1
|
Lorenz H, Menzel S, Roshchyna N, Albrecht B, Gebhardt AJ, Schneider E, Haag F, Rissiek B, Oheim R, Koch-Nolte F, Winzer R, Tolosa E. ENPP1/CD203a-targeting heavy-chain antibody reveals cell-specific expression on human immune cells. Cell Mol Life Sci 2024; 82:6. [PMID: 39694917 DOI: 10.1007/s00018-024-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
ENPP1/CD203a is a membrane-bound ectonucleotidase capable of hydrolyzing ATP, cGAMP and other substrates. Its enzymatic activity plays an important role in the balance of extracellular adenine nucleotides and the modulation of purinergic signaling, in soft tissue calcification, and in the regulation of the cGAS/STING pathway. However, a detailed analysis of ENPP1 surface expression on human immune cells has not been performed. Here, we selected VHH domains from human ENPP1-immunized alpacas to generate heavy-chain antibodies targeting ENPP1, and analyzed cell surface expression on all circulating immune cell subsets using flow cytometry. We find high expression of ENPP1 in CD141high conventional dendritic cells (cDC1), while ENPP1 was not detectable on other dendritic cells and monocytes. In the lymphocytic compartment, only CD56bright natural killer cells and mucosal-associated invariant T cells (MAIT) express ENPP1. In contrast, all other T cell subpopulations, CD56dim natural killer cells and B lymphocytes do not or only minimally express ENPP1. In summary, we describe highly cell type-specific expression of ENPP1 in the immune system using a newly generated heavy-chain antibody. This reagent will help to decipher the function of ENPP1 in the regulation of the immune response, allow a quick identification of ENPP1-deficiency and of ENPP1-positive tumors, and constitutes the basis for targeted anti-tumor intervention.
Collapse
Affiliation(s)
- Hannah Lorenz
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Innate Immunity, Core Facility Nanobodies, University Hospital Bonn, Bonn, Germany
| | - Nataliia Roshchyna
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Deutschland
| | - Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Hamburg, Hamburg, Deutschland.
| |
Collapse
|
2
|
Noor Ul Ayan H, Nitschke Y, Mughal AR, Thiele H, Malik NA, Hussain I, Haider SMI, Rutsch F, Erdmann J, Tariq M, Aherrahrou Z, Ahmad I. Homozygous splice-site variant in ENPP1 underlies generalized arterial calcification of infancy. BMC Pediatr 2024; 24:733. [PMID: 39538190 PMCID: PMC11558987 DOI: 10.1186/s12887-024-05123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) plays a critical role by converting extracellular ATP to AMP, generating extracellular PPi, a potential inhibitor of calcification. Pathogenic variants in the ENPP1 cause generalized arterial calcification of infancy (GACI [OMIM 208000]). GACI, is an ultra-rare disease characterized by early-onset calcification of large and medium-sized arteries, leading to severe cardiovascular complications such as heart failure, pulmonary stenosis (PS), hypertension, and more. In this study, we report a novel homozygous splice-site pathogenic variant in ENPP1 (NM_006208, c.2230 + 5G > A; p.Asp701Asnfs*2) residing in C-terminal nuclease-like domain (NLD) of ENPP1 protein in a Pakistani family diagnosed with severe valvular PS and mild right ventricular hypertrophy (RVH). cDNA assays confirmed the skipping of exon 21, and the splice product underwent nonsense-mediated decay. Functional studies on fibroblasts from the patient demonstrated increased calcification and decreased enzymatic activity of ENPP1, recapitulating the hallmarks of GACI. By combining genetic analysis with the in vitro study, we substantiate that ENPP1:c.2230 + 5G > A variant is pathogenic, underscoring its role in the development of GACI.
Collapse
Affiliation(s)
- Hafiza Noor Ul Ayan
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | | | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Ijaz Hussain
- Peshawar Institute of Cardiology, Peshawar, 25000, Pakistan
| | - Syed Muhammad Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, 48149, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany.
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
3
|
Jacobs IJ, Obiri-Yeboah D, Stabach PR, Braddock DT, Li Q. Novel treatment for PXE: Recombinant ENPP1 enzyme therapy. Mol Ther 2024; 32:3815-3820. [PMID: 39342427 PMCID: PMC11573614 DOI: 10.1016/j.ymthe.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic multisystem ectopic calcification disorder caused by inactivating mutations in the ABCC6 gene encoding ABCC6, a hepatic efflux transporter. ABCC6-mediated ATP secretion by the liver is the main source of a potent endogenous calcification inhibitor, plasma inorganic pyrophosphate (PPi); the deficiency of plasma PPi underpins PXE. Recent studies demonstrated that INZ-701, a recombinant human ENPP1 that generates PPi and is now in clinical trials, restored plasma PPi levels and prevented ectopic calcification in the muzzle skin of Abcc6-/-mice. This study examined the pharmacokinetics, pharmacodynamics, and potency of a new ENPP1-Fc isoform, BL-1118, in Abcc6-/- mice. When Abcc6-/- mice received a single subcutaneous injection of BL-1118 at 0.25, 0.5, or 1 mg/kg, they had dose-dependent elevations in plasma ENPP1 enzyme activity and PPi levels, with an enzyme half-life of approximately 100 h. When Abcc6-/- mice were injected weekly from 5 to 15 weeks of age, BL-1118 dose-dependently increased steady-state plasma ENPP1 activity and PPi levels and significantly reduced ectopic calcification in the muzzle skin and kidneys. These results suggest that BL-1118 is a promising second generation enzyme therapy for PXE, the first generation of which is currently in clinical testing.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dora Obiri-Yeboah
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Ju O, Ko SY, Jang YJ. Regulation of TGF-β1-induced fibroblast differentiation of human periodontal ligament stem cells through the mutually antagonistic action of ectonucleotide pyrophosphatase/phosphodiesterase 1 and 2. Front Cell Dev Biol 2024; 12:1426762. [PMID: 39291269 PMCID: PMC11405333 DOI: 10.3389/fcell.2024.1426762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/28/2024] [Indexed: 09/19/2024] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) differentiate into periodontal ligament (PDL) fibroblasts, osteoblasts, and cementoblasts. To identify inducers of PDL fibroblastic differentiation, monoclonal antibody series were developed a series of against membrane/extracellular matrix (ECM) molecules through decoy immunization. The anti-PDL13 antibody targets ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), renowned for regulating skeletal and soft tissue mineralization. ENPP1 accumulates in the periodontal ligament region of tooth roots, and specifically localizes to the cell boundaries and elongated processes of the fibroblastic cells. As ENPP1 expression increases during fibroblastic differentiation, mineralization induced by tissue-nonspecific alkaline phosphatase (TNAP), a pyrophosphate-degrading enzyme, is completely inhibited. This is consistent with ENPP1 and TNAP acting in opposition, and TGF-β1-induced ENPP1 expression creates an essential environment for PDL fibroblast differentiation. Representative fibroblastic differentiation markers decrease with endogenous ENPP1 inhibition by siRNA and antibody blocking. ENPP2 generates lipid signaling molecules. In contrast to ENPP1, ENPP2 disappears in TGF-β1-induced PDL fibroblasts. Ectopic expression of ENPP2 hinders TGF-β1-induced PDL fibroblastic differentiation. Suppression of ENPP1 and ENPP2 leads to severe defects in undifferentiated and differentiated cells, demonstrating that these two factors play opposing roles in soft and hard tissue differentiation but can complement each other for cell survival. In conclusion, increased ENPP1 is crucial for TGF-β1-induced PDL differentiation, while ENPP2 and TNAP can inhibit ENPP1. ENPP1 and ENPP2 exhibit complementary functions in the cell survival.
Collapse
Affiliation(s)
- Onyou Ju
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Seon-Yle Ko
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Zhou Y, Bao L, Gong S, Dou G, Li Z, Wang Z, Yu L, Ding F, Liu H, Li X, Liu S, Yang X, Liu S. T Cell-Derived Apoptotic Extracellular Vesicles Hydrolyze cGAMP to Alleviate Radiation Enteritis via Surface Enzyme ENPP1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401634. [PMID: 38888507 PMCID: PMC11336903 DOI: 10.1002/advs.202401634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Radiation enteritis is the most common complication of pelvic radiotherapy, but there is no effective prevention or treatment drug. Apoptotic T cells and their products play an important role in regulating inflammation and maintaining physiological immune homeostasis. Here it is shown that systemically infused T cell-derived apoptotic extracellular vesicles (ApoEVs) can target mice irradiated intestines and alleviate radiation enteritis. Mechanistically, radiation elevates the synthesis of intestinal 2'3' cyclic GMP-AMP (cGAMP) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) proinflammatory pathway. After systemic infusion of ApoEVs, the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) enriches on the surface of ApoEVs hydrolyze extracellular cGAMP, resulting in inhibition of the cGAS-STING pathway activated by irradiation. Furthermore, after ApoEVs are phagocytosed by phagocytes, ENPP1 on ApoEVs hydrolyzed intracellular cGAMP, which serves as an intracellular cGAMP hydrolyzation mode, thereby alleviating radiation enteritis. The findings shed light on the intracellular and extracellular hydrolysis capacity of ApoEVs and their role in inflammation regulation.
Collapse
Affiliation(s)
- Yang Zhou
- College of Life SciencesNorthwest UniversityXi'anShaanxi710069China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Shengkai Gong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhengyan Wang
- Department of OrthodonticsSchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Lu Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of RadiologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Huan Liu
- Department of Otolaryngology Head and Neck SurgeryPeking University Third HospitalBeijing100871China
| | - Xiayun Li
- College of Life SciencesNorthwest UniversityXi'anShaanxi710069China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Clinical Research Center for Oral DiseasesDepartment of OrthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Xiaoshan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
- Stomatology HospitalSchool of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
6
|
Andrilli LHS, Sebinelli HG, Cominal JG, Bolean M, Hayann L, Millán JL, Ramos AP, Ciancaglini P. Differential effects of the lipidic and ionic microenvironment on NPP1's phosphohydrolase and phosphodiesterase activities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184292. [PMID: 38342362 DOI: 10.1016/j.bbamem.2024.184292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.
Collapse
Affiliation(s)
- Luiz H S Andrilli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Heitor G Sebinelli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juçara G Cominal
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larwsk Hayann
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Luís Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Ana P Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Pietro Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen C, Sun X, Wu Q, Yuan X, Xie Z, Zhou J, Zhang H. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress and prospects. Eur J Med Chem 2024; 267:116211. [PMID: 38359537 DOI: 10.1016/j.ejmech.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.
Collapse
Affiliation(s)
- Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Lincheng Fang
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mingshun Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingfeng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
9
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Ferreira CR, Carpenter TO, Braddock DT. ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency. ANNUAL REVIEW OF PATHOLOGY 2024; 19:507-540. [PMID: 37871131 PMCID: PMC11062289 DOI: 10.1146/annurev-pathmechdis-051222-121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas O Carpenter
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
11
|
Rohilla A, Singh AK, Koleske B, Srikrishna G, Bishai WR. Structure-based virtual screening and in vitro validation of inhibitors of cyclic dinucleotide phosphodiesterases ENPP1 and CdnP. Microbiol Spectr 2024; 12:e0201223. [PMID: 38095464 PMCID: PMC10783014 DOI: 10.1128/spectrum.02012-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE In this paper, we describe novel inhibitors of cyclic dinucleotide phosphodiesterase enzymes from Mycobacterium tuberculosis (M.tb) (CdnP) and mammals (ENPP1). The phosphodiesterase enzymes hydrolyze cyclic dinucleotides, such as 2',3'-cyclic GMP-AMP and c-di-AMP, which are stimulator of interferon gene (STING) agonists. By blocking the hydrolysis of STING agonists, the cyclic GMP-AMP synthase (cGAS)-STING-IRF3 pathway is potentiated. There is strong evidence in tuberculosis and in cancer biology that potentiation of the cGAS-STING-IRF3 pathway leads to improved M.tb clearance and also improved antitumor responses in cancer. In addition to the identification of novel inhibitors and their biochemical characterization, we provide proof-of-concept evidence that our E-3 inhibitor potentiates the cGAS-STING-IRF3 pathway in both macrophage cell lines and also in primary human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Akshay Rohilla
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alok Kumar Singh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Koleske
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William R. Bishai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Solomon PE, Bracken CJ, Carozza JA, Wang H, Young EP, Wellner A, Liu CC, Sweet-Cordero EA, Li L, Wells JA. Discovery of VH domains that allosterically inhibit ENPP1. Nat Chem Biol 2024; 20:30-41. [PMID: 37400538 PMCID: PMC10746542 DOI: 10.1038/s41589-023-01368-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.
Collapse
Affiliation(s)
- Paige E Solomon
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cartography Biosciences, South San Francisco, CA, USA
| | - Jacqueline A Carozza
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - Haoqing Wang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Macromolecular Structural Knowledge Center, Stanford University, Stanford, CA, USA
| | - Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alon Wellner
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University Medical School, Stanford, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Lu Y, You L, Li L, Kilgore JA, Liu S, Wang X, Dai Y, Wei Q, Shi H, Han L, Sun L, Chen ZJ, Zhang X, Williams NS, Chen C. Orthogonal Hydroxyl Functionalization of cGAMP Confers Metabolic Stability and Enables Antibody Conjugation. ACS CENTRAL SCIENCE 2023; 9:2298-2305. [PMID: 38161369 PMCID: PMC10755847 DOI: 10.1021/acscentsci.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.
Collapse
Affiliation(s)
- Yong Lu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lin You
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Liping Li
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Jessica A. Kilgore
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Shun Liu
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xiaoyu Wang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Yuanwei Dai
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Qi Wei
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Heping Shi
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lei Han
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Lijun Sun
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Zhijian J. Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Xuewu Zhang
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Noelle S. Williams
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Chuo Chen
- Department
of Biochemistry, Pharmacology, and Molecular Biology UT Southwestern Medical
Center 5323 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| |
Collapse
|
14
|
Khursigara G, Huertas P, Wenkert D, O'Brien K, Sabbagh Y. Effects of food, fasting, and exercise on plasma pyrophosphate levels and ENPP1 activity in healthy adults. Bone 2023; 171:116750. [PMID: 37003563 DOI: 10.1016/j.bone.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Inorganic pyrophosphate (PPi) is highly regulated as it plays a critical role in the regulation of physiological mineralization. Dysregulation of plasma PPi is associated with skeletal hypomineralization and pathogenic mineralization in soft connective tissue, arteries, and heart valves. There is no standard approach to measuring PPi, making it difficult to establish PPi as a biomarker of mineralization disorders. This study aims to determine the impact of time of day, meals, or exercise on plasma PPi homeostasis using a highly sensitive PPi assay. METHODS In this single-center trial, a clinical laboratory improvement amendment (CLIA) validated modified sulfurylase-based adenosine 5-triphosphate (ATP) assay was used to measure PPi levels throughout the day in 10 healthy adults under 3 conditions; normal diet (non-fasting), fasting, and normal diet with exercise. Serum ectonucleotide pyrophosphatase/phosphodiesterase 1 activity (ENPP1; an enzyme that produces PPi) was also measured to determine whether these conditions influence PPi levels through ENPP1 activity. RESULTS There is a circadian increase in mean PPi levels under fasting and non-fasting conditions between 8 am and 6 pm, followed by a rapid return to baseline overnight. A circadian increase in ENPP1 activity was also measured under fasting but was lost under non-fasting conditions. Meals increased the individual variability of PPi levels when compared to the same individual fasting. PPi levels and ENPP1 activity exhibited a short-term increase after intense exercise. We found PPi ranges from 1465 nM to 2969 nM (mean 2164 nM) after fasting overnight. Within this range, there was lower intra-subject variability in PPi, suggesting that each individual has a uniquely regulated normal PPi range. CONCLUSION Plasma levels of PPi can be reliably measured after an overnight fast and show promise as a biomarker of mineralization disorders.
Collapse
Affiliation(s)
- Gus Khursigara
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America.
| | - Pedro Huertas
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Deborah Wenkert
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Kevin O'Brien
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| |
Collapse
|
15
|
Lundkvist S, Niaziorimi F, Szeri F, Caffet M, Terry SF, Johansson G, Jansen RS, van de Wetering K. A new enzymatic assay to quantify inorganic pyrophosphate in plasma. Anal Bioanal Chem 2023; 415:481-492. [PMID: 36400967 PMCID: PMC9839608 DOI: 10.1007/s00216-022-04430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Inorganic pyrophosphate (PPi) is a crucial extracellular mineralization regulator. Low plasma PPi concentrations underlie the soft tissue calcification present in several rare hereditary mineralization disorders as well as in more common conditions like chronic kidney disease and diabetes. Even though deregulated plasma PPi homeostasis is known to be linked to multiple human diseases, there is currently no reliable assay for its quantification. We here describe a PPi assay that employs the enzyme ATP sulfurylase to convert PPi into ATP. Generated ATP is subsequently quantified by firefly luciferase-based bioluminescence. An internal ATP standard was used to correct for sample-specific interference by matrix compounds on firefly luciferase activity. The assay was validated and shows excellent precision (< 3.5%) and accuracy (93-106%) of PPi spiked into human plasma samples. We found that of several anticoagulants tested only EDTA effectively blocked conversion of ATP into PPi in plasma after blood collection. Moreover, filtration over a 300,000-Da molecular weight cut-off membrane reduced variability of plasma PPi and removed ATP present in a membrane-enclosed compartment, possibly platelets. Applied to plasma samples of wild-type and Abcc6-/- rats, an animal model with established low circulating levels of PPi, the new assay showed lower variability than the assay that was previously in routine use in our laboratory. In conclusion, we here report a new and robust assay to determine PPi concentrations in plasma, which outperforms currently available assays because of its high sensitivity, precision, and accuracy.
Collapse
Affiliation(s)
- Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
| | - Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | - Gunnar Johansson
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA.
| |
Collapse
|
16
|
Mercurio SA, Chunn LM, Khursigara G, Nester C, Wray K, Botschen U, Kiel MJ, Rutsch F, Ferreira CR. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Hum Mutat 2022; 43:1673-1705. [PMID: 36150100 DOI: 10.1002/humu.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.
Collapse
Affiliation(s)
- Stephanie A Mercurio
- Department of Data Science, Curation Division, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Lauren M Chunn
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Gus Khursigara
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Catherine Nester
- Department of Physician and Patient Strategies, Inozyme Pharma, Boston, Massachusetts, USA
| | - Kathleen Wray
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Ulrike Botschen
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Mark J Kiel
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Frank Rutsch
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Choi J. Small molecule ectonucleotide pyrophosphatase/phosphodiesterase 1 inhibitors in cancer immunotherapy for harnessing innate immunity. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junwon Choi
- Department of Molecular Science and Technology Ajou University Suwon Gyeonggi Republic of Korea
| |
Collapse
|
18
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
19
|
Andrilli LHS, Sebinelli HG, Favarin BZ, Cruz MAE, Ramos AP, Bolean M, Millán JL, Bottini M, Ciancaglini P. NPP1 and TNAP hydrolyze ATP synergistically during biomineralization. Purinergic Signal 2022:10.1007/s11302-022-09882-2. [DOI: 10.1007/s11302-022-09882-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
|
20
|
Carozza JA, Cordova AF, Brown JA, AlSaif Y, Böhnert V, Cao X, Mardjuki RE, Skariah G, Fernandez D, Li L. ENPP1's regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proc Natl Acad Sci U S A 2022; 119:e2119189119. [PMID: 35588451 PMCID: PMC9173814 DOI: 10.1073/pnas.2119189119] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The metazoan innate immune second messenger 2′3′-cGAMP is present both inside and outside cells. However, only extracellular cGAMP can be negatively regulated by the extracellular hydrolase ENPP1. Here, we determine whether ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating stimulator of interferon genes (STING) signaling. We identified ENPP1H362A, a point mutation that cannot degrade the 2′-5′ linkage in cGAMP while maintaining otherwise normal function. The selectivity of this histidine is conserved down to bacterial nucleotide pyrophosphatase/phosphodiesterase (NPP), allowing structural analysis and suggesting an unexplored ancient history of 2′-5′ cyclic dinucleotides. Enpp1H362A mice demonstrated that extracellular cGAMP is not responsible for the devastating phenotype in ENPP1-null humans and mice but is responsible for antiviral immunity and systemic inflammation. Our data define extracellular cGAMP as a pivotal STING activator, identify an evolutionarily critical role for ENPP1 in regulating inflammation, and suggest a therapeutic strategy for viral and inflammatory conditions by manipulating ENPP1 activity.
Collapse
Affiliation(s)
- Jacqueline A. Carozza
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Chemistry, Stanford University, Stanford, CA 94301
| | - Anthony F. Cordova
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Cancer Biology Program, Stanford University, Stanford, CA 94301
| | - Jenifer A. Brown
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biophysics, Stanford University, Stanford, CA 94301
| | - Yasmeen AlSaif
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biology, Stanford University, Stanford, CA 94301
| | - Volker Böhnert
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biochemistry, Stanford University, Stanford, CA 94301
| | - Xujun Cao
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Chemistry, Stanford University, Stanford, CA 94301
| | - Rachel E. Mardjuki
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Chemistry, Stanford University, Stanford, CA 94301
| | - Gemini Skariah
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biochemistry, Stanford University, Stanford, CA 94301
| | - Daniel Fernandez
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biochemistry, Stanford University, Stanford, CA 94301
- Macromolecular Structural Knowledge Center, Stanford University, Stanford, CA 94301
| | - Lingyin Li
- ChEM-H Institute, Stanford University, Stanford, CA 94301
- Department of Biochemistry, Stanford University, Stanford, CA 94301
| |
Collapse
|
21
|
Jacobs IJ, Cheng Z, Ralph D, O'Brien K, Flaman L, Howe J, Thompson D, Uitto J, Li Q, Sabbagh Y. INZ-701, a recombinant ENPP1 enzyme, prevents ectopic calcification in an Abcc6 -/- mouse model of pseudoxanthoma elasticum. Exp Dermatol 2022; 31:1095-1101. [PMID: 35511611 PMCID: PMC10077110 DOI: 10.1111/exd.14587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a heritable multisystem ectopic calcification disorder, is predominantly caused by inactivating mutations in ABCC6. The encoded protein, ABCC6, is a hepatic efflux transporter and a key regulator of extracellular inorganic pyrophosphate (PPi). Recent studies demonstrated that deficiency of plasma PPi, a potent endogenous calcification inhibitor, is the underlying cause of PXE. This study examined whether restoring plasma PPi levels by INZ-701, a recombinant human ENPP1 protein, the principal PPi-generating enzyme, prevents ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 6 weeks of age, the time of earliest stages of ectopic calcification, were injected subcutaneously with INZ-701 at 2 or 10 mg/kg for 2 or 8 weeks. INZ-701 at both doses increased steady-state plasma ENPP1 activity and PPi levels. In the 8-week treatment study, histopathologic examination and quantification of the calcium content in INZ-701-treated Abcc6-/- mice revealed significantly reduced calcification in the muzzle skin containing vibrissae, a biomarker of the calcification process in these mice. The extent of calcification corresponds to the local expression of two calcification inhibitors, osteopontin and fetuin-A. These results suggest that INZ-701 might provide a therapeutic approach for PXE, a disease with high unmet needs and no approved treatment.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, 19107, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | | | - Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, 19107, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, 19107, PA, USA.,Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | | | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, 19107, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, 19107, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, 19107, PA, USA
| | | |
Collapse
|
22
|
Szeri F, Niaziorimi F, Donnelly S, Fariha N, Tertyshnaia M, Patel D, Lundkvist S, van de Wetering K. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. J Bone Miner Res 2022; 37:1024-1031. [PMID: 35147247 PMCID: PMC9098669 DOI: 10.1002/jbmr.4528] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022]
Abstract
The plasma membrane protein ankylosis homologue (ANKH, mouse ortholog: Ank) prevents pathological mineralization of joints by controlling extracellular levels of the mineralization inhibitor pyrophosphate (PPi). It was long thought that ANKH acts by transporting PPi into the joints. We recently showed that when overproduced in HEK293 cells, ANKH mediates release of large amounts of nucleoside triphosphates (NTPs), predominantly ATP, into the culture medium. ATP is converted extracellularly into PPi and AMP by the ectoenzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). We could not rule out, however, that cells also release PPi directly via ANKH. We now addressed the question of whether PPi leaves cells via ANKH using HEK293 cells that completely lack ENPP1. Introduction of ANKH in these ENPP1-deficient HEK293 cells resulted in robust cellular ATP release without the concomitant increase in extracellular PPi found in ENPP1-proficient cells. Ank activity was previously shown to be responsible for about 75% of the PPi found in mouse bones. However, bones of Enpp1-/- mice contained <2.5% of the PPi found in bones of wild-type mice, showing that Enpp1 activity is also a prerequisite for Ank-dependent PPi incorporation into the mineralized bone matrix in vivo. Hence, ATP release precedes ENPP1-mediated PPi formation. We find that ANKH also provides about 25% of plasma PPi, whereas we have previously shown that 60% to 70% of plasma PPi is derived from the NTPs extruded by the ABC transporter, ABCC6. Both transporters that keep plasma PPi at sufficient levels to prevent pathological calcification therefore do so by extruding NTPs rather than PPi itself. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nishat Fariha
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mariia Tertyshnaia
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Drithi Patel
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Ritchie C, Carozza JA, Li L. Biochemistry, Cell Biology, and Pathophysiology of the Innate Immune cGAS-cGAMP-STING Pathway. Annu Rev Biochem 2022; 91:599-628. [PMID: 35287475 DOI: 10.1146/annurev-biochem-040320-101629] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)- 2'3'-cyclic GMP-AMP (cGAMP)- stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which the cGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| | - Jacqueline A Carozza
- ChEM-H Institute, Stanford University, Stanford, California, USA; .,Department of Chemistry, Stanford University, Stanford, California, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
24
|
Structure and function of the Ecto-Nucleotide Pyrophosphatase-Phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem 2021; 298:101526. [PMID: 34958798 PMCID: PMC8808174 DOI: 10.1016/j.jbc.2021.101526] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1–7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1–7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1–3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4–7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Collapse
|
25
|
Liang Y, Hu Z, Li Q, Liu X. Pyrophosphate inhibits periodontal ligament stem cell differentiation and mineralization through MAPK signaling pathways. J Periodontal Res 2021; 56:982-990. [PMID: 34142719 PMCID: PMC10018283 DOI: 10.1111/jre.12911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) are the primary cell source for the regeneration and remodeling of periodontal ligament (PDL). It is crucial to prevent PDLSCs from mineralization when using the PDLSCs for PDL regeneration. At present, little is known about how to inhibit PDLSC mineralization. This study investigates the effects of pyrophosphate (PPi) on inhibiting PDLSC osteogenic differentiation and mineralization as well as the underlying mechanism. MATERIALS AND METHODS Human PDLSCs were cultured in an osteogenic differentiation medium with different PPi concentrations (0, 10, or 100 μM). The effects of PPi on osteogenic differentiation were assessed by ALP activity and the expressions of osteogenic related proteins (OPN, RUNX2, OSX, and DMP1). The mineralization formation was detected by alizarin red staining. The activation of MAPK signaling pathways (ERK1/2, JNK, and p38) was determined by western blotting and pathway blockade assays. The gene expressions of PPi's regulators (Ank, Enpp1, and Alpl) were assessed by real-time PCR. RESULTS Both low and high concentrations (10 μM and 100 μM) of PPi inhibited the mineralization of PDLSCs. The addition of PPi (10 μM or 100 μM) decreased the ALP activity of the PDLSCs to approximately two-thirds of the control group on day 3. PPi reduced the expressions of RUNX2, OSX, and DMP1 on days 7, 14, and 21, while it increased the expression of OPN at the three time points. PPi enhanced the phosphorylation of MAPK pathways, and the application of corresponding MAPK pathway inhibitors reversed the osteogenic inhibition effects of PPi. CONCLUSION PPi inhibits the osteogenic differentiation and mineralization of PDLSCs in vitro through activating ERK1/2, JNK, and p38 signaling pathways.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Zhiai Hu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Qian Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
26
|
Orhan IE, Rauf A, Saleem M, Khalil AA. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/Phosphodiesterases (PDEs). Curr Top Med Chem 2021; 22:209-228. [PMID: 34503407 DOI: 10.2174/1568026621666210909164118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are a wide group of enzymes with multiple therapeutic actions, including vasorelaxation, cardiotonic, antidepressant, anti-inflammatory, antithrombotic, anti-spasmolytic, memory-enhancing, and anti-asthmatic. PDEs with eleven subtypes from PDE-1 to PDE-11 typically catalyze the cleavage of the phosphodiester bond and, hence, degrades either cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). OBJECTIVE Several selective or non-selective inhibitors of the PDE subtypes are used clinically, i.e. sildenafil, rolipram, cysteine, etc. Recently, interest in plant-based pharmacologically bioactive compounds having potent PDEs inhibitory potential has increased. Purposely, extensive research has been carried out on natural products to explore new inhibitors of various PDEs. Therefore, this review summarizes the published data on natural PDEs inhibitors and their potential therapeutic applications. METHODS For this purpose, natural compounds with PDE inhibitory potential have been surveyed through several databases, including PubMed, Web of Sciences (WoS), Scopus, and Google Scholar. RESULTS According to a detailed literature survey, the most promising class of herbal compounds with PDE-inhibiting property has been found to belong to phenolics, including flavonoids (luteolin, kaempferol, icariin, etc.). Many other encouraging inhibitors from plants have also been identified, such as coumarins (23, 24) (licoarylcoumarin and glycocoumarin,), saponins ( agapanthussaponins), lignans (31, 33) [(±)-schizandrin and kobusin], terpenes (28, 29, 31) (perianradulcin A, quinovic acid, and ursolic acid), anthraquinones (18, 19) (emodin and chrysophanol), and alkaloids (Sanjoinine-D) (36). CONCLUSION In this review, studies have revealed the PDE-inhibitory potential of natural plant extracts and their bioactive constituents in treating various diseases; however, further clinical studies comprising synergistic use of different therapies (synthetic & natural) to acquire multi-targeted results might also be a promising option.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara. Turkey
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 25120, KPK. Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Ghazi University, Dera Ghazi Khan-32200, Punjab. Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore. Pakistan
| |
Collapse
|
27
|
Cheng Z, O'Brien K, Howe J, Sullivan C, Schrier D, Lynch A, Jungles S, Sabbagh Y, Thompson D. INZ-701 Prevents Ectopic Tissue Calcification and Restores Bone Architecture and Growth in ENPP1-Deficient Mice. J Bone Miner Res 2021; 36:1594-1604. [PMID: 33900645 DOI: 10.1002/jbmr.4315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the major enzyme that cleaves extracellular adenosine triphosphate (ATP) to generate pyrophosphate (PPi), an inorganic metabolite with potent anticalcification activity. Loss-of-function mutations cause hypopyrophosphatemia and lead to a state of ENPP1 deficiency, which has an acute infantile phase known as generalized arterial calcification of infancy (GACI) and a pediatric to adult phase known as autosomal-recessive hypophosphatemic rickets type 2 (ARHR2). ENPP1 deficiency manifests as ectopic calcification of multiple tissues, neointimal proliferation, premature mortality, impaired growth, and bone deformities. INZ-701, a human ENPP1-Fc protein, is in clinical development as an enzyme replacement therapy for the treatment of ENPP1 deficiency. The pharmacokinetic and pharmacodynamic profile and therapeutic effect of INZ-701 were investigated in Enpp1asj/asj mice, a murine model of ENPP1 deficiency. Enpp1asj/asj mice have undetectable plasma PPi, lower plasma phosphate, and higher FGF23 levels compared with wild-type (WT) mice. Enpp1asj/asj mice on the acceleration diet, containing high phosphate and low magnesium, quickly develop clinical signs, including dehydration, rough hair coat, pinned ears, stiffed legs, and hunched back. Enpp1asj/asj mice treated with vehicle had aforementioned clinical signs plus severe ectopic calcification in multiple tissues and bone defects, characteristics of the clinical phenotype observed in GACI and ARHR2 patients. Our results showed a durable PPi response for more than 3 days after a single dose of INZ-701. Treatment of ENPP1-deficient mice every other day with INZ-701 for 8 weeks restored circulating levels of PPi, prevented pathological calcification in all the tested organs, restored growth parameters, corrected bone defects, improved clinical signs, and decreased mortality in Enpp1asj/asj mice, demonstrating the potential of INZ-701 to treat ENPP1 deficiency. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
|
28
|
Sun F, Suttapitugsakul S, Wu R. An Azo Coupling-Based Chemoproteomic Approach to Systematically Profile the Tyrosine Reactivity in the Human Proteome. Anal Chem 2021; 93:10334-10342. [PMID: 34251175 PMCID: PMC8525517 DOI: 10.1021/acs.analchem.1c01935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The tyrosine residue of proteins participates in a wide range of activities including enzymatic catalysis, protein-protein interaction, and protein-ligand binding. However, the functional annotation of the tyrosine residues on a large scale is still very challenging. Here, we report a novel method integrating azo coupling, bioorthogonal chemistry, and multiplexed proteomics to globally investigate the tyrosine reactivity in the human proteome. Based on the azo-coupling reaction between aryl diazonium salt and the tyrosine residue, two different probes were evaluated, and the probe with the best performance was employed to further study the tyrosine residues in the human proteome. Then, tagged tyrosine-containing peptides were selectively enriched using bioorthogonal chemistry, and after the cleavage, a small tag on the peptides perfectly fits for site-specific analysis by MS. Coupling with multiplexed proteomics, we quantified over 5000 tyrosine sites in MCF7 cells, and these quantified sites displayed a wide range of reactivity. The tyrosine residues with high reactivity were found on functionally and structurally diverse proteins, including those with the catalytic activity and binding property. This method can be extensively applied to advance our understanding of protein functions and facilitate the development of covalent drugs to regulate protein activity.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021; 234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.
Collapse
Affiliation(s)
- Emma N Bardsley
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Dylan K Pen
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Fiona D McBryde
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Anthony P Ford
- CuraSen, 930 Brittan Avenue #306, San Carlos, CA 94070, USA
| | - Julian F R Paton
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand.
| |
Collapse
|
30
|
Gasparrini M, Sorci L, Raffaelli N. Enzymology of extracellular NAD metabolism. Cell Mol Life Sci 2021; 78:3317-3331. [PMID: 33755743 PMCID: PMC8038981 DOI: 10.1007/s00018-020-03742-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
31
|
Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:421-434. [PMID: 33342311 DOI: 10.1080/13543776.2021.1867106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The ATX-LPA axis is an attractive target for therapeutic intervention in a variety of diseases, such as tumor metastasis, fibrosis, pruritus, multiple sclerosis, inflammation, autoimmune conditions, metabolic syndrome, and so on. Accordingly, considerable efforts have been devoted to the development of new chemical entities capable of modulating the ATX-LPA axis. AREAS COVERED This review aims to provide an overview of novel ATX inhibitors reported in patents from September 2016 to August 2020, discussing their structural characteristics and inhibitory potency in vitro and in vivo. EXPERT OPINION In the past four years, the classification of ATX inhibitors based on binding modes has brought great benefits to the discovery of more efficacious inhibitors. In addition to GLPG1690 currently in phase III clinical studies for IPF, BBT-877, and BLD-0409 as potent ATX inhibitors have been enrolled in phase I clinical evaluation; meanwhile, many effective molecules were also reported successively. However, most emerging ATX inhibitors in the last four years are closely analogs of previous entities, such as GLPG1690 and PF-8380, which translate into the urgently identification of ATX inhibitors with diverse structural features and promising properties in the near future.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
32
|
Carozza JA, Brown JA, Böhnert V, Fernandez D, AlSaif Y, Mardjuki RE, Smith M, Li L. Structure-Aided Development of Small-Molecule Inhibitors of ENPP1, the Extracellular Phosphodiesterase of the Immunotransmitter cGAMP. Cell Chem Biol 2020; 27:1347-1358.e5. [PMID: 32726585 PMCID: PMC7680421 DOI: 10.1016/j.chembiol.2020.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Cancer cells initiate an innate immune response by synthesizing and exporting the small-molecule immunotransmitter cGAMP, which activates the anti-cancer Stimulator of Interferon Genes (STING) pathway in the host. An extracellular enzyme, ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), hydrolyzes cGAMP and negatively regulates this anti-cancer immune response. Small-molecule ENPP1 inhibitors are much needed as tools to study the basic biology of extracellular cGAMP and as investigational cancer immunotherapy drugs. Here, we surveyed structure-activity relationships around a series of cell-impermeable and thus extracellular-targeting phosphonate inhibitors of ENPP1. In addition, we solved the crystal structure of an exemplary phosphonate inhibitor to elucidate the interactions that drive potency. This study yielded several best-in-class inhibitors with Ki < 2 nM and excellent physicochemical and pharmacokinetic properties. Finally, we demonstrate that an ENPP1 inhibitor delays tumor growth in a breast cancer mouse model. Together, we have developed ENPP1 inhibitors that are excellent tool compounds and potential therapeutics.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/isolation & purification
- Neurotransmitter Agents/metabolism
- Nucleotides, Cyclic/chemistry
- Nucleotides, Cyclic/isolation & purification
- Nucleotides, Cyclic/metabolism
- Phosphoric Diester Hydrolases/metabolism
- Pyrophosphatases/antagonists & inhibitors
- Pyrophosphatases/metabolism
- Small Molecule Libraries/chemical synthesis
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jacqueline A Carozza
- Department of Chemistry, Stanford University, Stanford, CA 93405, USA; Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA
| | - Jenifer A Brown
- Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA; Biophysics Program, Stanford University, Stanford, CA 93405, USA
| | - Volker Böhnert
- Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA; Department of Biochemistry, Stanford University, Stanford, CA 93405, USA
| | - Daniel Fernandez
- Stanford ChEM-H Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA 93405, USA
| | - Yasmeen AlSaif
- Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA; Department of Biology, Stanford University, Stanford, CA 93405, USA
| | - Rachel E Mardjuki
- Department of Chemistry, Stanford University, Stanford, CA 93405, USA; Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA
| | - Mark Smith
- Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford, CA 93405, USA
| | - Lingyin Li
- Stanford ChEM-H, Stanford University, Stanford, CA 93405, USA; Department of Biochemistry, Stanford University, Stanford, CA 93405, USA.
| |
Collapse
|
33
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Anbar HS, El-Gamal R, Ullah S, Zaraei SO, Al-Rashida M, Zaib S, Pelletier J, Sévigny J, Iqbal J, El-Gamal MI. Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorg Chem 2020; 104:104305. [PMID: 33017718 DOI: 10.1016/j.bioorg.2020.104305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Seyed-Omar Zaraei
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
35
|
Dennis ML, Newman J, Dolezal O, Hattarki M, Surjadi RN, Nuttall SD, Pham T, Nebl T, Camerino M, Khoo PS, Monahan BJ, Peat TS. Crystal structures of human ENPP1 in apo and bound forms. Acta Crystallogr D Struct Biol 2020; 76:889-898. [PMID: 32876064 PMCID: PMC7466750 DOI: 10.1107/s2059798320010505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022] Open
Abstract
Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides. Here, the first X-ray crystal structures of the human ENPP1 enzyme in an apo form, with bound nucleotides and with two known inhibitors are presented. The availability of these structures and a robust crystallization system will allow the development of structure-based drug-design campaigns against this attractive cancer therapeutic target.
Collapse
Affiliation(s)
- Matthew L. Dennis
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
- Cancer Therapeutics CRC, Parkville, VIC 3052, Australia
| | - Janet Newman
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Olan Dolezal
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Meghan Hattarki
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Regina N. Surjadi
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Stewart D. Nuttall
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Tam Pham
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Tom Nebl
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Michelle Camerino
- Cancer Therapeutics CRC, Parkville, VIC 3052, Australia
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Poh Sim Khoo
- Cancer Therapeutics CRC, Parkville, VIC 3052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Brendon J. Monahan
- Cancer Therapeutics CRC, Parkville, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas S. Peat
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
36
|
Sabatucci A, Pintus F, Cabras T, Vincenzoni F, Maccarrone M, Medda R, Dainese E. Structure of a nucleotide pyrophosphatase/phosphodiesterase (NPP) from Euphorbia characias latex characterized by small-angle X-ray scattering: clues for the general organization of plant NPPs. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:857-867. [PMID: 32876061 DOI: 10.1107/s2059798320010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Little information is available concerning the structural features of nucleotide pyrophosphatase/phosphodiesterases (NPPs) of plant origin and the crystal structures of these proteins have not yet been reported. The aim of this study was to obtain insight into these aspects by carrying out a comparative analysis of the sequences of two different fragments of an NPP from the latex of the Mediterranean shrub Euphorbia characias (ELNPP) and by studying the low-resolution structure of the purified protein in solution by means of small-angle X-ray scattering. This is the first structure of a plant NPP in solution that has been reported to date. It is shown that the ELNPP sequence is highly conserved in many other plant species. Of note, the catalytic domains of these plant NPPs have the same highly conserved PDE-domain organization as mammalian NPPs. Moreover, ELNPP is a dimer in solution and this oligomerization state is likely to be common to other plant enzymes.
Collapse
Affiliation(s)
- Annalaura Sabatucci
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico University, Via Álvaro del Portillo 21, 00128 Roma, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Enrico Dainese
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
37
|
Kotwal A, Ferrer A, Kumar R, Singh RJ, Murthy V, Schultz-Rogers L, Zimmermann M, Lanpher B, Zimmerman K, Stabach PR, Klee E, Braddock DT, Wermers RA. Clinical and Biochemical Phenotypes in a Family With ENPP1 Mutations. J Bone Miner Res 2020; 35:662-670. [PMID: 31826312 PMCID: PMC7771569 DOI: 10.1002/jbmr.3938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
Inactivating mutations of the ENPP1 gene are associated with generalized arterial calcification of infancy (GACI) and less often autosomal-recessive hypophosphatemic rickets type 2 (ARHR2). We aimed to investigate the spectrum of phenotypes in a family with monoallelic and biallelic mutations of ENPP1 after identification through whole exome sequencing of a 54-year-old female with biallelic mutation of ENPP1, c.323G > T; p.Cys108Phe and c.1441C > T; p.Arg481Trp. Including the proband, 2 subjects had biallelic mutations, 5 had monoallelic mutations, and 2 had no mutation of ENPP1. The maternal mutation, a known pathogenic variant associated with GACI, was found in 3 subjects with monoallelic mutations, while the paternal mutation, which was not previously reported, was present in 2 subjects with monoallelic mutations. Both subjects with biallelic mutations had bowing of bilateral femurs, periarticular mineral deposition, normocalcemic primary hyperparathyroidism with multigland parathyroidectomy, increased carotid intima-media thickness, and enthesopathy was also noted in one subject. Intact FGF23 was elevated in both subjects with biallelic mutations, while C-terminal FGF23 was only elevated in one and PPi was reduced in one. Subjects with monoallelic mutations did not have periarticular calcifications or bone deformities. To conclude, patients with biallelic GACI causing mutations can survive well into adulthood, and despite the same biallelic ENPP1 pathogenic variants, clinical and biochemical manifestations can significantly differ, and include enthesopathy and primary hyperparathyroidism, which have not been previously described. Although carriers of monoallelic ENPP1 variants appear unaffected by classic disease manifestations, there may be subtle biochemical and clinical findings that warrant further investigation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anupam Kotwal
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Kumar
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA.,Department of Medicine and Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vishakantha Murthy
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Laura Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Michael Zimmermann
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brendan Lanpher
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Paul R Stabach
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Wermers
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Sikura KÉ, Potor L, Szerafin T, Oros M, Nagy P, Méhes G, Hendrik Z, Zarjou A, Agarwal A, Posta N, Torregrossa R, Whiteman M, Fürtös I, Balla G, Balla J. Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease. Br J Pharmacol 2020; 177:793-809. [PMID: 31017307 PMCID: PMC7024713 DOI: 10.1111/bph.14691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcification of heart valves is a frequent pathological finding in chronic kidney disease and in elderly patients. Hydrogen sulfide (H2 S) may exert anti-calcific actions. Here we investigated H2 S as an inhibitor of valvular calcification and to identify its targets in the pathogenesis. EXPERIMENTAL APPROACH Effects of H2 S on osteoblastic transdifferentiation of valvular interstitial cells (VIC) isolated from samples of human aortic valves were studied using immunohistochemistry and western blots. We also assessed H2S on valvular calcification in apolipoprotein E-deficient (ApoE-/- ) mice. KEY RESULTS In human VIC, H2 S from donor compounds (NaSH, Na2 S, GYY4137, AP67, and AP72) inhibited mineralization/osteoblastic transdifferentiation, dose-dependently in response to phosphate. Accumulation of calcium in the extracellular matrix and expression of osteocalcin and alkaline phosphatase was also inhibited. RUNX2 was not translocated to the nucleus and phosphate uptake was decreased. Pyrophosphate generation was increased via up-regulating ENPP2 and ANK1. Lowering endogenous production of H2 S by concomitant silencing of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) favoured VIC calcification. analysis of human specimens revealed higher Expression of CSE in aorta stenosis valves with calcification (AS) was higher than in valves of aortic insufficiency (AI). In contrast, tissue H2 S generation was lower in AS valves compared to AI valves. Valvular calcification in ApoE-/- mice on a high-fat diet was inhibited by H2 S. CONCLUSIONS AND IMPLICATIONS The endogenous CSE-CBS/H2 S system exerts anti-calcification effects in heart valves providing a novel therapeutic approach to prevent hardening of valves. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Katalin Éva Sikura
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Pediatrics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Potor
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Pediatrics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Tamás Szerafin
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Cardiac Surgery, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Melinda Oros
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Péter Nagy
- Department of Molecular Immunology and ToxicologyNational Institute of OncologyBudapestHungary
| | - Gábor Méhes
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of PathologyUniversity of Debrecen, Faculty of MedicineDebrecenHungary
| | - Zoltán Hendrik
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of PathologyUniversity of Debrecen, Faculty of MedicineDebrecenHungary
| | - Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Niké Posta
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | | | - Matthew Whiteman
- College of Medicine and HealthUniversity of Exeter Medical SchoolExeterUK
| | - Ibolya Fürtös
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - György Balla
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - József Balla
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Pediatrics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
39
|
Do HH, Ullah S, Villinger A, Lecka J, Sévigny J, Ehlers P, Iqbal J, Langer P. Palladium-catalyzed synthesis and nucleotide pyrophosphatase inhibition of benzo[4,5]furo[3,2- b]indoles. Beilstein J Org Chem 2019; 15:2830-2839. [PMID: 31807218 PMCID: PMC6880817 DOI: 10.3762/bjoc.15.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023] Open
Abstract
A two-step palladium-catalyzed procedure based on Suzuki–Miyaura cross coupling, followed by a double Buchwald–Hartwig reaction, allows for the synthesis of pharmaceutically relevant benzo[4,5]furo[3,2-b]indoles in moderate to very good yield. The synthesized compounds have been analyzed with regard to their inhibitory activity (IC50) of nucleotide pyrophosphatases h-NPP1 and h-NPP3. The activity lies in the nanomolar range. The results were rationalized based on docking studies.
Collapse
Affiliation(s)
- Hoang Huy Do
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Faculty of Chemistry, VNU Hanoi University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 110403, Vietnam
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
40
|
Ullah A, Ullah K, Ali H, Betzel C, Ur Rehman S. The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity Among Snake Venom Phosphodiesterases. Toxins (Basel) 2019; 11:E625. [PMID: 31661911 PMCID: PMC6891707 DOI: 10.3390/toxins11110625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
(1) Background. Snake venom phosphodiesterases (SVPDEs) are among the least studied venom enzymes. In envenomation, they display various pathological effects, including induction of hypotension, inhibition of platelet aggregation, edema, and paralysis. Until now, there have been no 3D structural studies of these enzymes, thereby preventing structure-function analysis. To enable such investigations, the present work describes the model-based structural and functional characterization of a phosphodiesterase from Crotalusadamanteus venom, named PDE_Ca. (2) Methods. The PDE_Ca structure model was produced and validated using various software (model building: I-TESSER, MODELLER 9v19, Swiss-Model, and validation tools: PROCHECK, ERRAT, Molecular Dynamic Simulation, and Verif3D). (3) Results. The proposed model of the enzyme indicates that the 3D structure of PDE_Ca comprises four domains, a somatomedin B domain, a somatomedin B-like domain, an ectonucleotide pyrophosphatase domain, and a DNA/RNA non-specific domain. Sequence and structural analyses suggest that differences in length and composition among homologous snake venom sequences may account for their differences in substrate specificity. Other properties that may influence substrate specificity are the average volume and depth of the active site cavity. (4) Conclusion. Sequence comparisons indicate that SVPDEs exhibit high sequence identity but comparatively low identity with mammalian and bacterial PDEs.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY. Build. 22a, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
41
|
Kawaguchi M, Han X, Hisada T, Nishikawa S, Kano K, Ieda N, Aoki J, Toyama T, Nakagawa H. Development of an ENPP1 Fluorescence Probe for Inhibitor Screening, Cellular Imaging, and Prognostic Assessment of Malignant Breast Cancer. J Med Chem 2019; 62:9254-9269. [DOI: 10.1021/acs.jmedchem.9b01213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Xiang Han
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tomoka Hisada
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Sayaka Nishikawa
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tatsuya Toyama
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
42
|
Staretz-Chacham O, Shukrun R, Barel O, Pode-Shakked B, Pleniceanu O, Anikster Y, Shalva N, Ferreira CR, Ben-Haim Kadosh A, Richardson J, Mane SM, Hildebrandt F, Vivante A. Novel homozygous ENPP1 mutation causes generalized arterial calcifications of infancy, thrombocytopenia, and cardiovascular and central nervous system syndrome. Am J Med Genet A 2019; 179:2112-2118. [PMID: 31444901 DOI: 10.1002/ajmg.a.61334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
Generalized arterial calcifications of infancy (GACI) is caused by mutations in ENPP1. Other ENPP1-related phenotypes include pseudoxanthoma elasticum, hypophosphatemic rickets, and Cole disease. We studied four children from two Bedouin consanguineous families who presented with severe clinical phenotype including thrombocytopenia, hypoglycemia, hepatic, and neurologic manifestations. Initial working diagnosis included congenital infection; however, patients remained without a definitive diagnosis despite extensive workup. Consequently, we investigated a potential genetic etiology. Whole exome sequencing (WES) was performed for affected children and their parents. Following the identification of a novel mutation in the ENPP1 gene, we characterized this novel multisystemic presentation and revised relevant imaging studies. Using WES, we identified a novel homozygous mutation (c.556G > C; p.Gly186Arg) in ENPP1 which affects a highly conserved protein domain (somatomedin B2). ENPP1-associated genetic diseases exhibit phenotypic heterogeneity depending on mutation type and location. Follow-up clinical characterization of these families allowed us to revise and detect new features of systemic calcifications, which established the diagnosis of GACI, expanding the phenotypic spectrum associated with ENPP1 mutations. Our findings demonstrate that this novel ENPP1 founder mutation can cause a fatal multisystemic phenotype, mimicking severe congenital infection. This also represents the first reported mutation affecting the SMB2 domain, associated with GACI.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Metabolic Clinic, Pediatric Division, Soroka Medical Center, Ben-Gurion University, Be'er Sheva, Israel.,Department of Neonatology, Soroka University Medical Center, Faculty of Health Sciences, School of Medicine, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Shukrun
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Talpiot Medical Leadership Program, Department of Pediatrics B and Pediatric Nephrology Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Oren Pleniceanu
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Anikster
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Nechama Shalva
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Admit Ben-Haim Kadosh
- Department of Neonatology, Soroka University Medical Center, Faculty of Health Sciences, School of Medicine, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Justin Richardson
- Department of Neonatology, Soroka University Medical Center, Faculty of Health Sciences, School of Medicine, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Asaf Vivante
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Department of Pediatrics B and Pediatric Nephrology Unit, Sheba Medical Center, Ramat-Gan, Israel.,Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
El-Gamal MI, Ullah S, Zaraei SO, Jalil S, Zaib S, Zaher DM, Omar HA, Anbar HS, Pelletier J, Sévigny J, Iqbal J. Synthesis, biological evaluation, and docking studies of new raloxifene sulfonate or sulfamate derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Eur J Med Chem 2019; 181:111560. [PMID: 31382118 DOI: 10.1016/j.ejmech.2019.07.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
A new series of raloxifene sulfonate/sulfamate derivatives were designed and synthesized. The target compounds were tested for inhibitory effect against nucleotide pyrophosphatase/phosphodiesterase-1 and -3 (NPP1 and NPP3) enzymes. Furthermore, all the ten target compounds were subjected to cytotoxic studies on various cancer cell lines, and the most potent derivatives were explored for their potency against these cancer cell lines as well as F180 fibroblasts to investigate the selectivity indexes. Compound 1f exerted the highest potency against HT-29 colon cancer cell line (IC50 = 1.4 μM) with 8.43-fold selectivity towards HT-29 than F180 fibroblasts. Compound 1f exerted sub-micromolar IC50 values against NPP1 and NPP3 (IC50 = 0.29 μM and 0.71 μM, respectively). The most potent inhibitors were docked in developed homology model of NPP1 and crystal structure of NPP3. All the docked analogues manifested remarkable interactions within the active pocket of NPP1 and NPP3.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hanan S Anbar
- Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
44
|
Semreen MH, El-Gamal MI, Ullah S, Jalil S, Zaib S, Anbar HS, Lecka J, Sévigny J, Iqbal J. Synthesis, biological evaluation, and molecular docking study of sulfonate derivatives as nucleotide pyrophosphatase/phosphodiesterase (NPP) inhibitors. Bioorg Med Chem 2019; 27:2741-2752. [PMID: 31088715 DOI: 10.1016/j.bmc.2019.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A new series of sulfonate derivatives 1a-zk were synthesized and evaluated as inhibitors of nucleotide pyrophosphatases. Most of the compounds exhibited good to moderate inhibition towards NPP1, NPP2, and NPP3 isozymes. Compound 1m was a potent and selective inhibitor of NPP1 with an IC50 value of 0.387 ± 0.007 µM. However, the most potent inhibitor of NPP3 was found as 1x with an IC50 value of 0.214 ± 0.012 µM. In addition, compound 1e was the most active inhibitor of NPP2 with an IC50 value of 0.659 ± 0.007 µM. Docking studies of the most potent compounds were carried out, and the computational results supported the in vitro results.
Collapse
Affiliation(s)
- Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hanan S Anbar
- Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
45
|
Sikura KÉ, Potor L, Szerafin T, Zarjou A, Agarwal A, Arosio P, Poli M, Hendrik Z, Méhes G, Oros M, Posta N, Beke L, Fürtös I, Balla G, Balla J. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler Thromb Vasc Biol 2019; 39:413-431. [PMID: 30700131 PMCID: PMC6393195 DOI: 10.1161/atvbaha.118.312191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.
Collapse
Affiliation(s)
- Katalin Éva Sikura
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Tamás Szerafin
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zoltán Hendrik
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Melinda Oros
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Niké Posta
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Lívia Beke
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Ibolya Fürtös
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| |
Collapse
|
46
|
Tintut Y, Hsu JJ, Demer LL. Lipoproteins in Cardiovascular Calcification: Potential Targets and Challenges. Front Cardiovasc Med 2018; 5:172. [PMID: 30533416 PMCID: PMC6265366 DOI: 10.3389/fcvm.2018.00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Previously considered a degenerative process, cardiovascular calcification is now established as an active process that is regulated in several ways by lipids, phospholipids, and lipoproteins. These compounds serve many of the same functions in vascular and valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which leads to formation of mildly oxidized phospholipids, which are known bioactive factors in vascular cell calcification. One lipoprotein of particular interest is Lp(a), which showed genome-wide significance for the presence of aortic valve calcification and stenosis. It carries an important enzyme, autotaxin, which produces lysophosphatidic acid (LPA), and thus has a key role in inflammation among other functions. Matrix vesicles, extruded from the plasma membrane of cells, are the sites of initiation of mineral formation. Phosphatidylserine, a phospholipid in the membranes of matrix vesicles, is believed to complex with calcium and phosphate ions, creating a nidus for hydroxyapatite crystal formation in cardiovascular as well as in skeletal bone mineralization. This review focuses on the contributions of lipids, phospholipids, lipoproteins, and autotaxin in cardiovascular calcification, and discusses possible therapeutic targets.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Döhler C, Zebisch M, Krinke D, Robitzki A, Sträter N. Crystallization of ectonucleotide phosphodiesterase/pyrophosphatase-3 and orientation of the SMB domains in the full-length ectodomain. Acta Crystallogr F Struct Biol Commun 2018; 74:696-703. [PMID: 30387774 PMCID: PMC6213977 DOI: 10.1107/s2053230x18011111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/03/2018] [Indexed: 11/11/2022] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3, ENPP3) is an ATP-hydrolyzing glycoprotein that is located in the extracellular space. The full-length ectodomain of rat NPP3 was expressed in HEK293S GntI- cells, purified using two chromatographic steps and crystallized. Its structure at 2.77 Å resolution reveals that the active-site zinc ions are missing and a large part of the active site and the surrounding residues are flexible. The SMB-like domains have the same orientation in all four molecules in the asymmetric unit. The SMB2 domain is oriented as in NPP2, but the SMB1 domain does not interact with the PDE domain but extends further away from the PDE domain. Deletion of the SMB domains resulted in crystals that diffracted to 2.4 Å resolution and are suitable for substrate-binding studies.
Collapse
Affiliation(s)
- Christoph Döhler
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
- Division of Structural Biology, Evotec, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, England
| | - Dana Krinke
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andrea Robitzki
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
48
|
Crystal structure and substrate binding mode of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3). Sci Rep 2018; 8:10874. [PMID: 30022031 PMCID: PMC6052110 DOI: 10.1038/s41598-018-28814-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/12/2018] [Indexed: 01/29/2023] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) is a membrane-bound glycoprotein that regulates extracellular levels of nucleotides. NPP3 is known to contribute to the immune response on basophils by hydrolyzing ATP and to regulate the glycosyltransferase activity in Neuro2a cells. Here, we report on crystal structures of the nuclease and phosphodiesterase domains of rat NPP3 in complex with different substrates, products and substrate analogs giving insight into details of the catalytic mechanism. Complex structures with a phosphate ion, the product AMP and the substrate analog AMPNPP provide a consistent picture of the coordination of the substrate in which one zinc ion activates the threonine nucleophile whereas the other zinc ion binds the phosphate group. Co-crystal structures with the dinucleotide substrates Ap4A and UDPGlcNAc reveal a binding pocket for the larger leaving groups of these substrates. The crystal structures as well as mutational and kinetic analysis demonstrate that the larger leaving groups interact only weakly with the enzyme such that the substrate affinity is dominated by the interactions of the first nucleoside group. For this moiety, the nucleobase is stacked between Y290 and F207 and polar interactions with the protein are only formed via water molecules thus explaining the limited nucleobase selectivity.
Collapse
|
49
|
Gorelik A, Randriamihaja A, Illes K, Nagar B. Structural basis for nucleotide recognition by the ectoenzyme CD203c. FEBS J 2018; 285:2481-2494. [PMID: 29717535 DOI: 10.1111/febs.14489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family modulates purinergic signaling by degrading extracellular nucleotides. CD203c (NPP3, ENPP3) regulates the inflammatory response of basophils via ATP hydrolysis and is a marker for allergen sensitivity on the surface of these cells. Multiple other roles and substrates have also been proposed for this protein. In order to gain insight into its molecular functions, we determined the crystal structure of human NPP3 as well as its complex with an ATP analog. The enzyme exhibits little preference for nucleobase type, and forms specific contacts with the alpha and beta phosphate groups of its ligands. Dimerization of the protein does not affect its catalytic activity. These findings expand our understanding of substrate recognition within the NPP family. DATABASE Structural data are available in the Protein Data Bank under the accession numbers 6C01 (human NPP3) and 6C02 (human NPP3 T205A N594S with AMPCPP).
Collapse
Affiliation(s)
- Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Antsa Randriamihaja
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Synthesis and biological evaluation of novel quinazoline-4-piperidinesulfamide derivatives as inhibitors of NPP1. Eur J Med Chem 2018; 147:130-149. [PMID: 29427906 DOI: 10.1016/j.ejmech.2018.01.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 11/27/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) was recently shown to promote mineralization of the aortic valve, hence, its inhibition represents a significant target. A quinazoline-4-piperidine sulfamide compound (QPS1) has been described as a specific and non-competitive inhibitor of NPP1. We report herein the synthesis and in vitro inhibition studies of novel quinazoline-4-piperidine sulfamide analogues using QPS1 as the lead compound. Of the 26 derivatives prepared, four compounds were found to have Ki < 105 nM against human NPP1.
Collapse
|