1
|
Zhuo C, Zeng C, Liu H, Wang H, Peng Y, Zhao Y. Advances and Mechanisms of RNA-Ligand Interaction Predictions. Life (Basel) 2025; 15:104. [PMID: 39860045 PMCID: PMC11767038 DOI: 10.3390/life15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Christopher MW, Ericson AC, Klug AC, Dinglasan RR, Prentice BM, Garrett TJ. Divergent Metabolic Fates of Aromatic Amino Acid-Derived Isomers: Insights from Ex Vivo Metabolomics and HDX-HRMS/MS-Based Resolution of Tautomers. Anal Chem 2024; 96:16917-16925. [PMID: 39374072 DOI: 10.1021/acs.analchem.4c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Tautomers are one of the many types of isomers, and differences in tautomeric structures confer altered chemical and biological properties. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) ex vivo metabolomics, we investigate, in whole blood, the divergent metabolism of enol and keto forms of indole-3-pyruvate (IPyA), a tautomeric product of aromatic amino acid metabolism. Two new compounds resulting from IPyA metabolism were discovered, 3-(1H-indol-3-yl)-2,3-dioxopropanoic acid or "indole-3-oxopyruvic acid" and glutathionyl-indole pyruvate (GSHIPyA), which were characterized via ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). Computational calculations support the hypothesis that GSHIPyA forms specifically through the enol form of IPyA. GSHIPyA is also hypothesized to be tautomeric, and a hydrogen-deuterium exchange-high-resolution tandem mass spectrometry (HDX-HRMS/MS) approach is developed to prove the presence of an enol and keto tautomer. HDX of GSHIPyA labels the keto form with an additional deuterium, relative to the enol form. HRMS/MS of the labeled isomers is employed to leverage the relationship of resolving power scaling inversely with the square root of m/z, for Orbitrap mass analyzers. HRMS/MS yields a smaller-molecular-weight deuterated tautomeric product ion, reducing the analyte ion m/z and thus lowering the resolving power necessary to separate the deuterated keto tautomer product ion from the [13]C product ion.
Collapse
Affiliation(s)
- Michael W Christopher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aiden C Ericson
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander C Klug
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rhoel R Dinglasan
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, Gainesville, Florida 32608, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida 32608, United States
| |
Collapse
|
3
|
Marton Menendez A, Nesbitt DJ. Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches. Biophys J 2024; 123:3331-3345. [PMID: 39091026 PMCID: PMC11480769 DOI: 10.1016/j.bpj.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
T. maritima and B. subtilis are bacteria that inhabit significantly different thermal environments, ∼80 vs. ∼40°C, yet employ similar lysine riboswitches to aid in the transcriptional regulation of the genes involved in the synthesis and transport of amino acids. Despite notable differences in G-C basepair frequency and primary sequence, the aptamer moieties of each riboswitch have striking similarities in tertiary structure, with several conserved motifs and long-range interactions. To explore genetic adaptation in extreme thermal environments, we compare the kinetic and thermodynamic behaviors in T. maritima and B. subtilis lysine riboswitches via single-molecule fluorescence resonance energy transfer analysis. Kinetic studies reveal that riboswitch folding rates increase with lysine concentration while the unfolding rates are independent of lysine. This indicates that both riboswitches bind lysine through an induced-fit ("bind-then-fold") mechanism, with lysine binding necessarily preceding conformational changes. Temperature-dependent van't Hoff studies reveal qualitative similarities in the thermodynamic landscapes for both riboswitches in which progression from the open, lysine-unbound state to both transition states (‡) and closed, lysine-bound conformations is enthalpically favored yet entropically penalized, with comparisons of enthalpic and entropic contributions extrapolated to a common [K+] = 100 mM in quantitative agreement. Finally, temperature-dependent Eyring analysis reveals the TMA and BSU riboswitches to have remarkably similar folding/unfolding rate constants when extrapolated to their respective (40 and 80°C) environmental temperatures. Such behavior suggests a shared strategy for ligand binding and aptamer conformational change in the two riboswitches, based on thermodynamic adaptations in number of G-C basepairs and/or modifications in tertiary structure that stabilize the ligand-unbound conformation to achieve biocompetence under both hyperthermophilic and mesothermophilic conditions.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado.
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado; Department of Chemistry, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
4
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
6
|
Abstract
Riboswitches are conserved functional domains in mRNA that almost exclusively exist in bacteria. They regulate the biosynthesis and transport of amino acids and essential metabolites such as coenzymes, nucleobases, and their derivatives by specifically binding small molecules. Due to their ability to precisely discriminate between different cognate molecules as well as their common existence in bacteria, riboswitches have become potential antibacterial drug targets that could deliver urgently needed antibiotics with novel mechanisms of action. In this work, we report the recognition mechanisms of four oxidization products (XAN, AZA, UAC, and HPA) generated during purine degradation by an RNA motif termed the NMT1 riboswitch. Specifically, we investigated the physical interactions between the riboswitch and the oxidized metabolites by computing the changes in the free energy on mutating key nucleobases in the ligand binding pocket of the riboswitch. We discovered that the electrostatic interactions are central to ligand discrimination by this riboswitch. The relative binding free energies of the mutations further indicated that some of the mutations can also strengthen the binding affinities of the ligands (AZA, UAC, and HPA). These mechanistic details are also potentially relevant in the design of novel compounds targeting riboswitches.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
7
|
Werner A. Translational and rotational diffusion of short ribonucleic acids. Biochem Biophys Res Commun 2023; 650:17-20. [PMID: 36764208 DOI: 10.1016/j.bbrc.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Inevitable precondition for ribonucleic acids to regulate gene expression and to perform gene editing is diffusion. Free three-dimensional translational diffusion velocity of RNA of up to 200 nucleotides could be predicted with high accuracy by the empirical model D = 4.58 10-10 N-0.39 m2s-1. Furthermore, the biological function of ribonucleic acids is determined by rotational diffusion. In the presented work, an empirical model is derived applying atom-level shell-modeling of electron density maps, Dr = 1.62 109 N-1.20 s-1, to predict the rotational diffusion coefficient of short ribonucleic acids based on the polymer size.
Collapse
Affiliation(s)
- Arne Werner
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Mathematics, Computer Science and Natural Science, Hamburg University, Germany.
| |
Collapse
|
8
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
9
|
Abstract
For more than three decades, RNA has been known to be a relevant and attractive macromolecule to target but figuring out which RNA should be targeted and how remains challenging. Recent years have seen the confluence of approaches for screening, drug optimization, and target validation that have led to the approval of a few RNA-targeting therapeutics for clinical applications. This focused perspective aims to highlight - but not exhaustively review - key factors accounting for these successes while pointing at crucial aspects worth considering for further breakthroughs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
10
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
11
|
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch. Commun Biol 2022; 5:1120. [PMID: 36273041 PMCID: PMC9588036 DOI: 10.1038/s42003-022-04096-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Riboswitches normally regulate gene expression through structural changes in response to the specific binding of cellular metabolites or metal ions. Taking add adenine riboswitch as an example, we explore the influences of metal ions (especially for K+ and Mg2+ ions) on the structure and dynamics of riboswitch aptamer (with and without ligand) by using molecular dynamic (MD) simulations. Our results show that a two-state transition marked by the structural deformation at the connection of J12 and P1 (CJ12-P1) is not only related to the binding of cognate ligands, but also strongly coupled with the change of metal ion environments. Moreover, the deformation of the structure at CJ12-P1 can be transmitted to P1 directly connected to the expression platform in multiple ways, which will affect the structure and stability of P1 to varying degrees, and finally change the regulation state of this riboswitch. Molecular dynamic simulations are employed to assess the influence of metal ions on riboswitch structure and dynamics, suggesting a conformational control of riboswitch aptamers by metal ions before ligand binding.
Collapse
|
12
|
Kognole AA, Hazel A, MacKerell AD. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. J Chem Theory Comput 2022; 18:5672-5691. [PMID: 35913731 PMCID: PMC9474704 DOI: 10.1021/acs.jctc.2c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA. Extensions to the method include an enhanced oscillating excess chemical potential protocol for the grand canonical Monte Carlo calculations and individual simulations of the neutral and charged solutes from which the SILCS functional group affinity maps (FragMaps) are calculated for subsequent binding site identification and docking calculations. The method is developed and evaluated against seven RNA targets and their reported small molecule ligands. SILCS-RNA provides a detailed characterization of the functional group affinity pattern in the small molecule binding sites, recapitulating the types of functional groups present in the ligands. The developed method is also shown to be useful for identification of new potential binding sites and identifying ligand moieties that contribute to binding, granular information that can facilitate ligand design. However, limitations in the method are evident including the ability to map the regions of binding sites occupied by ligand phosphate moieties and to fully account for the wide range of conformational heterogeneity in RNA associated with binding of different small molecules, emphasizing inherent challenges associated with applying computer-aided drug design methods to RNA. While limitations are present, the current study indicates how the SILCS-RNA approach may enhance drug discovery efforts targeting RNAs with small molecules.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Datar A, Paithankar H, Deb P, Chugh J, Bagchi S, Mukherjee A, Hazra A. Water-Controlled Keto-Enol Tautomerization of a Prebiotic Nucleobase. J Phys Chem B 2022; 126:5735-5743. [PMID: 35895006 DOI: 10.1021/acs.jpcb.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barbituric acid is believed to be a proto-RNA nucleobase that was used for biological information transfer on prebiotic earth before DNA and RNA in their present forms evolved. Nucleobases have various tautomeric forms and the relative stability of these forms is critical to their biological function. It has been shown that barbituric acid has a tri-keto form in the gas phase and an enol form in the solid state. However, its dominant tautomeric form in aqueous medium that is most relevant for biology has been investigated only to a limited extent and the findings are inconclusive. We have used multiple approaches, namely, molecular dynamics, quantum chemistry, NMR, and IR spectroscopy to determine the most stable tautomer of barbituric acid in solution. We find a delicate balance in the stability of the two tautomers, tri-keto and enol, which is tipped toward the enol as the extent of solvation by water increases.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | | | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | |
Collapse
|
14
|
Dhahri M, Khan FA, Emwas AH, Alnoman RB, Jaremko M, Rezki N, Aouad MR, Hagar M. Synthesis, DFT Molecular Geometry and Anticancer Activity of Symmetrical 2,2'-(2-Oxo-1 H-benzo[ d]imidazole-1,3(2 H)-diyl) Diacetate and Its Arylideneacetohydrazide Derivatives. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2544. [PMID: 35407875 PMCID: PMC8999490 DOI: 10.3390/ma15072544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022]
Abstract
To identify new candidate anticancer compounds, we here report the synthesis of benzimidazole derivatives: diethyl 2,2'-(2-oxo-1H-benzo[d]imidazole-1,3(2H)-diyl) diacetate and its arylideneacetohydrazide derivatives, using ultrasonic irradiation and conventional heating. The compounds were confirmed by Nuclear magnetic resonance (NMR) (JEOL, Tokyo, Japan) and Fourier transform infrared spectroscopy (FTIR) spectroscopy (Thermoscientific, Waltham, MA, USA). The molecular structure and electronic properties of the studied compounds were predicted for the acetohydrazide hydrazones. These compounds exist as a mixture of configurational and conformational isomerism as well as amido-amidic acid tautomerism. The NMR spectral data proved the predominance of syn-E amido isomers. In addition, density functional theory (DFT) predicted stability in the gas phase and showed that syn-E amido isomers are the most stable in the presence of an electron donating group, while the anti-isomer is the most stable in the presence of electron-attracting substituents. The anticancer activity of these synthetic compounds 6a, 6b and 6c towards both colon cancer (HCT-116) and cervical cancer (HeLa) cells was examined by MTT assay and DAPI staining. The MTT assay revealed a strong antiproliferative effect against the cancer cells at low concentrations, and interestingly, no significant inhibitory action against the non-cancerous cell line, HEK-293. The IC50 values for HCT-116 were 29.5 + 4.53 µM, 57.9 + 7.01 µM and 40.6 + 5.42 µM for 6a, 6b, and 6c, respectively. The IC50 values for HeLa cells were 57.1 + 6.7 µM, 65.6 + 6.63 µM and 33.8 + 3.54 µM for 6a, 6b, and 6c, respectively. DAPI staining revealed that these synthesized benzimidazole derivatives caused apoptotic cell death in both the colon and cervical cancer cells. Thus, these synthetic compounds demonstrate encouraging anticancer activity as well as being safe for normal human cells, making them attractive candidates as anticancer agents.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Rua B. Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, Yanbu 46423, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (N.R.); (M.R.A.)
| | - Mohamed Reda Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (N.R.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, Yanbu 46423, Saudi Arabia;
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
15
|
Structure and mechanism of the methyltransferase ribozyme MTR1. Nat Chem Biol 2022; 18:547-555. [PMID: 35301481 PMCID: PMC7612680 DOI: 10.1038/s41589-022-00976-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
RNA-catalysed RNA methylation was recently shown to be part of the catalytic repertoire of ribozymes. The methyltransferase ribozyme MTR1 catalyses the site-specific synthesis of 1-methyladenosine (m1A) in RNA, using O6-methylguanine (m6G) as methyl group donor. Here we report the crystal structure of MTR1 at a resolution of 2.8 Å, which reveals a guanine binding site reminiscent of natural guanine riboswitches. The structure represents the postcatalytic state of a split ribozyme in complex with the m1A-containing RNA product and the demethylated cofactor guanine. The structural data suggest the mechanistic involvement of a protonated cytidine in the methyl transfer reaction. A synergistic effect of two 2'-O-methylated ribose residues in the active site results in accelerated methyl group transfer. Supported by these results, it seems plausible that modified nucleotides may have enhanced early RNA catalysis and that metabolite-binding riboswitches may resemble inactivated ribozymes that have lost their catalytic activity during evolution.
Collapse
|
16
|
Fedeles BI, Li D, Singh V. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Front Mol Biosci 2022; 8:823253. [PMID: 35145998 PMCID: PMC8822119 DOI: 10.3389/fmolb.2021.823253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
DNA (2'-deoxyribonucleic acid) and RNA (ribonucleic acid) play diverse functional roles in biology and disease. Despite being comprised primarily of only four cognate nucleobases, nucleic acids can adopt complex three-dimensional structures, and RNA in particular, can catalyze biochemical reactions to regulate a wide variety of biological processes. Such chemical versatility is due in part to the phenomenon of nucleobase tautomerism, whereby the bases can adopt multiple, yet distinct isomeric forms, known as tautomers. For nucleobases, tautomers refer to structural isomers that differ from one another by the position of protons. By altering the position of protons on nucleobases, many of which play critical roles for hydrogen bonding and base pairing interactions, tautomerism has profound effects on the biochemical processes involving nucleic acids. For example, the transient formation of minor tautomers during replication could generate spontaneous mutations. These mutations could arise from the stabilization of mismatches, in the active site of polymerases, in conformations involving minor tautomers that are indistinguishable from canonical base pairs. In this review, we discuss the evidence for tautomerism in DNA, and its consequences to the fidelity of DNA replication. Also reviewed are RNA systems, such as the riboswitches and self-cleaving ribozymes, in which tautomerism plays a functional role in ligand recognition and catalysis, respectively. We also discuss tautomeric nucleoside analogs that are efficacious as antiviral drug candidates such as molnupiravir for coronaviruses and KP1212 for HIV. The antiviral efficacy of these analogs is due, in part, to their ability to exist in multiple tautomeric forms and induce mutations in the replicating viral genomes. From a technical standpoint, minor tautomers of nucleobases are challenging to identify directly because they are rare and interconvert on a fast, millisecond to nanosecond, time scale. Nevertheless, many approaches including biochemical, structural, computational and spectroscopic methods have been developed to study tautomeric dynamics in RNA and DNA systems, and in antiviral nucleoside analogs. An overview of these methods and their applications is included here.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Chemistry and Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Deyu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Vipender Singh
- Department of Biochemistry and Biophysics, Novartis Institute of Biomedical Research, Cambridge, MA, United States
| |
Collapse
|
17
|
Marton Menendez A, Nesbitt DJ. Lysine-Dependent Entropy Effects in the B. subtilis Lysine Riboswitch: Insights from Single-Molecule Thermodynamic Studies. J Phys Chem B 2021; 126:69-79. [PMID: 34958583 DOI: 10.1021/acs.jpcb.1c07833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboswitches play an important role in RNA-based sensing/gene regulation control for many bacteria. In particular, the accessibility of multiple conformational states at physiological temperatures allows riboswitches to selectively bind a cognate ligand in the aptamer domain, which triggers secondary structural changes in the expression platform, and thereby "switching" between on or off transcriptional or translational states for the downstream RNA. The present work exploits temperature-controlled, single-molecule total internal reflection fluorescence (TIRF) microscopy to study the thermodynamic landscape of such ligand binding/folding processes, specifically for the Bacillus subtilis lysine riboswitch. The results confirm that the riboswitch folds via an induced-fit (IF) mechanism, in which cognate lysine ligand first binds to the riboswitch before structural rearrangement takes place. The transition state to folding is found to be enthalpically favored (ΔHfold‡ < 0), yet with a free-energy barrier that is predominantly entropic (-TΔSfold‡ > 0), which results in folding (unfolding) rate constants strongly dependent (independent) of lysine concentration. Analysis of the single-molecule kinetic "trajectories" reveals this rate constant dependence of kfold on lysine to be predominantly entropic in nature, with the additional lysine conferring preferential advantage to the folding process by the presence of ligands correctly oriented with respect to the riboswitch platform. By way of contrast, van't Hoff analysis reveals enthalpic contributions to the overall folding thermodynamics (ΔH0) to be surprisingly constant and robustly independent of lysine concentration. The results demonstrate the crucial role of hydrogen bonding between the ligand and riboswitch platform but with only a relatively modest fraction (45%) of the overall enthalpy change needed to access the transition state and initiate transcriptional switching.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Xu X, Egger M, Chen H, Bartosik K, Micura R, Ren A. Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. Nucleic Acids Res 2021; 49:7139-7153. [PMID: 34125892 PMCID: PMC8266621 DOI: 10.1093/nar/gkab486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Riboswitches are conserved functional domains in mRNA that mostly exist in bacteria. They regulate gene expression in response to varying concentrations of metabolites or metal ions. Recently, the NMT1 RNA motif has been identified to selectively bind xanthine and uric acid, respectively, both are involved in the metabolic pathway of purine degradation. Here, we report a crystal structure of this RNA bound to xanthine. Overall, the riboswitch exhibits a rod-like, continuously stacked fold composed of three stems and two internal junctions. The binding-pocket is determined by the highly conserved junctional sequence J1 between stem P1 and P2a, and engages a long-distance Watson-Crick base pair to junction J2. Xanthine inserts between a G-U pair from the major groove side and is sandwiched between base triples. Strikingly, a Mg2+ ion is inner-sphere coordinated to O6 of xanthine and a non-bridging oxygen of a backbone phosphate. Two further hydrated Mg2+ ions participate in extensive interactions between xanthine and the pocket. Our structure model is verified by ligand binding analysis to selected riboswitch mutants using isothermal titration calorimetry, and by fluorescence spectroscopic analysis of RNA folding using 2-aminopurine-modified variants. Together, our study highlights the principles of metal ion-mediated ligand recognition by the xanthine riboswitch.
Collapse
Affiliation(s)
- Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
19
|
Flemmich L, Heel S, Moreno S, Breuker K, Micura R. A natural riboswitch scaffold with self-methylation activity. Nat Commun 2021; 12:3877. [PMID: 34162884 PMCID: PMC8222354 DOI: 10.1038/s41467-021-24193-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
Methylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions. Here, we disclose the thus far unrecognized direct link between a present-day riboswitch and its inherent reactivity for site-specific methylation. The key is O6-methyl pre-queuosine (m6preQ1), a potentially prebiotic nucleobase which is recognized by the native aptamer of a preQ1 class I riboswitch. Upon binding, the transfer of the ligand's methyl group to a specific cytidine occurs, installing 3-methylcytidine (m3C) in the RNA pocket under release of pre-queuosine (preQ1). Our finding suggests that nucleic acid-mediated methylation is an ancient mechanism that has offered an early path for RNA epigenetics prior to the evolution of protein methyltransferases. Furthermore, our findings may pave the way for the development of riboswitch-descending methylation tools based on rational design as a powerful alternative to in vitro selection approaches.
Collapse
Affiliation(s)
- Laurin Flemmich
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Sarah Heel
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Sarah Moreno
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Kathrin Breuker
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria.
| |
Collapse
|
20
|
Multiscale Modeling of Wobble to Watson-Crick-Like Guanine-Uracil Tautomerization Pathways in RNA. Int J Mol Sci 2021; 22:ijms22115411. [PMID: 34063755 PMCID: PMC8196565 DOI: 10.3390/ijms22115411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/02/2023] Open
Abstract
Energetically unfavorable Watson–Crick (WC)-like tautomeric forms of nucleobases are known to introduce spontaneous mutations, and contribute to replication, transcription, and translation errors. Recent NMR relaxation dispersion techniques were able to show that wobble (w) G•U mispair exists in equilibrium with the short-lived, low-population WC-like enolic tautomers. Presently, we have investigated the wG•U → WC-like enolic reaction pathway using various theoretical methods: quantum mechanics (QM), molecular dynamics (MD), and combined quantum mechanics/molecular mechanics (QM/MM). The previous studies on QM gas phase calculations were inconsistent with experimental data. We have also explored the environmental effects on the reaction energies by adding explicit water. While the QM-profile clearly becomes endoergic in the presence of water, the QM/MM-profile remains consistently endoergic in the presence and absence of water. Hence, by including microsolvation and QM/MM calculations, the experimental data can be explained. For the G•Uenol→ Genol•U pathway, the latter appears to be energetically more favorable throughout all computational models. This study can be considered as a benchmark of various computational models of wG•U to WC-like tautomerization pathways with and without the environmental effects, and may contribute on further studies of other mispairs as well.
Collapse
|
21
|
Deaminated purine bypass by DNA polymerase η. Biochem J 2021; 478:1309-1313. [PMID: 33779688 PMCID: PMC8009656 DOI: 10.1042/bcj20200989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
A recent work by Jung and colleagues (Biochem J.477, 4797–4810) provides an explanation of how DNA polymerase η replicates through deaminated purine bases such as xanthine and hypoxanthine. This commentary discusses the crystal structures of the polymerase η complexes that implicate the role of tautomerism in the bypass of these DNA lesions.
Collapse
|
22
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
23
|
Feng Y, Huang SY. ITScore-NL: An Iterative Knowledge-Based Scoring Function for Nucleic Acid-Ligand Interactions. J Chem Inf Model 2020; 60:6698-6708. [PMID: 33291885 DOI: 10.1021/acs.jcim.0c00974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acid-ligand complexes underlie numerous cellular processes, such as gene function expression and regulation, in which their three-dimensional structures are important to understand their functions and thus to develop therapeutic interventions. Given the high cost and technical difficulties in experimental methods, computational methods such as molecular docking have been actively used to investigate nucleic acid-ligand interactions in which an accurate scoring function is crucial. However, because of the limited number of experimental nucleic acid-ligand binding data and structures, the scoring function development for nucleic acid-ligand interactions falls far behind that for protein-protein and protein-ligand interactions. Here, based on our statistical mechanics-based iterative approach, we have developed an iterative knowledge-based scoring function for nucleic acid-ligand interactions, named as ITScore-NL, by explicitly including stacking and electrostatic potentials. Our ITScore-NL scoring function was extensively evaluated for its ability in the binding mode and binding affinity predictions on three diverse test sets and compared with state-of-the-art scoring functions. Overall, ITScore-NL obtained significantly better performance than the other 12 scoring functions and predicted near-native poses with rmsd ≤ 1.5 Å for 71.43% of the cases when the top three binding modes were considered and a good correlation of R = 0.64 in binding affinity prediction on the large test set of 77 nucleic acid-ligand complexes. These results suggested the accuracy of ITScore-NL and the necessity of explicitly including stacking and electrostatic potentials.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
24
|
Scheitl CPM, Ghaem Maghami M, Lenz AK, Höbartner C. Site-specific RNA methylation by a methyltransferase ribozyme. Nature 2020; 587:663-667. [PMID: 33116304 PMCID: PMC7116789 DOI: 10.1038/s41586-020-2854-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification, including RNA methylation. Methylated nucleotides are among the evolutionarily most-conserved features of transfer (t)RNA and ribosomal (r)RNA1,2. Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as a methyl-group donor. SAM and other nucleotide-derived cofactors are considered to be evolutionary leftovers from an RNA world, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication3. Chemically diverse ribozymes seem to have been lost in nature, but may be reconstructed in the laboratory by in vitro selection. Here we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine in a substrate RNA, using O6-methylguanine as a small-molecule cofactor. The ribozyme shows a broad RNA-sequence scope, as exemplified by site-specific adenosine methylation in various RNAs. This finding provides fundamental insights into the catalytic abilities of RNA, serves a synthetic tool to install 1-methyladenosine in RNA and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes.
Collapse
Affiliation(s)
- Carolin P M Scheitl
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
25
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
26
|
Deepa P, Thirumeignanam D. Rising trend on the halogen and non-halogen derivatives (Br, Cl, CF 3, F, CH 3 and NH 2) in ruminal β-d-Xylopyranose - a quantum chemical perspective. J Biomol Struct Dyn 2020; 40:449-467. [PMID: 32880211 DOI: 10.1080/07391102.2020.1815577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The utmost aim of the current study is to find significance of the binding affinity in the halogen and non-halogen derivatives: Br, Cl, CF3, F, CH3 and NH2 of β-d-Xylopyranose with the hinge region amino acids of ruminant-β-glycosidase. The interaction energy analysis was carried out in detail through various density functional studies as M062X/def2-QZVP, M062X/LANL2DZ, B3LYP/LANL2DZ and M06HF/LANL2DZ level of theories. The total interaction energy of halogen derivatives: Br, Cl, F and CF3 are -618.21, -599.00, -720.45 and -553.08 kcal/mol respectively, and non-halogen derivative: amine group (NH2) is -87.96 kcal/mol at M062X/def2-QZVP level of theory, which exist with strong binding affinity. Ligand properties: dipole moment, polarizability, volume, molecular mass, electrostatic potential map was evaluated to understand its electrostatic and structural behavior. The nature of the bonds was inferred from the electrostatic potential map for all the halogen and non-halogen derivatives ligand. The stabilization energy from NBO analysis reveals the stability of single hydrogen and halogen bonds (N-H…Br, C-Br…O, N-H…Cl, C-Cl…O, O-H…F, C-H…F, N-H…F, C-F…O, N-H…O, O-H…O, N-H…N, O-H…N) in β-d-Xylopyranose and its derivatives. Overall, this study paves way for scientist and medicinal chemist in modelling new drugs. Further, it suggests mutations that increase the binding and may enhance the catalytic action and strengthen the complex diet in animals and hence recommended for experimental synthesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, TamilNadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
27
|
Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design. Cell Chem Biol 2020; 27:1241-1249.e4. [PMID: 32795418 DOI: 10.1016/j.chembiol.2020.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
Riboswitches are mRNA domains that make gene-regulatory decisions upon binding their cognate ligands. Bacterial riboswitches that specifically recognize 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP) and 5'-triphosphate (ZTP) regulate genes involved in folate and purine metabolism. Now, we have developed synthetic ligands targeting ZTP riboswitches by replacing the sugar-phosphate moiety of ZMP with various functional groups, including simple heterocycles. Despite losing hydrogen bonds from ZMP, these analogs bind ZTP riboswitches with similar affinities as the natural ligand, and activate transcription more strongly than ZMP in vitro. The most active ligand stimulates gene expression ∼3 times more than ZMP in a live Escherichia coli reporter. Co-crystal structures of the Fusobacterium ulcerans ZTP riboswitch bound to synthetic ligands suggest stacking of their pyridine moieties on a conserved RNA nucleobase primarily determines their higher activity. Altogether, these findings guide future design of improved riboswitch activators and yield insights into how RNA-targeted ligand discovery may proceed.
Collapse
|
28
|
Chan CW, Mondragón A. Crystal structure of an atypical cobalamin riboswitch reveals RNA structural adaptability as basis for promiscuous ligand binding. Nucleic Acids Res 2020; 48:7569-7583. [PMID: 32544228 PMCID: PMC7367189 DOI: 10.1093/nar/gkaa507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Cobalamin riboswitches encompass a structurally diverse group of cis-acting, gene regulatory elements found mostly in bacterial messenger RNA and are classified into subtypes based on secondary and tertiary characteristics. An unusual variant of the cobalamin riboswitch with predicted structural features was identified in Bacillus subtilis over a decade ago, but its structure and mechanisms of cobalamin selectivity and translational control have remained unsolved. We present the crystal structure of the aptamer domain of this atypical cobalamin riboswitch and a model for the complete riboswitch, including its expression platform domain. We demonstrate that this riboswitch binds to multiple cobalamin derivatives and correlate its promiscuous behavior to its structure and unique arrangement of peripheral elements. Comparative structural analyses between conventional cobalamin riboswitches and the B. subtilis cobalamin riboswitch reveal that the likely basis for this promiscuous ligand binding is intrinsic structural adaptability encoded in the RNA structure. It suggests that cobalamin selectivity might ultimately be viewed as existing on a spectrum of affinity for each derivative rather than as belonging to distinct types based on ligand specificities. Our work provides an interesting and notable example of functional coupling of ligand-sensing and adaptive folding by a structured RNA molecule.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| |
Collapse
|
29
|
Li P, Rangadurai A, Al-Hashimi HM, Hammes-Schiffer S. Environmental Effects on Guanine-Thymine Mispair Tautomerization Explored with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. J Am Chem Soc 2020; 142:11183-11191. [PMID: 32459476 PMCID: PMC7354846 DOI: 10.1021/jacs.0c03774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA bases can adopt energetically unfavorable tautomeric forms that enable the formation of Watson-Crick-like (WC-like) mispairs, which have been proposed to give rise to spontaneous mutations in DNA and misincorporation errors in DNA replication and translation. Previous NMR and computational studies have indicated that the population of WC-like guanine-thymine (G-T) mispairs depends on the environment, such as the local nucleic acid sequence and solvation. To investigate these environmental effects, herein G-T mispair tautomerization processes are studied computationally in aqueous solution, in A-form and B-form DNA duplexes, and within the active site of a DNA polymerase λ variant. The wobble G-T (wG-T), WC-like G-T*, and WC-like G*-T forms are considered, where * indicates the enol tautomer of the base. The minimum free energy paths for the tautomerization from the wG-T to the WC-like G-T* and from the WC-like G-T* to the WC-like G*-T are computed with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The reaction free energies and free energy barriers are found to be significantly influenced by the environment. The wG-T→G-T* tautomerization is predicted to be endoergic in aqueous solution and the DNA duplexes but slightly exoergic in the polymerase, with Arg517 and Asn513 providing electrostatic stabilization of G-T*. The G-T*→G*-T tautomerization is also predicted to be slightly more thermodynamically favorable in the polymerase relative to these DNA duplexes. These simulations are consistent with an experimentally driven kinetic misincorporation model suggesting that G-T mispair tautomerization occurs in the ajar polymerase conformation or concertedly with the transition from the ajar to the closed polymerase conformation. Furthermore, the order of the associated two proton transfer reactions is predicted to be different in the polymerase than in aqueous solution and the DNA duplexes. These studies highlight the impact of the environment on the thermodynamics, kinetics, and fundamental mechanisms of G-T mispair tautomerization, which plays a role in a wide range of biochemically important processes.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520
| | - Atul Rangadurai
- Department of Biochemistry, Duke University, Durham, NC, 27710
| | | | | |
Collapse
|
30
|
Padroni G, Patwardhan NN, Schapira M, Hargrove AE. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med Chem 2020; 11:802-813. [PMID: 33479676 DOI: 10.1039/d0md00167h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
RNA molecules are becoming an important target class in drug discovery. However, the principles for designing RNA-binding small molecules are yet to be fully uncovered. In this study, we examined the Protein Data Bank (PDB) to highlight privileged interactions underlying small molecule-RNA recognition. By comparing this analysis with previously determined small molecule-protein interactions, we find that RNA recognition is driven mostly by stacking and hydrogen bonding interactions, while protein recognition is instead driven by hydrophobic effects. Furthermore, we analyze patterns of interactions to highlight potential strategies to tune RNA recognition, such as stacking and cation-π interactions that favor purine and guanine recognition, and note an unexpected paucity of backbone interactions, even for cationic ligands. Collectively, this work provides further understanding of RNA-small molecule interactions that may inform the design of small molecules targeting RNA.
Collapse
Affiliation(s)
- G Padroni
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - N N Patwardhan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - M Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - A E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| |
Collapse
|
31
|
High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules 2020; 25:molecules25102295. [PMID: 32414072 PMCID: PMC7287874 DOI: 10.3390/molecules25102295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson–Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.
Collapse
|
32
|
Matyjasik MM, Batey RT. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Nucleic Acids Res 2020; 47:10931-10941. [PMID: 31598729 PMCID: PMC6847200 DOI: 10.1093/nar/gkz839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022] Open
Abstract
A recent bioinformatic analysis of well-characterized classes of riboswitches uncovered subgroups unable to bind to the regulatory molecule of the parental class. Within the guanine/adenine class, seven groups of RNAs were identified that deviate from the consensus sequence at one or more of three positions directly involved purine nucleobase recognition, one of which was validated as a second class of 2'-deoxyguanosine riboswitch (called 2'-dG-II). To understand how 2'-dG-II riboswitches recognize their cognate ligand and how they differ from a previously identified class of 2'-deoxyguanosine binding riboswitches, we have solved the crystal structure of a 2'-dG-II aptamer domain bound to 2'-deoxyguanosine. This structure reveals a global architecture similar to other members of the purine riboswitch family, but contains key differences within the ligand binding core. Defining the 2'-dG-II riboswitches is a two-nucleotide insertion in the three-way junction that promotes novel base-base interactions. Unlike 2'-dG-I riboswitches, the 2'-dG-II class only requires local changes to the ligand binding pocket of the guanine/adenine class to achieve a change in ligand preference. Notably, members of the 2'-dG-II family have variable ability to discriminate between 2'-deoxyguanosine and riboguanosine, suggesting that a subset of 2'-dG-II riboswitches may bind either molecule to regulate gene expression.
Collapse
Affiliation(s)
- Michal M Matyjasik
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| |
Collapse
|
33
|
Hu G, Li H, Xu S, Wang J. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Int J Mol Sci 2020; 21:ijms21061926. [PMID: 32168940 PMCID: PMC7139962 DOI: 10.3390/ijms21061926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches are naturally occurring RNA aptamers that control the expression of essential bacterial genes by binding to specific small molecules. The binding with both high affinity and specificity induces conformational changes. Thus, riboswitches were proposed as a possible molecular target for developing antibiotics and chemical tools. The adenine riboswitch can bind not only to purine analogues but also to pyrimidine analogues. Here, long molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) computational methodologies were carried out to show the differences in the binding model and the conformational changes upon five ligands binding. The binding free energies of the guanine riboswitch aptamer with C74U mutation complexes were compared to the binding free energies of the adenine riboswitch (AR) aptamer complexes. The calculated results are in agreement with the experimental data. The differences for the same ligand binding to two different aptamers are related to the electrostatic contribution. Binding dynamical analysis suggests a flexible binding pocket for the pyrimidine ligand in comparison with the purine ligand. The 18 μs of MD simulations in total indicate that both ligand-unbound and ligand-bound aptamers transfer their conformation between open and closed states. The ligand binding obviously affects the conformational change. The conformational states of the aptamer are associated with the distance between the mass center of two key nucleotides (U51 and A52) and the mass center of the other two key nucleotides (C74 and C75). The results suggest that the dynamical character of the binding pocket would affect its biofunction. To design new ligands of the adenine riboswitch, it is recommended to consider the binding affinities of the ligand and the conformational change of the ligand binding pocket.
Collapse
Affiliation(s)
- Guodong Hu
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| | | | | | - Jihua Wang
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| |
Collapse
|
34
|
Zhan H, Xiao L, Li A, Yao L, Cai Z, Liu Y. Engineering Cellular Signal Sensors based on CRISPR-sgRNA Reconstruction Approaches. Int J Biol Sci 2020; 16:1441-1449. [PMID: 32210731 PMCID: PMC7085220 DOI: 10.7150/ijbs.42299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 11/05/2022] Open
Abstract
The discovery of the CRISPR systems has enriched the application of gene therapy and biotechnology. As a type of robust and simple toolbox, the CRISPR system has greatly promoted the development of cellular signal sensors at the genomic level. Although CRISPR systems have demonstrated that they can be used in eukaryotic and even mammalian cells after extraction from prokaryotic cells, controlling their gene-editing activity remains a challenge. Here we summarize the advantages and disadvantages of building a CRIRPR-based signal sensor through sgRNA reconstruction, as well as possible ways to reprogram the signal network of cells. We also propose how to further improve the design of the current signal sensors based on sgRNA-riboswitch. We believe that the development of these technologies and the construction of platforms can further promote the development of environment detection, disease diagnosis, and gene therapy by means of synthetic biology.
Collapse
Affiliation(s)
- Hengji Zhan
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Lulu Xiao
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| |
Collapse
|
35
|
Bao L, Wang J, Xiao Y. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Phys Rev E 2020; 100:022412. [PMID: 31574664 DOI: 10.1103/physreve.100.022412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/07/2022]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression through changing their conformation in response to specific metabolite binding. However, the regulation mechanisms of riboswitches by ligand binding are still not well understood. At present two possible ligand-binding mechanisms have been proposed: conformational selection and induced fit. Based on explicit-solvent molecular dynamics (MD) simulations, we have studied the process of the binding of ligands (adenines) to add adenine riboswitch aptamer (AARA) in detail. Our results show that the relative high flexibility of the junction J23 of AARA allows the ligands to be captured by the binding pocket of AARA in a near-native state, which may be driven by hydrophobic and base-stacking interactions. In addition, the binding of a ligand makes the stem P1 and the junction J23 of AARA more stable than in the absence of the ligand. Generally, our analyses show that the ligand-binding process of the add adenine riboswitch may be partially embodied by a conformational selection mechanism.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
36
|
Chen J, Wang X, Pang L, Zhang JZH, Zhu T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res 2020; 47:6618-6631. [PMID: 31173143 PMCID: PMC6649850 DOI: 10.1093/nar/gkz499] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Riboswitches can regulate gene expression by direct and specific interactions with ligands and have recently attracted interest as potential drug targets for antibacterial. In this work, molecular dynamics (MD) simulations, free energy perturbation (FEP) and molecular mechanics generalized Born surface area (MM-GBSA) methods were integrated to probe the effect of mutations on the binding of ligands to guanine riboswitch (GR). The results not only show that binding free energies predicted by FEP and MM-GBSA obtain an excellent correlation, but also indicate that mutations involved in the current study can strengthen the binding affinity of ligands GR. Residue-based free energy decomposition was applied to compute ligand-nucleotide interactions and the results suggest that mutations highly affect interactions of ligands with key nucleotides U22, U51 and C74. Dynamics analyses based on MD trajectories indicate that mutations not only regulate the structural flexibility but also change the internal motion modes of GR, especially for the structures J12, J23 and J31, which implies that the aptamer domain activity of GR is extremely plastic and thus readily tunable by nucleotide mutations. This study is expected to provide useful molecular basis and dynamics information for the understanding of the function of GR and possibility as potential drug targets for antibacterial.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019; 708:38-48. [PMID: 31128223 DOI: 10.1016/j.gene.2019.05.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Riboswitches are gene control elements that directly bind to specific ligands to regulate gene expression without the need for proteins. They are found in all three domains of life, including Bacteria, Archaea, and Eukaryota. Riboswitches are mostly spread in bacteria and archaea. In this paper, we discuss the general distribution, structure, and function of 28 different riboswitch classes as we focus our attention on riboswitches in bacteria. Bacterial riboswitches regulate gene expression by four distinct mechanisms. They regulate the expression of a limited number of genes. However, most of these genes are responsible for the synthesis of essential metabolites without which the cell cannot function. Therefore, riboswitch distribution is also important for antibacterial drug development.
Collapse
Affiliation(s)
- Nikolet Pavlova
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Dimitrios Kaloudas
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
38
|
Synthetic ligands for PreQ 1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure. Nat Commun 2019; 10:1501. [PMID: 30940810 PMCID: PMC6445138 DOI: 10.1038/s41467-019-09493-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Riboswitches are naturally occurring RNA aptamers that regulate gene expression by binding to specific small molecules. Riboswitches control the expression of essential bacterial genes and are important models for RNA-small molecule recognition. Here, we report the discovery of a class of synthetic small molecules that bind to PreQ1 riboswitch aptamers. These molecules bind specifically and reversibly to the aptamers with high affinity and induce a conformational change. Furthermore, the ligands modulate riboswitch activity through transcriptional termination despite no obvious chemical similarity to the cognate ligand. X-ray crystallographic studies reveal that the ligands share a binding site with the cognate ligand but make different contacts. Finally, alteration of the chemical structure of the ligand causes changes in the mode of RNA binding and affects regulatory function. Thus, target- and structure-based approaches can be used to identify and understand the mechanism of synthetic ligands that bind to and regulate complex, folded RNAs. RNA sensors—Riboswitches—respond to the binding of small molecules ligands through structure modification. Here the authors identify synthetic small molecules that bind and regulate the activity of PreQ1 Riboswitches despite having no obvious chemical similarity to the cognate ligand.
Collapse
|
39
|
Liang X, Jiang J, Xue X, Huang L, Ding X, Nong D, Chen H, Pan L, Ma Z. Synthesis, characterization, photoluminescence, anti-tumor activity, DFT calculations and molecular docking with proteins of zinc(ii) halogen substituted terpyridine compounds. Dalton Trans 2019; 48:10488-10504. [DOI: 10.1039/c8dt04924f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Study on the synthesis, characterization, photoluminescence and anti-tumor activity of a series of zinc(ii) halogen substituted terpyridine complexes.
Collapse
Affiliation(s)
- Xing Liang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
| | - Ling Huang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
| | - Xuanxuan Ding
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
| | - Dongmei Nong
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
| | - Hailan Chen
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
- School of Animal Science and Technology
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Key Laboratory of Biorefinery
- Guangxi Academy of Sciences
- Nanning
| | - Zhen Ma
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- PR China
- Centro de Química Estrutural
| |
Collapse
|
40
|
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018; 9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Biosensors are enabling major advances in the field of analytics that are both facilitating and being facilitated by advances in synthetic biology. The ability of biosensors to rapidly and specifically detect a wide range of molecules makes them highly relevant to a range of industrial, medical, ecological, and scientific applications. Approaches to biosensor design are as diverse as their applications, with major biosensor classes including nucleic acids, proteins, and transcription factors. Each of these biosensor types has advantages and limitations based on the intended application, and the parameters that are required for optimal performance. Specifically, the choice of biosensor design must consider factors such as the ligand specificity, sensitivity, dynamic range, functional range, mode of output, time of activation, ease of use, and ease of engineering. This review discusses the rationale for designing the major classes of biosensor in the context of their limitations and assesses their suitability to different areas of biotechnological application.
Collapse
Affiliation(s)
- Alexander C Carpenter
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| |
Collapse
|
41
|
Pohl R, Socha O, Šála M, Rejman D, Dračínský M. The Control of the Tautomeric Equilibrium of Isocytosine by Intermolecular Interactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| |
Collapse
|
42
|
Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 2018; 17:547-558. [PMID: 29977051 PMCID: PMC6420209 DOI: 10.1038/nrd.2018.93] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have indicated the potential to develop small-molecule drugs that act on RNA targets, leading to burgeoning interest in the field. This article discusses general principles for discovering small-molecule drugs that target RNA and argues that the overarching challenge is to identify appropriate target structures in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. RNA molecules are essential for cellular information transfer and gene regulation, and RNAs have been implicated in many human diseases. Messenger and non-coding RNAs contain highly structured elements, and evidence suggests that many of these structures are important for function. Targeting these RNAs with small molecules offers opportunities to therapeutically modulate numerous cellular processes, including those linked to 'undruggable' protein targets. Despite this promise, there is currently only a single class of human-designed small molecules that target RNA used clinically — the linezolid antibiotics. However, a growing number of small-molecule RNA ligands are being identified, leading to burgeoning interest in the field. Here, we discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures — namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. If focus is placed on such druggable binding sites in RNA, extensive knowledge of the typical physicochemical properties of drug-like small molecules could then enable small-molecule drug discovery for RNA targets to become (only) roughly as difficult as for protein targets.
Collapse
Affiliation(s)
| | | | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
44
|
Morse DP, Nevins CE, Aggrey-Fynn J, Bravo RJ, Pfaeffle HOI, Laney JE. Sensitive and specific detection of ligands using engineered riboswitches. J Biotechnol 2018. [PMID: 29518463 DOI: 10.1016/j.jbiotec.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Riboswitches are RNA elements found in non-coding regions of messenger RNAs that regulate gene expression through a ligand-triggered conformational change. Riboswitches typically bind tightly and specifically to their ligands, so they have the potential to serve as highly effective sensors in vitro. In B. subtilis and other gram-positive bacteria, purine nucleotide synthesis is regulated by riboswitches that bind to guanine. We modified the xpt-pbuX guanine riboswitch for use in a fluorescence quenching assay that allowed us to specifically detect and quantify guanine in vitro. Using this assay, we reproducibly detected as little as 5 nM guanine. We then produced sensors for 2'-deoxyguanosine and cyclic diguanylate (c-diGMP) by appending the P1 stem of the guanine riboswitch to the ligand-binding domains of a 2'-deoxyguanosine riboswitch and a c-diGMP riboswitch. These hybrid sensors could detect 15 nM 2'-deoxyguanosine and 3 nM c-diGMP, respectively. Each sensor retained the ligand specificity of its corresponding natural riboswitch. In order to extend the utility of our approach, we developed a strategy for the in vitro selection of sensors with novel ligand specificity. Here we report a proof-of-principle experiment that demonstrated the feasibility of our selection strategy.
Collapse
Affiliation(s)
- Daniel P Morse
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Colin E Nevins
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Joana Aggrey-Fynn
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Rick J Bravo
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Herman O I Pfaeffle
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jess E Laney
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| |
Collapse
|
45
|
Tian S, Kladwang W, Das R. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. eLife 2018; 7:29602. [PMID: 29446752 PMCID: PMC5847336 DOI: 10.7554/elife.29602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Physics, Stanford University, Stanford, United States
| |
Collapse
|
46
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
47
|
Yan LH, Le Roux A, Boyapelly K, Lamontagne AM, Archambault MA, Picard-Jean F, Lalonde-Seguin D, St-Pierre E, Najmanovich RJ, Fortier LC, Lafontaine D, Marsault É. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile. Eur J Med Chem 2017; 143:755-768. [PMID: 29220796 DOI: 10.1016/j.ejmech.2017.11.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
Riboswitches recently emerged as possible targets for the development of alternative antimicrobial approaches. Guanine-sensing riboswitches in the bacterial pathogen Clostridioides difficile (formerly known as Clostridium difficile) constitute potential targets based on their involvement in the regulation of basal metabolic control of purine compounds. In this study, we deciphered the structure-activity relationship of several guanine derivatives on the guanine riboswitch and determined their antimicrobial activity. We describe the synthesis of purine analogs modified in ring B as well as positions 2 and 6. Their biological activity was determined by measuring their affinity for the C. difficile guanine riboswitch and their inhibitory effect on bacterial growth, including a counter-screen to discriminate against riboswitch-independent antibacterial effects. Altogether, our results suggest that improvements in riboswitch binding affinity in vitro do not necessarily translate into improved antibacterial activity in bacteria, despite the fact that some structure-activity relationship was observed at least with respect to binding affinity.
Collapse
Affiliation(s)
- Lok-Hang Yan
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Antoine Le Roux
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kumaraswamy Boyapelly
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Anne-Marie Lamontagne
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Marie-Ann Archambault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Frédéric Picard-Jean
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - David Lalonde-Seguin
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Emilie St-Pierre
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rafael J Najmanovich
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biochemistry, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Daniel Lafontaine
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
48
|
Polaski JT, Webster SM, Johnson JE, Batey RT. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin. J Biol Chem 2017; 292:11650-11658. [PMID: 28483920 DOI: 10.1074/jbc.m117.787176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
Riboswitches are a widely distributed class of regulatory RNAs in bacteria that modulate gene expression via small-molecule-induced conformational changes. Generally, these RNA elements are grouped into classes based upon conserved primary and secondary structure and their cognate effector molecule. Although this approach has been very successful in identifying new riboswitch families and defining their distributions, small sequence differences between structurally related RNAs can alter their ligand selectivity and regulatory behavior. Herein, we use a structure-based mutagenic approach to demonstrate that cobalamin riboswitches have a broad spectrum of preference for the two biological forms of cobalamin in vitro using isothermal titration calorimetry. This selectivity is primarily mediated by the interaction between a peripheral element of the RNA that forms a T-loop module and a subset of nucleotides in the cobalamin-binding pocket. Cell-based fluorescence reporter assays in Escherichia coli revealed that mutations that switch effector preference in vitro lead to differential regulatory responses in a biological context. These data demonstrate that a more comprehensive analysis of representative sequences of both previously and newly discovered classes of riboswitches might reveal subgroups of RNAs that respond to different effectors. Furthermore, this study demonstrates a second distinct means by which tertiary structural interactions in cobalamin riboswitches dictate ligand selectivity.
Collapse
Affiliation(s)
- Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Samantha M Webster
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - James E Johnson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.
| |
Collapse
|
49
|
Hu G, Ma A, Wang J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J Chem Inf Model 2017; 57:918-928. [PMID: 28345904 DOI: 10.1021/acs.jcim.7b00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Aijing Ma
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University , Dezhou 253023, China
| |
Collapse
|
50
|
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and In Vivo Applications of Riboswitches. Annu Rev Biochem 2017; 86:515-539. [PMID: 28375743 DOI: 10.1146/annurev-biochem-060815-014628] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Rebekah Z Kitto
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, California 94720; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|