemical and genetic analyses, reveals that Csp proteases contain a unique jellyroll domain insertion critical for stabilizing the protease in vitro and in C. difficile. Collectively, our study provides the first molecular insight into CspB activity and function. These studies may inform the development of inhibitors that can prevent clostridial spore germination and thus disease transmission. Clostridium difficile is the leading cause of health-care associated diarrhea worldwide. C. difficile infections begin when its spores transform into vegetative cells during a process called germination. In Clostridium sp., germination requires that the spore cortex, a thick, protective layer, be removed by the cortex hydrolase SleC. While previous studies have shown that SleC activity depends on a subtilisin-like protease, CspB, the mechanisms regulating CspB function have not been characterized. In this study, we solved the first crystal structure of the Csp family of proteases and identified its key functional regions. We determined that CspB carries a unique jellyroll domain required for stabilizing the protein both in vitro and in C. difficile and a prodomain required for proper folding of the protease. Unlike all other prokaryotic subtilisin-like proteases, the prodomain remains bound to CspB and inhibits its protease activity until the germination signal is sensed. Our study provides new insight into how germination is regulated in C. difficile and may inform the development of inhibitors that can prevent germination and thus C. difficile transmission.
Collapse
Affiliation(s)
- Chloe M Adams
- Graduate Program in Cell, Molecular and Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | | | | | | | | |
Collapse
|
20
|
Daugherty AB, Muthu P, Lutz S. Novel Protease Inhibitors via Computational Redesign of Subtilisin BPN′ Propeptide. Biochemistry 2012; 51:8247-55. [DOI: 10.1021/bi300832v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashley B. Daugherty
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Pravin Muthu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Oda K. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 2011; 151:13-25. [PMID: 22016395 DOI: 10.1093/jb/mvr129] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptidases or proteinases are now classified into seven families based on the nature of the catalytic residues [MEROPS-the peptidase database (http://merops.sanger.ac.uk/)]. They are aspartic- (first described in 1993), cysteine- (1993), serine- (1993) metallo- (1993), threonine- (1997), glutamic- (2004) and asparagine-peptidase (2010). By using an S-PI (pepstatin Ac) as a probe, a new subfamily of serine peptidase, serine-carboxyl peptidase (sedolisin) was discovered in 2001. In addition, the sixth family of peptidase, glutamic peptidase (eqolisin) was also discovered in 2004. The former peptidase is widely distributed in nature from archea to mammals, including humans. One of these enzymes is related to a human fatal hereditable disease, Batten disease. In contrast, the distribution of the latter peptidases is limited, with most of them found in human or plant pathogenic fungi. One such enzyme was isolated from a fungal infection in an HIV-infected patient. In this review, the background of the findings, and crystal structures, catalytic mechanisms, substrates specificities and distribution of the new peptidase families are described.
Collapse
Affiliation(s)
- Kohei Oda
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
22
|
Xu Q, Yao J, Wlodawer A, Guo H. Clarification of the mechanism of acylation reaction and origin of substrate specificity of the serine-carboxyl peptidase sedolisin through QM/MM free energy simulations. J Phys Chem B 2011; 115:2470-6. [PMID: 21332137 DOI: 10.1021/jp1122294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum mechanical/molecular mechanical (QM/MM) free energy simulations are applied for understanding the mechanism of the acylation reaction catalyzed by sedolisin, a representative serine-carboxyl peptidase, leading to the acyl-enzyme (AE) and first product from the enzyme-catalyzed reaction. One of the interesting questions to be addressed in this work is the origin of the substrate specificity of sedolisin that shows a relatively high activity on the substrates with Glu at P(1) site. It is shown that the bond making and breaking events of the acylation reaction involving a peptide substrate (LLE*FL) seem to be accompanied by local conformational changes, proton transfers as well as the formation of alternative hydrogen bonds. The results of the simulations indicate that the conformational change of Glu at P(1) site and its formation of a low barrier hydrogen bond with Asp-170 (along with the transient proton transfer) during the acylation reaction might play a role in the relatively high specificity for the substrate with Glu at P(1) site. The role of some key residues in the catalysis is confirmed through free energy simulations. Glu-80 is found to act as a general base to accept a proton from Ser-287 during the nucleophilic attack and then as a general acid to protonate the leaving group (N-H of P(1')-Phe) during the cleavage of the scissile peptide bond. Another acidic residue, Asp-170, acts as a general acid catalyst to protonate the carbonyl of P(1)-Glu during the formation of the tetrahedral intermediate and as a general base for the formation of the acyl-enzyme. The energetic results from the free energy simulations support the importance of proton transfer from Asp-170 to the carbonyl of P(1)-Glu in the stabilization of the tetrahedral intermediate and the formation of a low-barrier hydrogen bond between the carboxyl group of P(1)-Glu and Asp-170 in the lowering of the free energy barrier for the cleavage of the peptide bond. Detailed analyses of the proton transfers during acylation are also given.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 3799, USA
| | | | | | | |
Collapse
|
23
|
Regulation of an intracellular subtilisin protease activity by a short propeptide sequence through an original combined dual mechanism. Proc Natl Acad Sci U S A 2011; 108:3536-41. [PMID: 21307308 DOI: 10.1073/pnas.1014229108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A distinct class of the biologically important subtilisin family of serine proteases functions exclusively within the cell and forms a major component of the bacilli degradome. However, the mode and mechanism of posttranslational regulation of intracellular protease activity are unknown. Here we describe the role played by a short N-terminal extension prosequence novel amongst the subtilisins that regulates intracellular subtilisin protease (ISP) activity through two distinct modes: active site blocking and catalytic triad rearrangement. The full-length proenzyme (proISP) is inactive until specific proteolytic processing removes the first 18 amino acids that comprise the N-terminal extension, with processing appearing to be performed by ISP itself. A synthetic peptide corresponding to the N-terminal extension behaves as a mixed noncompetitive inhibitor of active ISP with a K(i) of 1 μM. The structure of the processed form has been determined at 2.6 Å resolution and compared with that of the full-length protein, in which the N-terminal extension binds back over the active site. Unique to ISP, a conserved proline introduces a backbone kink that shifts the scissile bond beyond reach of the catalytic serine and in addition the catalytic triad is disrupted. In the processed form, access to the active site is unblocked by removal of the N-terminal extension and the catalytic triad rearranges to a functional conformation. These studies provide a new molecular insight concerning the mechanisms by which subtilisins and protease activity as a whole, especially within the confines of a cell, can be regulated.
Collapse
|
24
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
25
|
Xu Q, Li L, Guo H. Understanding the mechanism of deacylation reaction catalyzed by the serine carboxyl peptidase kumamolisin-As: insights from QM/MM free energy simulations. J Phys Chem B 2010; 114:10594-600. [PMID: 20734497 DOI: 10.1021/jp102785s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics and free energy simulations are performed to study the process of the deacylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism. The results given here suggest that Asp-164 acts as a general acid/base catalyst not only for the acylation reaction but also for the deacylation reaction. It is shown that the electrostatic oxyanion hole interactions may be less effective in transition state stabilization for the kumamolisin-As catalyzed reaction compared to the general acid/base mechanism involving the proton transfer from or to Asp-164. The dynamic substrate-assisted catalysis (DSAC) involving His at the P1 site of the substrate is found to be less important for the deacylation reaction than for the acylation reaction in the kumamolisin-As catalyzed reaction. The proton transfer processes during the enzyme-catalyzed process are examined and their role in the catalysis is discussed.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
26
|
Vévodová J, Gamble M, Künze G, Ariza A, Dodson E, Jones DD, Wilson KS. Crystal structure of an intracellular subtilisin reveals novel structural features unique to this subtilisin family. Structure 2010; 18:744-55. [PMID: 20541512 DOI: 10.1016/j.str.2010.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The intracellular subtilisin proteases (ISPs) are the only known members of the important and ubiquitous subtilisin family that function exclusively within the cell, constituting a major component of the degradome in many Gram-positive bacteria. The first ISP structure reported herein at a spacing of 1.56 A reveals features unique among subtilisins that has enabled potential functional and physiological roles to be assigned to sequence elements exclusive to the ISPs. Unlike all other subtilisins, ISP from B. clausii is dimeric, with residues from the C terminus making a major contribution to the dimer interface by crossing over to contact the partner subunit. A short N-terminal extension binds back across the active site to provide a potential novel regulatory mechanism of intrinsic proteolytic activity: a proline residue conserved throughout the ISPs introduces a kink in the polypeptide backbone that lifts the target peptide bond out of reach of the catalytic residues.
Collapse
Affiliation(s)
- Jitka Vévodová
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa. Biochem J 2010; 428:473-82. [PMID: 20337595 DOI: 10.1042/bj20091806] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence.
Collapse
|
28
|
Cheng G, Zhao P, Tang XF, Tang B. Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF. MICROBIOLOGY-SGM 2009; 155:3661-3672. [PMID: 19696109 DOI: 10.1099/mic.0.031336-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding a spore-associated subtilase, designated protease CDF, was cloned from Thermoactinomyces sp. CDF and expressed in Escherichia coli. The enzyme gene is translated as a proform consisting of a 94 aa propeptide and a 283 aa mature protease domain. Phylogenetic analysis revealed that this enzyme belonged to the subtilisin family, but could not be grouped into any of its six known subfamilies. The mature protease CDF has an unusually high content of charged residues, which are mainly distributed on the enzyme surface. The recombinant proform of protease CDF formed inclusion bodies, but could be efficiently converted to the mature enzyme when the inclusion bodies were dissolved in alkaline buffers. The proform underwent a two-step maturation process, wherein the N-terminal part (85 residues) of the propeptide was autoprocessed intramolecularly, and the remaining 9-residue peptide was further processed intermolecularly. Protease CDF exhibited optimal proteolytic activity at 50-55 degrees C and pH 10.5-11.0. The enzyme was stable under high-pH conditions (pH 11.0-12.0), and NaCl could stabilize the enzyme at lower pH values. In addition, the enzyme was not dependent on calcium for either maturation or stability. By immunoblot analysis, protease CDF was found to be associated with spores, and could be extracted from the spores with 2 M KCl and alkaline buffers without damaging the coat layer, demonstrating that the protease CDF is located on the surface of the spore coat.
Collapse
Affiliation(s)
- Guyue Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Peiwei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
29
|
Catara G, Fiume I, Iuliano F, Maria G, Ruggiero G, Palmieri G, Capasso A, Rossi M. A new kumamolisin-like protease fromAlicyclobacillus acidocaldarius: an enzyme active under extreme acidic conditions. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600792094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Guhaniyogi J, Sohar I, Das K, Stock AM, Lobel P. Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem 2009; 284:3985-97. [PMID: 19038967 PMCID: PMC2635056 DOI: 10.1074/jbc.m806943200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/07/2008] [Indexed: 11/20/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis is a fatal childhood neurological disorder caused by a deficiency in the lysosomal protease tripeptidyl-peptidase 1 (TPP1). TPP1 represents the only known mammalian member of the S53 family of serine proteases, a group characterized by a subtilisin-like fold, a Ser-Glu-Asp catalytic triad, and an acidic pH optimum. TPP1 is synthesized as an inactive proenzyme (pro-TPP1) that is proteolytically processed into the active enzyme after exposure to low pH in vitro or targeting to the lysosome in vivo. In this study, we describe an endoglycosidase H-deglycosylated form of TPP1 containing four Asn-linked N-acetylglucosamines that is indistinguishable from fully glycosylated TPP1 in terms of autocatalytic processing of the proform and enzymatic properties of the mature protease. The crystal structure of deglycosylated pro-TPP1 was determined at 1.85 angstroms resolution. A large 151-residue C-shaped prodomain makes extensive contacts as it wraps around the surface of the catalytic domain with the two domains connected by a 24-residue flexible linker that passes through the substrate-binding groove. The proenzyme structure reveals suboptimal catalytic triad geometry with its propiece linker partially blocking the substrate-binding site, which together serve to prevent premature activation of the protease. Finally, we have identified numerous processing intermediates and propose a structural model that explains the pathway for TPP1 activation in vitro. These data provide new insights into TPP1 function and represent a valuable resource for constructing improved TPP1 variants for treatment of late infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Jayita Guhaniyogi
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | | | | | | | | |
Collapse
|
31
|
Kagawa TF, O'Connell MR, Mouat P, Paoli M, O'Toole PW, Cooney JC. Model for Substrate Interactions in C5a Peptidase from Streptococcus pyogenes: A 1.9 Å Crystal Structure of the Active Form of ScpA. J Mol Biol 2009; 386:754-72. [DOI: 10.1016/j.jmb.2008.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/18/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
32
|
Bader O, Krauke Y, Hube B. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 2008; 8:116. [PMID: 18625069 PMCID: PMC2515848 DOI: 10.1186/1471-2180-8-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the alpha-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. RESULTS In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. CONCLUSION Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.
Collapse
Affiliation(s)
- Oliver Bader
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Institut für Medizinische Mikrobiologie, Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Yannick Krauke
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Dept. Membrane Transport, Institute of Physiology AS CR v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Bernhard Hube
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Department of Microbial Pathogenicity, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, and Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
33
|
Golabek AA, Dolzhanskaya N, Walus M, Wisniewski KE, Kida E. Prosegment of tripeptidyl peptidase I is a potent, slow-binding inhibitor of its cognate enzyme. J Biol Chem 2008; 283:16497-504. [PMID: 18411270 DOI: 10.1074/jbc.m800458200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.
Collapse
Affiliation(s)
- Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | |
Collapse
|
34
|
Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NPC. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure 2007; 15:545-52. [PMID: 17502100 DOI: 10.1016/j.str.2007.04.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) has been shown to be involved in the regulation of extracellular levels of the low-density lipoprotien receptor (LDLR). Although PCSK9 is a subtilase, it has not been shown to degrade the LDLR, and its LDLR-lowering mechanism remains uncertain. Here we report the crystal structure of human PCSK9 at 2.3 A resolution. PCSK9 has subtilisin-like pro- and catalytic domains, and the stable interaction between these domains prevents access to PCSK9's catalytic site. The C-terminal domain of PCSK9 has a novel protein fold and may mediate protein-protein interactions. The structure of PCSK9 provides insight into its biochemical characteristics and biological function.
Collapse
Affiliation(s)
- Derek E Piper
- Department of Molecular Structure, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tanaka SI, Matsumura H, Koga Y, Takano K, Kanaya S. Four New Crystal Structures of Tk-subtilisin in Unautoprocessed, Autoprocessed and Mature Forms: Insight into Structural Changes during Maturation. J Mol Biol 2007; 372:1055-1069. [PMID: 17706669 DOI: 10.1016/j.jmb.2007.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-subtilisin) is matured from Pro-Tk-subtilisin upon autoprocessing and degradation of the propeptide. The crystal structures of the autoprocessed and mature forms of Tk-subtilisin were determined at 1.89 A and 1.70 A resolution, respectively. Comparison of these structures with that of unautoprocessed Pro-Tk-subtilisin indicates that the structure of Tk-subtilisin is not seriously changed during maturation. However, one unique Ca(2+)-binding site (Ca-7) is identified in these structures. In addition, the N-terminal region of the mature domain (Gly70-Pro82), which binds tightly to the main body in the unautoprocessed form, is disordered and mostly truncated in the autoprocessed and mature forms, respectively. Interestingly, this site is formed also in the unautoprocessed form when its crystals are soaked with 10 mM CaCl(2), as revealed by the 1.87 A structure. Along with the formation of this site, the N-terminal region (Leu75-Thr80) is disordered, with the scissile peptide bond contacting with the active site. These results indicate that the calcium ion binds weakly to the Ca-7 site in the unautoprocessed form, but is trapped upon autoprocessing. We propose that the Ca-7 site is required to promote the autoprocessing reaction by stabilizing the autoprocessed form, in which the new N terminus of the mature domain is structurally disordered. Furthermore, the crystal structure of the Tk-propeptide:S324A-subtilisin complex, which was formed by the addition of separately expressed proteins, was determined at 1.65 A resolution. This structure is virtually identical with that of the autoprocessed form, indicating that the interaction between the two domains is highly intensive and specific.
Collapse
Affiliation(s)
- Shun-Ichi Tanaka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; CRESTO, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; CRESTO, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
Xu Q, Guo H, Wlodawer A, Guo H. The importance of dynamics in substrate-assisted catalysis and specificity. J Am Chem Soc 2007; 128:5994-5. [PMID: 16669642 PMCID: PMC2530918 DOI: 10.1021/ja058831y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The QM/MM MD and free energy simulations show that the dynamics involving a His residue at the P1 site of the substrate may play an important role in substrate-assisted catalysis and specificity for a serine-carboxyl peptidase.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology and Center of Excellence for Structural Biology, University of Tennessee, Knoxville, TN 37996
| | - Haobo Guo
- Department of Biochemistry and Cellular and Molecular Biology and Center of Excellence for Structural Biology, University of Tennessee, Knoxville, TN 37996
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology and Center of Excellence for Structural Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
37
|
Siezen RJ, Renckens B, Boekhorst J. Evolution of prokaryotic subtilases: genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins 2007; 67:681-94. [PMID: 17348030 DOI: 10.1002/prot.21290] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subtilisin-like serine proteases (subtilases) are a very diverse family of serine proteases with low sequence homology, often limited to regions surrounding the three catalytic residues. Starting with different Hidden Markov Models (HMM), based on sequence alignments around the catalytic residues of the S8 family (subtilisins) and S53 family (sedolisins), we iteratively searched all ORFs in the complete genomes of 313 eubacteria and archaea. In 164 genomes we identified a total of 567 ORFs with one or more of the conserved regions with a catalytic residue. The large majority of these contained all three regions around the "classical" catalytic residues of the S8 family (Asp-His-Ser), while 63 proteins were identified as S53 (sedolisin) family members (Glu-Asp-Ser). More than 30 proteins were found to belong to two novel subsets with other evolutionary variations in catalytic residues, and new HMMs were generated to search for them. In one subset the catalytic Asp is replaced by an equivalent Glu (i.e. Glu-His-Ser family). The other subset resembles sedolisins, but the conserved catalytic Asp is not located on the same helix as the nucleophile Glu, but rather on a beta-sheet strand in a topologically similar position, as suggested by homology modeling. The Prokaryotic Subtilase Database (www.cmbi.ru.nl/subtilases) provides access to all information on the identified subtilases, the conserved sequence regions, the proposed family subdivision, and the appropriate HMMs to search for them. Over 100 proteins were predicted to be subtilases for the first time by our improved searching methods, thereby improving genome annotation.
Collapse
Affiliation(s)
- Roland J Siezen
- Center for Molecular and Biomolecular Informatics, Radboud University, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
38
|
Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14:413-9. [PMID: 17435765 DOI: 10.1038/nsmb1235] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 03/16/2007] [Indexed: 02/07/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.
Collapse
|
39
|
Tanaka SI, Saito K, Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. Crystal Structure of Unautoprocessed Precursor of Subtilisin from a Hyperthermophilic Archaeon. J Biol Chem 2007; 282:8246-55. [PMID: 17237225 DOI: 10.1074/jbc.m610137200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of an active site mutant of pro-Tk-subtilisin (pro-S324A) from the hyperthermophilic archaeon Thermococcus kodakaraensis was determined at 2.3 A resolution. The overall structure of this protein is similar to those of bacterial subtilisin-propeptide complexes, except that the peptide bond linking the propeptide and mature domain contacts with the active site, and the mature domain contains six Ca2+ binding sites. The Ca-1 site is conserved in bacterial subtilisins but is formed prior to autoprocessing, unlike the corresponding sites of bacterial subtilisins. All other Ca2+-binding sites are unique in the pro-S324A structure and are located at the surface loops. Four of them apparently contribute to the stability of the central alphabetaalpha substructure of the mature domain. The CD spectra, 1-anilino-8-naphthalenesulfonic acid fluorescence spectra, and sensitivities to chymotryptic digestion of this protein indicate that the conformation of pro-S324A is changed from an unstable molten globule-like structure to a stable native one upon Ca2+ binding. Another active site mutant, pro-S324C, was shown to be autoprocessed to form a propeptide-mature domain complex in the presence of Ca2+. The CD spectra of this protein indicate that the structure of pro-S324C is changed upon Ca2+ binding like pro-S324A but is not seriously changed upon subsequent autoprocessing. These results suggest that the maturation process of Tk-subtilisin is different from that of bacterial subtilisins in terms of the requirement of Ca2+ for folding of the mature domain and completion of the folding process prior to autoprocessing.
Collapse
Affiliation(s)
- Shun-ichi Tanaka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Xu Q, Guo HB, Wlodawer A, Nakayama T, Guo H. The QM/MM molecular dynamics and free energy simulations of the acylation reaction catalyzed by the serine-carboxyl peptidase kumamolisin-As. Biochemistry 2007; 46:3784-92. [PMID: 17326662 PMCID: PMC2533263 DOI: 10.1021/bi061737p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations are performed to study the acylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism and the origin of substrate specificity. It is demonstrated that the nucleophilic attack by the serine residue on the substrate may not be the rate-limiting step for the acylation of the GPH*FF substrate. The present study also confirms the earlier suggestions that Asp164 acts as a general acid during the catalysis and that the electrostatic oxyanion hole interactions may not be sufficient to lead a stable tetrahedral intermediate along the reaction pathway. Moreover, Asp164 is found to act as a general base during the formation of the acyl-enzyme from the tetrahedral intermediate. The role of dynamic substrate assisted catalysis (DSAC) involving His at the P1 site of the substrate is examined for the acylation reaction. It is demonstrated that the bond-breaking and -making events at each stage of the reaction trigger a change of the position for the His side chain and lead to the formation of the alternative hydrogen bonds. The back and forth movements of the His side chain between the C=O group of Pro at P2 and Odelta2 of Asp164 in a ping-pong-like mechanism and the formation of the alternative hydrogen bonds effectively lower the free energy barriers for both the nucleophilic attack and the acyl-enzyme formation and may therefore contribute to the relatively high activity of kumamolisin-As toward the substrates with His at the P1 site.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Sendai 980-8579, Japan
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- To whom correspondence should be addressed. E-mail: . Telephone: (865)974-3610. Fax: (865)974-6306
| |
Collapse
|
41
|
Okubo A, Li M, Ashida M, Oyama H, Gustchina A, Oda K, Dunn BM, Wlodawer A, Nakayama T. Processing, catalytic activity and crystal structures of kumamolisin-As with an engineered active site. FEBS J 2006; 273:2563-76. [PMID: 16704427 DOI: 10.1111/j.1742-4658.2006.05266.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kumamolisin-As is an acid collagenase with a subtilisin-like fold. Its active site contains a unique catalytic triad, Ser278-Glu78-Asp82, and a putative transition-state stabilizing residue, Asp164. In this study, the mutants D164N and E78H/D164N were engineered in order to replace parts of the catalytic machinery of kumamolisin-As with the residues found in the equivalent positions in subtilisin. Unlike the wild-type and D164N proenzymes, which undergo instantaneous processing to produce their 37-kDa mature forms, the expressed E78H/D164N proenzyme exists as an equilibrated mixture of the nicked and intact forms of the precursor. X-ray crystallographic structures of the mature forms of the two mutants showed that, in each of them, the catalytic Ser278 makes direct hydrogen bonds with the side chain of Asn164. In addition, His78 of the double mutant is distant from Ser278 and Asp82, and the catalytic triad no longer exists. Consistent with these structural alterations around the active site, these mutants showed only low catalytic activity (relative k(cat) at pH 4.0 1.3% for D164N and 0.0001% for E78H/D164N). pH-dependent kinetic studies showed that the single D164N substitution did not significantly alter the logk(cat) vs. pH and log(k(cat)/Km) vs. pH profiles of the enzyme. In contrast, the double mutation resulted in a dramatic switch of the logk(cat) vs. pH profile to one that was consistent with catalysis by means of the Ser278-His78 dyad and Asn164, which may also account for the observed ligation/cleavage equilibrium of the precursor of E78H/D164N. These results corroborate the mechanistic importance of the glutamate-mediated catalytic triad and oxyanion-stabilizing aspartic acid residue for low-pH peptidase activity of the enzyme.
Collapse
Affiliation(s)
- Ayumi Okubo
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bravaya K, Bochenkova A, Grigorenko B, Topol I, Burt S, Nemukhin A. Molecular Modeling the Reaction Mechanism of Serine-Carboxyl Peptidases. J Chem Theory Comput 2006; 2:1168-75. [DOI: 10.1021/ct6000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ksenia Bravaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| | - Anastasia Bochenkova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| | - Bella Grigorenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| | - Igor Topol
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| | - Stanley Burt
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| | - Alexander Nemukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation, Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119997, Russian Federation
| |
Collapse
|
43
|
Feliciangeli SF, Thomas L, Scott GK, Subbian E, Hung CH, Molloy SS, Jean F, Shinde U, Thomas G. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J Biol Chem 2006; 281:16108-16. [PMID: 16601116 PMCID: PMC4293020 DOI: 10.1074/jbc.m600760200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding and activation of furin occur through two pH- and compartment-specific autoproteolytic steps. In the endoplasmic reticulum (ER), profurin folds under the guidance of its prodomain and undergoes an autoproteolytic excision at the consensus furin site Arg-Thr-Lys-Arg107/ generating an enzymatically masked furin-propeptide complex competent for transport to late secretory compartments. In the mildly acidic environment of the trans-Golgi network/endosomal system, the bound propeptide is cleaved at the internal site 69HRGVTKR75/, unmasking active furin capable of cleaving substrates in trans. Here, by using cellular, biochemical, and modeling studies, we demonstrate that the conserved His69 is a pH sensor that regulates the compartment-specific cleavages of the propeptide. In the ER, unprotonated His69 stabilizes a solvent-accessible hydrophobic pocket necessary for autoproteolytic excision at Arg107. Profurin molecules unable to form the hydrophobic pocket, and hence, the furin-propeptide complex, are restricted to the ER by a PACS-2- and COPI-dependent mechanism. Once exposed to the acidic pH of the late secretory pathway, protonated His69 disrupts the hydrophobic pocket, resulting in exposure and cleavage of the internal cleavage site at Arg75 to unmask the enzyme. Together, our data explain the pH-regulated activation of furin and how this His-dependent regulatory mechanism is a model for other proteins.
Collapse
Affiliation(s)
| | - Laurel Thomas
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Gregory K. Scott
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Ezhilkani Subbian
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Chien-Hui Hung
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Sean S. Molloy
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gary Thomas
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
- To whom correspondence should be addressed: Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239. Tel.: 503-494-6955; Fax: 503-494-1218;
| |
Collapse
|
44
|
Shiryaev S, Ratnikov B, Chekanov A, Sikora S, Rozanov D, Godzik A, Wang J, Smith J, Huang Z, Lindberg I, Samuel M, Diamond M, Strongin A. Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J 2006; 393:503-11. [PMID: 16229682 PMCID: PMC1360700 DOI: 10.1042/bj20051374] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne WNV (West Nile virus) is an emerging global threat. The NS3 proteinase, which is essential for the proteolytic processing of the viral polyprotein precursor, is a promising drug target. We have isolated and biochemically characterized the recombinant, highly active NS3 proteinase. We have determined that the NS3 proteinase functions in a manner that is distantly similar to furin in cleaving the peptide and protein substrates. We determined that aprotinin and D-arginine-based 9-12-mer peptides are potent inhibitors of WNV NS3 with K(i) values of 26 nM and 1 nM respectively. Consistent with the essential role of NS3 activity in the life cycle of WNV and with the sensitivity of NS3 activity to the D-arginine-based peptides, we showed that nona-D-Arg-NH2 reduced WNV infection in primary neurons. We have also shown that myelin basic protein, a deficiency of which is linked to neurological abnormalities of the brain, is sensitive to NS3 proteolysis in vitro and therefore this protein represents a convenient test substrate for the studies of NS3. A three-dimensional model of WNV NS3 that we created may provide a structural guidance and a rationale for the subsequent design of fine-tuned inhibitors. Overall, our findings represent a foundation for in-depth mechanistic and structural studies as well as for the design of novel and efficient inhibitors of WNV NS3.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Godzik
- *The Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Jun Wang
- *The Burnham Institute, La Jolla, CA 92037, U.S.A
| | | | - Ziwei Huang
- *The Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Iris Lindberg
- †Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Melanie A. Samuel
- ‡Departments of Medicine and Molecular Microbiology, Washington University Medical School, St. Louis, MO 63110, U.S.A
| | - Michael S. Diamond
- ‡Departments of Medicine and Molecular Microbiology, Washington University Medical School, St. Louis, MO 63110, U.S.A
| | - Alex Y. Strongin
- *The Burnham Institute, La Jolla, CA 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
45
|
Fujimoto Y, Ikeuchi H, Tada T, Oyama H, Oda K, Kunugi S. Synergetic effects of pressure and chemical denaturant on protein unfolding: stability of a serine-type carboxyl protease, kumamolisin. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:364-71. [PMID: 16478682 DOI: 10.1016/j.bbapap.2005.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/10/2005] [Accepted: 12/13/2005] [Indexed: 11/25/2022]
Abstract
Kumamolisin, a serine carboxyl proteinase, is very stable and hardly denatured by single perturbation of a chemical denaturant (urea), pressure (<500 MPa) or temperature (<65 degrees C). In order to investigate the cooperative effects of these three denaturing agents, DSC, CD, intrinsic fluorescence, and fourth derivative UV absorbance were measured under various conditions. By application of pressure to kumamolisin in 8 M urea solution, substantial red-shift in the center of fluorescence emission spectral mass was observed, and the corresponding blue-shift was observed for two major peaks in fourth derivative UV absorbance, under the similar urea-containing conditions. The denaturation curves were analyzed on the basis of a simple two-state model in order to obtain thermodynamic parameters (DeltaV, DeltaG, and m values), and the combined effects of denaturing agents are discussed, with the special interest in the large cavity and neighboring Trp residue in kumamolisin.
Collapse
Affiliation(s)
- Yasunori Fujimoto
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ. Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 2005; 1:241-51. [PMID: 16322767 PMCID: PMC1291349 DOI: 10.1371/journal.ppat.0010029] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/12/2005] [Indexed: 11/19/2022] Open
Abstract
Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface "sheddase," but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase). We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite.
Collapse
Affiliation(s)
- Philippa K Harris
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Sharon Yeoh
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Anton R Dluzewski
- Department of Immunobiology, Guy's, King's and St. Thomas' Hospitals School of Medicine, London, United Kingdom
- Wolfson Centre, Guy's, King's and St. Thomas' Hospitals School of Biomedical and Life Sciences, London, United Kingdom
| | - Rebecca A O'Donnell
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | | | - Fiona Hackett
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Lawrence H Bannister
- Wolfson Centre, Guy's, King's and St. Thomas' Hospitals School of Biomedical and Life Sciences, London, United Kingdom
| | - Graham H Mitchell
- Department of Immunobiology, Guy's, King's and St. Thomas' Hospitals School of Medicine, London, United Kingdom
| | - Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Guo H, Wlodawer A, Guo H. A General Acid−Base Mechanism for the Stabilization of a Tetrahedral Adduct in a Serine−Carboxyl Peptidase: A Computational Study. J Am Chem Soc 2005; 127:15662-3. [PMID: 16277482 DOI: 10.1021/ja0520565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The QM/MM MD and free energy simulations show that serine-carboxyl peptidases (sedolisins) may stabilize the tetrahedral intermediates and tetrahedral adducts primarily through a general acid-base mechanism involving Asp (Asp164 for kumamolisin-As) rather than the oxyanion-hole interactions as in the cases of serine proteases.
Collapse
Affiliation(s)
- Haobo Guo
- Department of Biochemistry and Cellular and Molecular Biology and Center of Excellence for Structural Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
48
|
Oyama H, Fujisawa T, Suzuki T, Dunn BM, Wlodawer A, Oda K. Catalytic Residues and Substrate Specificity of Recombinant Human Tripeptidyl Peptidase I (CLN2). ACTA ACUST UNITED AC 2005; 138:127-34. [PMID: 16091586 DOI: 10.1093/jb/mvi110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tripeptidyl peptidase I (TTP-I), also known as CLN2, a member of the family of serine-carboxyl proteinases (S53), plays a crucial role in lysosomal protein degradation and a deficiency in this enzyme leads to fatal neurodegenerative disease. Recombinant human TPP-I and its mutants were analyzed in order to clarify the biochemical role of TPP-I and its mechanism of activity. Ser280, Glu77, and Asp81 were identified as the catalytic residues based on mutational analyses, inhibition studies, and sequence similarities with other family members. TPP-I hydrolyzed most effectively the peptide Ala-Arg-Phe*Nph-Arg-Leu (*, cleavage site) (k(cat)/K(m) = 2.94 microM(-1).s(-1)). The k(cat)/K(m) value for this substrate was 40 times higher than that for Ala-Ala-Phe-MCA. Coupled with other data, these results strongly suggest that the substrate-binding cleft of TPP-I is composed of only six subsites (S(3)-S(3)'). TPP-I prefers bulky and hydrophobic amino acid residues at the P(1) position and Ala, Arg, or Asp at the P(2) position. Hydrophilic interactions at the S(2) subsite are necessary for TPP-I, and this feature is unique among serine-carboxyl proteinases. TPP-I might have evolved from an ancestral gene in order to cleave, in cooperation with cathepsins, useless proteins in the lysosomal compartment.
Collapse
Affiliation(s)
- Hiroshi Oyama
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku
| | | | | | | | | | | |
Collapse
|
49
|
Henrich S, Lindberg I, Bode W, Than ME. Proprotein Convertase Models based on the Crystal Structures of Furin and Kexin: Explanation of their Specificity. J Mol Biol 2005; 345:211-27. [PMID: 15571716 DOI: 10.1016/j.jmb.2004.10.050] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/14/2004] [Accepted: 10/15/2004] [Indexed: 11/17/2022]
Abstract
In eukaryotes, many secreted proteins and peptide hormones are excised from larger precursors by calcium-dependent serine proteinases, the proprotein/prohormone convertases (PCs). These PCs cleave their protein substrates very specifically following multiple basic residues. The seven mammalian PCs and their yeast orthologue kexin are multi-domain proteinases consisting of a subtilisin-related catalytic domain, a conserved P-domain and a variable, often cysteine-rich domain, which in some PCs is followed by an additional C-terminal trans-membrane domain and a short cytoplasmic domain. The recently published crystal structures of the soluble mouse furin and yeast kexin ectodomains have revealed the relative arrangement of catalytic and P domains, the exact domain fold and the detailed architecture of the substrate binding clefts. Based on these experimental structures, we now have modelled the structures of the other human/mouse PCs. According to topology and to structure-based sequence comparisons, these other PCs closely resemble furin, with PC4, PACE4 and PC5/6 being more similar, and PC1/3, PC2 and PC7 being less similar to furin. Except for PC1 and PC2, this order of similarity is valid for the catalytic as well as for the P domains, and is almost reversed using kexin as a reference molecule. A similar order results from the number and clustering of negative charges lining the non-prime subsites, explaining the gradually decreasing requirement for basic residues N-terminal to substrate cleavage sites. The preference of the different PCs for distinct substrates seems to be governed by overall charge compensation and matching of the detailed charge distribution pattern.
Collapse
Affiliation(s)
- Stefan Henrich
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
50
|
|