1
|
Bodt SML, Ge J, Ma W, Rasicci DV, Desetty R, McCammon JA, Yengo CM. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release. PNAS NEXUS 2024; 3:pgae279. [PMID: 39108304 PMCID: PMC11302452 DOI: 10.1093/pnasnexus/pgae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity (k cat) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal (K ATPase). We also found a twofold to fourfold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio threefold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.
Collapse
Affiliation(s)
- Skylar M L Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Jinghua Ge
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Wen Ma
- Department of Physics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, 64 Medical Center Dr, Morgantown, WV 26506, USA
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
3
|
Chinthalapudi K, Heissler SM. Structure, regulation, and mechanisms of nonmuscle myosin-2. Cell Mol Life Sci 2024; 81:263. [PMID: 38878079 PMCID: PMC11335295 DOI: 10.1007/s00018-024-05264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Behbehani R, Johnson C, Holmes AJ, Gratian MJ, Mulvihill DP, Buss F. The two C. elegans class VI myosins, SPE-15/HUM-3 and HUM-8, share similar motor properties, but have distinct developmental and tissue expression patterns. Front Physiol 2024; 15:1368054. [PMID: 38660538 PMCID: PMC11040104 DOI: 10.3389/fphys.2024.1368054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Myosins of class VI move toward the minus-end of actin filaments and play vital roles in cellular processes such as endocytosis, autophagy, protein secretion, and the regulation of actin filament dynamics. In contrast to the majority of metazoan organisms examined to date which contain a single MYO6 gene, C. elegans, possesses two MYO6 homologues, SPE-15/HUM-3 and HUM-8. Through a combination of in vitro biochemical/biophysical analysis and cellular assays, we confirmed that both SPE-15/HUM-3 and HUM-8 exhibit reverse directionality, velocities, and ATPase activity similar to human MYO6. Our characterization also revealed that unlike SPE-15/HUM-3, HUM-8 is expressed as two distinct splice isoforms, one with an additional unique 14 amino acid insert in the cargo-binding domain. While lipid and adaptor binding sites are conserved in SPE-15/HUM-3 and HUM-8, this conservation does not enable recruitment to endosomes in mammalian cells. Finally, we performed super-resolution confocal imaging on transgenic worms expressing either mNeonGreen SPE-15/HUM-3 or wrmScarlet HUM-8. Our results show a clear distinction in tissue distribution between SPE-15/HUM-3 and HUM-8. While SPE-15/HUM-3 exhibited specific expression in the gonads and neuronal tissue in the head, HUM-8 was exclusively localized in the intestinal epithelium. Overall, these findings align with the established tissue distributions and localizations of human MYO6.
Collapse
Affiliation(s)
- Ranya Behbehani
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chloe Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alexander J. Holmes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Bodt SML, Ge J, Ma W, Rasicci DV, Desetty R, McCammon JA, Yengo CM. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566646. [PMID: 38014187 PMCID: PMC10680644 DOI: 10.1101/2023.11.10.566646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (3-fold) the maximum steady-state actin-activated ATPase activity (kcat) and decreases (6-fold) the actin concentration at which ATPase is one-half maximal (KATPase). We also found a 3 to 4-fold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio 3-fold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt-bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt-bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.
Collapse
Affiliation(s)
- Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jinghua Ge
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Wen Ma
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
7
|
Akter F, Ochala J, Fornili A. Binding pocket dynamics along the recovery stroke of human β-cardiac myosin. PLoS Comput Biol 2023; 19:e1011099. [PMID: 37200380 DOI: 10.1371/journal.pcbi.1011099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human β-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.
Collapse
Affiliation(s)
- Fariha Akter
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, København N, Denmark
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Kelsen A, Kent RS, Snyder AK, Wehri E, Bishop SJ, Stadler RV, Powell C, Martorelli di Genova B, Rompikuntal PK, Boulanger MJ, Warshaw DM, Westwood NJ, Schaletzky J, Ward GE. MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii. PLoS Biol 2023; 21:e3002110. [PMID: 37155705 PMCID: PMC10185354 DOI: 10.1371/journal.pbio.3002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.
Collapse
Affiliation(s)
- Anne Kelsen
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Anne K. Snyder
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Stephen J. Bishop
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cameron Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Bruno Martorelli di Genova
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Pramod K. Rompikuntal
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
9
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Meller A, Lotthammer JM, Smith LG, Novak B, Lee LA, Kuhn CC, Greenberg L, Leinwand LA, Greenberg MJ, Bowman GR. Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. eLife 2023; 12:e83602. [PMID: 36705568 PMCID: PMC9995120 DOI: 10.7554/elife.83602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 μM vs. 0.36 μM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Louis G Smith
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Catherine C Kuhn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
11
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
12
|
Vahokoski J, Calder LJ, Lopez AJ, Molloy JE, Kursula I, Rosenthal PB. High-resolution structures of malaria parasite actomyosin and actin filaments. PLoS Pathog 2022; 18:e1010408. [PMID: 35377914 PMCID: PMC9037914 DOI: 10.1371/journal.ppat.1010408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/25/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.
Collapse
Affiliation(s)
- Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justin E. Molloy
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Pacentine IV, Barr-Gillespie PG. Cy3-ATP labeling of unfixed, permeabilized mouse hair cells. Sci Rep 2021; 11:23855. [PMID: 34903829 PMCID: PMC8668996 DOI: 10.1038/s41598-021-03365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
ATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia of the mouse. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. In many cases, vanadate (Vi) traps nucleotides at the active site of myosin isoforms and presents nucleotide dissociation. Co-application with Vi enhanced the tip labeling, which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced—but did not disappear altogether—in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.
Collapse
Affiliation(s)
- Itallia V Pacentine
- Oregon Hearing Research Center & Vollum Institute, Mail Code L335A, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Mail Code L335A, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Cardiomyopathy mutations impact the actin-activated power stroke of human cardiac myosin. Biophys J 2021; 120:2222-2236. [PMID: 33864791 DOI: 10.1016/j.bpj.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac muscle contraction is driven by the molecular motor myosin, which uses the energy from ATP hydrolysis to generate a power stroke when interacting with actin filaments, although it is unclear how this mechanism is impaired by mutations in myosin that can lead to heart failure. We have applied a fluorescence resonance energy transfer (FRET) strategy to investigate structural changes in the lever arm domain of human β-cardiac myosin subfragment 1 (M2β-S1). We exchanged the human ventricular regulatory light chain labeled at a single cysteine (V105C) with Alexa 488 onto M2β-S1, which served as a donor for Cy3ATP bound to the active site. We monitored the FRET signal during the actin-activated product release steps using transient kinetic measurements. We propose that the fast phase measured with our FRET probes represents the macroscopic rate constant associated with actin-activated rotation of the lever arm during the power stroke in M2β-S1. Our results demonstrated M2β-S1 has a slower actin-activated power stroke compared with fast skeletal muscle myosin and myosin V. Measurements at different temperatures comparing the rate constants of the actin-activated power stroke and phosphate release are consistent with a model in which the power stroke occurs before phosphate release and the two steps are tightly coupled. We suggest that the actin-activated power stroke is highly reversible but followed by a highly irreversible phosphate release step in the absence of load and free phosphate. We demonstrated that hypertrophic cardiomyopathy (R723G)- and dilated cardiomyopathy (F764L)-associated mutations both reduced actin activation of the power stroke in M2β-S1. We also demonstrate that both mutations alter in vitro actin gliding in the presence and absence of load. Thus, examining the structural kinetics of the power stroke in M2β-S1 has revealed critical mutation-associated defects in the myosin ATPase pathway, suggesting these measurements will be extremely important for establishing structure-based mechanisms of contractile dysfunction.
Collapse
|
15
|
Gunther LK, Rohde JA, Tang W, Cirilo JA, Marang CP, Scott BD, Thomas DD, Debold EP, Yengo CM. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V. J Biol Chem 2021; 295:17383-17397. [PMID: 33453985 DOI: 10.1074/jbc.ra120.015632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - John A Rohde
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher P Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brent D Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
16
|
Ouyang Z, Zhao S, Yao S, Wang J, Cui Y, Wei K, Jiu Y. Multifaceted Function of Myosin-18, an Unconventional Class of the Myosin Superfamily. Front Cell Dev Biol 2021; 9:632445. [PMID: 33634131 PMCID: PMC7900500 DOI: 10.3389/fcell.2021.632445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.
Collapse
Affiliation(s)
- Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Su Yao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Wang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Brawley J, Etter E, Heredia D, Intasiri A, Nennecker K, Smith J, Welcome BM, Brizendine RK, Gould TW, Bell TW, Cremo C. Synthesis and Evaluation of 4-Hydroxycoumarin Imines as Inhibitors of Class II Myosins. J Med Chem 2020; 63:11131-11148. [PMID: 32894018 PMCID: PMC8244571 DOI: 10.1021/acs.jmedchem.0c01062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships. The properties of analogues, including solubility, stability, and toxicity, suggest that the BHC scaffold may be useful for developing therapeutics. Inhibition of actin-activated ATPase activity of fast skeletal and cardiac muscle myosin II, inhibition of skeletal muscle contractility ex vivo, and slowing of in vitro actin-sliding velocity were measured. Several analogues with aromatic side arms showed improved potency (half-maximal inhibitory concentration (IC50) <1 μM) and selectivity (≥12-fold) for skeletal myosin versus cardiac myosin compared to BHC. Several analogues blocked neurotransmission, suggesting that they are selective for nonmuscle myosin II over skeletal myosin. Competition and molecular docking studies suggest that BHC and blebbistatin bind to the same site on myosin.
Collapse
Affiliation(s)
- Jhonnathan Brawley
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Emily Etter
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0352, United States
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kyle Nennecker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Joshua Smith
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Brandon M Welcome
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Richard K Brizendine
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0352, United States
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Christine Cremo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| |
Collapse
|
18
|
Ewert W, Franz P, Tsiavaliaris G, Preller M. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. Int J Mol Sci 2020; 21:ijms21197417. [PMID: 33049993 PMCID: PMC7582316 DOI: 10.3390/ijms21197417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
The motor protein myosin drives a wide range of cellular and muscular functions by generating directed movement and force, fueled through adenosine triphosphate (ATP) hydrolysis. Release of the hydrolysis product adenosine diphosphate (ADP) is a fundamental and regulatory process during force production. However, details about the molecular mechanism accompanying ADP release are scarce due to the lack of representative structures. Here we solved a novel blebbistatin-bound myosin conformation with critical structural elements in positions between the myosin pre-power stroke and rigor states. ADP in this structure is repositioned towards the surface by the phosphate-sensing P-loop, and stabilized in a partially unbound conformation via a salt-bridge between Arg131 and Glu187. A 5 Å rotation separates the mechanical converter in this conformation from the rigor position. The crystallized myosin structure thus resembles a conformation towards the end of the two-step power stroke, associated with ADP release. Computationally reconstructing ADP release from myosin by means of molecular dynamics simulations further supported the existence of an equivalent conformation along the power stroke that shows the same major characteristics in the myosin motor domain as the resolved blebbistatin-bound myosin-II·ADP crystal structure, and identified a communication hub centered on Arg232 that mediates chemomechanical energy transduction.
Collapse
Affiliation(s)
- Wiebke Ewert
- Institute for Biophysical Chemistry, Structural Bioinformatics and Chemical Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Peter Franz
- Institute for Biophysical Chemistry, Cellular Biophysics, Hannover Medical School, 30625 Hannover, Germany; (P.F.); (G.T.)
| | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, Cellular Biophysics, Hannover Medical School, 30625 Hannover, Germany; (P.F.); (G.T.)
| | - Matthias Preller
- Institute for Biophysical Chemistry, Structural Bioinformatics and Chemical Biology, Hannover Medical School, 30625 Hannover, Germany;
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, 53359 Rheinbach, Germany
- Correspondence: ; Tel.: +49-511-532-2804
| |
Collapse
|
19
|
Undefeated-Changing the phenamacril scaffold is not enough to beat resistant Fusarium. PLoS One 2020; 15:e0235568. [PMID: 32598376 PMCID: PMC7323951 DOI: 10.1371/journal.pone.0235568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022] Open
Abstract
Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.
Collapse
|
20
|
Olkowski AA, Wojnarowicz C, Laarveld B. Pathophysiology and pathological remodelling associated with dilated cardiomyopathy in broiler chickens predisposed to heart pump failure. Avian Pathol 2020; 49:428-439. [PMID: 32301624 DOI: 10.1080/03079457.2020.1757620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Broiler chickens selected for rapid growth are highly susceptible to dilated cardiomyopathy (DCM). In order to elucidate the pathophysiology of DCM, the present study examines the fundamental features of pathological remodelling associated with DCM in broiler chickens using light microscopy, transmission electron microscopy (TEM), and synchrotron Fourier Transform Infrared (FTIR) micro-spectroscopy. The morphological features and FTIR spectra of the left ventricular myocardium were compared among broiler chickens affected by DCM with clinical signs of heart pump failure, apparently normal fast-growing broiler chickens showing signs of subclinical DCM (high risk of heart failure), slow-growing broiler chickens (low risk of heart failure) and Leghorn chickens (resistant to heart failure, used here as physiological reference). The findings indicate that DCM and heart pump failure in fast-growing broiler chickens are a result of a complex metabolic syndrome involving multiple catabolic pathways. Our data indicate that a good deal of DCM pathophysiology in chickens selected for rapid growth is associated with conformational changes of cardiac proteins, and pathological changes indicative of accumulation of misfolded and aggregated proteins in the affected cardiomyocytes. From TEM image analysis it is evident that the affected cardiomyocytes demonstrate significant difficulty in the disposal of damaged proteins and maintenance of proteostasis, which leads to pathological remodelling of the heart and contractile dysfunction. It appears that the underlying causes of accumulation of damaged proteins are associated with dysregulated auto phagosome and proteasome systems, which, in susceptible individuals, create a milieu conducive for the development of DCM and heart failure. RESEARCH HIGHLIGHTS The light and electron microscopy image analyses revealed degenerative changes and protein aggregates in the cardiomyocytes of chickens affected by DCM. The analyses of FTIR spectra of the myocardium revealed that DCM and heart pump failure in broiler chickens are associated with conformational changes of myocardial proteins. The morphological changes in cardiomyocytes and conformational changes in myocardial proteins architecture are integral constituents of pathophysiology of DCM in fast-growing broiler chickens.
Collapse
Affiliation(s)
- A A Olkowski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - C Wojnarowicz
- Prairie Diagnostic Services, Veterinary Pathology, University of Saskatchewan, Saskatoon, Canada
| | - B Laarveld
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
21
|
Deguchi TK, Deguchi H, Guo Z, Elias DJ, Griffin JH. Plasma skeletal muscle myosin phenotypes identified by immunoblotting are associated with pulmonary embolism occurrence in young adults. Thromb Res 2020; 189:88-92. [PMID: 32192996 DOI: 10.1016/j.thromres.2020.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Purified skeletal muscle myosin (SkM) binds factor Xa and is procoagulant. The molecular forms of SkM in human plasma have not been characterized. METHOD Human plasma SkM heavy chain (HC) isoforms of different molecular weights were detected by a newly developed immunoblotting protocol. In this pilot study, the distribution of SkM HC antigen isoforms in plasmas of healthy subjects and young adult patients with venous thrombosis was analyzed. RESULTS Multiple SkM HC antigen bands were detected in human plasmas, corresponding to full-length SkM HC, heavy meromyosin, or the S1 fragment. Plasma immunoblots of healthy subjects displayed three major phenotypes: Type I with two primary bands for full-length SkM and heavy meromyosin, and two lesser bands including S1 fragment (54%); Type II with bands primarily for full-length SkM HC (34%); and Type III with only a band for the S1 fragment (12%). Plasma SkM HC antigen Type II phenotype was associated with an increased occurrence of isolated pulmonary embolism in younger patients, respectively (≤50 years old). CONCLUSIONS Three SkM HC antigen phenotypes were identified in human plasma by immunoblotting, and Type II phenotype was correlated with the occurrence of isolated pulmonary embolisms in younger patients.
Collapse
Affiliation(s)
- Taichi K Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, USA
| | - Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, USA.
| | - Zihan Guo
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, USA
| | - Darlene J Elias
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, USA; Scripps Clinic and Scripps Green Hospital, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, USA; Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Calcium in Cell-Extracellular Matrix Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1079-1102. [PMID: 31646546 DOI: 10.1007/978-3-030-12457-1_43] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.
Collapse
|
23
|
Abstract
Class XVIII myosins represent a branch of the myosin family tree characterized by the presence of large N- and C-terminal extensions flanking a generic myosin core. These myosins display the highest sequence similarity to conventional class II muscle myosins and are compatible with but not restricted to myosin-2 contractile structures. Instead, they fulfill their functions at diverse localities, such as lamella, actomyosin bundles, the Golgi apparatus, focal adhesions, the cell membrane, and within sarcomeres. Sequence comparison of active-site residues and biochemical data available thus far indicate that this myosin class lacks active ATPase-driven motor activity, suggesting that its members function as structural myosins. An emerging body of evidence indicates that this structural capability is essential for the organization, maturation, and regulation of the contractile machinery in both muscle and nonmuscle cells. This is supported by the clear association of myosin-18A (Myo18A) and myosin-18B (Myo18B) dysregulation with diseases such as cancer and various myopathies.
Collapse
|
24
|
Wollenberg RD, Taft MH, Giese S, Thiel C, Balázs Z, Giese H, Manstein DJ, Sondergaard TE. Phenamacril is a reversible and noncompetitive inhibitor of Fusarium class I myosin. J Biol Chem 2019; 294:1328-1337. [PMID: 30504222 PMCID: PMC6349130 DOI: 10.1074/jbc.ra118.005408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/01/2018] [Indexed: 01/03/2023] Open
Abstract
The cyanoacrylate compound phenamacril (also known as JS399-19) is a recently identified fungicide that exerts its antifungal effect on susceptible Fusarium species by inhibiting the ATPase activity of their myosin class I motor domains. Although much is known about the antifungal spectrum of phenamacril, the exact mechanism behind the phenamacril-mediated inhibition remains to be resolved. Here, we describe the characterization of the effect of phenamacril on purified myosin motor constructs from the model plant pathogen and phenamacril-susceptible species Fusarium graminearum, phenamacril-resistant Fusarium species, and the mycetozoan model organism Dictyostelium discoideum Our results show that phenamacril potently (IC50 ∼360 nm), reversibly, and noncompetitively inhibits ATP turnover, actin binding during ATP turnover, and motor activity of F. graminearum myosin-1. Phenamacril also inhibits the ATPase activity of Fusarium avenaceum myosin-1 but has little or no inhibitory effect on the motor activity of Fusarium solani myosin-1, human myosin-1c, and D. discoideum myosin isoforms 1B, 1E, and 2. Our findings indicate that phenamacril is a species-specific, noncompetitive inhibitor of class I myosin in susceptible Fusarium sp.
Collapse
Affiliation(s)
- Rasmus D Wollenberg
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Manuel H Taft
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany
| | - Sven Giese
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany
| | - Claudia Thiel
- Division of Structural Biochemistry, OE8830, Hannover Medical School, 30623 Hannover, Germany
| | - Zoltán Balázs
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Henriette Giese
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany; Division of Structural Biochemistry, OE8830, Hannover Medical School, 30623 Hannover, Germany.
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark.
| |
Collapse
|
25
|
Gunther LK, Rohde JA, Tang W, Walton SD, Unrath WC, Trivedi DV, Muretta JM, Thomas DD, Yengo CM. Converter domain mutations in myosin alter structural kinetics and motor function. J Biol Chem 2018; 294:1554-1567. [PMID: 30518549 DOI: 10.1074/jbc.ra118.006128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
Myosins are molecular motors that use a conserved ATPase cycle to generate force. We investigated two mutations in the converter domain of myosin V (R712G and F750L) to examine how altering specific structural transitions in the motor ATPase cycle can impair myosin mechanochemistry. The corresponding mutations in the human β-cardiac myosin gene are associated with hypertrophic and dilated cardiomyopathy, respectively. Despite similar steady-state actin-activated ATPase and unloaded in vitro motility-sliding velocities, both R712G and F750L were less able to overcome frictional loads measured in the loaded motility assay. Transient kinetic analysis and stopped-flow FRET demonstrated that the R712G mutation slowed the maximum ATP hydrolysis and recovery-stroke rate constants, whereas the F750L mutation enhanced these steps. In both mutants, the fast and slow power-stroke as well as actin-activated phosphate release rate constants were not significantly different from WT. Time-resolved FRET experiments revealed that R712G and F750L populate the pre- and post-power-stroke states with similar FRET distance and distance distribution profiles. The R712G mutant increased the mole fraction in the post-power-stroke conformation in the strong actin-binding states, whereas the F750L decreased this population in the actomyosin ADP state. We conclude that mutations in key allosteric pathways can shift the equilibrium and/or alter the activation energy associated with key structural transitions without altering the overall conformation of the pre- and post-power-stroke states. Thus, therapies designed to alter the transition between structural states may be able to rescue the impaired motor function induced by disease mutations.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - John A Rohde
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Shane D Walton
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - William C Unrath
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Darshan V Trivedi
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Joseph M Muretta
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455
| | - David D Thomas
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033.
| |
Collapse
|
26
|
Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun 2018; 9:4250. [PMID: 30315159 PMCID: PMC6185941 DOI: 10.1038/s41467-018-06713-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the ubiquitously expressed ACTB, which encodes β-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3′-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to β-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these β-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort. Genetic variants in ACTB and ACTG1 have been associated with Baraitser-Winter Cerebrofrontofacial syndrome. Here, the authors report of a syndromic thrombocytopenia caused by variants in ACTB exons 5 or 6 that compromise the organization and coupling of the cytoskeleton, leading to impaired platelet maturation.
Collapse
|
27
|
Ge L, Xu Y, Xia W, Zhao N, Jiang Q. Contribution of myofibril filament disassembly to textural deterioration of ice-stored grass carp fillet: Significance of endogenous proteolytic activity, loss of heat shock protein and dephosphorylation of myosin light chain. Food Chem 2018; 269:511-518. [PMID: 30100467 DOI: 10.1016/j.foodchem.2018.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
To investigate the underlying mechanism of softening of ice-stored grass carp fillet, changes in assembly structure of myofibrillar proteins and potential candidates for regulating this change including myosin regulatory chain phosphorylation, heat shock proteins (Hsp27, Hsp90, αB-crystallin and UNC45) and endogenous protease activity were studied. Comparison of SDS-PAGE pattern of myofibrillar proteins treated with EDC crosslinking showed that thin filament experienced rapid disassembly within initial 8 h, followed by depolymerization of thick filament consisting of myosin, which further exacerbated the myofibril disorganization of fillets. Pearson coefficient analysis showed that UNC45, Hsp90, Hsp27 and αB-crystallin concentration and cathepsin B, D, L activities were significantly correlated with dissociated MHC and actin. Therefore, the significant correlation between shear force and dissociated MHC and actin clearly demonstrated that post mortem disassembly of myofibril filaments, which was regulated by endogenous proteolytic activity and loss of Hsp, contributed to the softening of ice-stored grass carp fillets.
Collapse
Affiliation(s)
- Lihong Ge
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Nan Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
28
|
Wang WB, Liang Y, Zhang J, Wu YD, Du JJ, Li QM, Zhu JZ, Su JG. Energy transport pathway in proteins: Insights from non-equilibrium molecular dynamics with elastic network model. Sci Rep 2018; 8:9487. [PMID: 29934573 PMCID: PMC6015066 DOI: 10.1038/s41598-018-27745-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/08/2018] [Indexed: 11/28/2022] Open
Abstract
Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.
Collapse
Affiliation(s)
- Wei Bu Wang
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yu Liang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Jing Zhang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Yi Dong Wu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Jun Du
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing, 100097, China
| | - Qi Ming Li
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Jian Zhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Ji Guo Su
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
29
|
Abstract
( S)-Blebbistatin, a chiral tetrahydropyrroloquinolinone, is a widely used and well-characterized ATPase inhibitor selective for myosin II. The central role of myosin II in many normal and pathological biological processes has been revealed with the aid of this small molecule. The first part of this manuscript provides a summary of myosin II and ( S)-blebbistatin literature from a medicinal chemist's perspective. The second part of this perspective deals with the physicochemical deficiencies that trouble the use of ( S)-blebbistatin in advanced biological settings: low potency and solubility, fluorescence interference, (photo)toxicity, and stability issues. A large toolbox of analogues has been developed in which particular shortcomings have been addressed. This perspective provides a necessary overview of these developments and presents guidelines for selecting the best available analogue for a given application. As the unmet need for high-potency analogues remains, we also propose starting points for medicinal chemists in search of nanomolar myosin II inhibitors.
Collapse
|
30
|
Cramer JT, Führing JI, Baruch P, Brütting C, Knölker HJ, Gerardy-Schahn R, Fedorov R. Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes T. Cramer
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christian Brütting
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry/Research Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
31
|
Chinthalapudi K, Heissler SM, Preller M, Sellers JR, Manstein DJ. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. eLife 2017; 6:32742. [PMID: 29256864 PMCID: PMC5749951 DOI: 10.7554/elife.32742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/18/2017] [Indexed: 01/10/2023] Open
Abstract
Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å pre-powerstroke state (ADP⋅VO4) crystal structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany.,Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah M Heissler
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Matthias Preller
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | - James R Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Pathan-Chhatbar S, Taft MH, Reindl T, Hundt N, Latham SL, Manstein DJ. Three mammalian tropomyosin isoforms have different regulatory effects on nonmuscle myosin-2B and filamentous β-actin in vitro. J Biol Chem 2017; 293:863-875. [PMID: 29191834 PMCID: PMC5777259 DOI: 10.1074/jbc.m117.806521] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The metazoan actin cytoskeleton supports a wide range of contractile and transport processes. Recent studies have shown how the dynamic association with specific tropomyosin isoforms generates actin filament populations with distinct functional properties. However, critical details of the associated molecular interactions remain unclear. Here, we report the properties of actomyosin–tropomyosin complexes containing filamentous β-actin, nonmuscle myosin-2B (NM-2B) constructs, and either tropomyosin isoform Tpm1.8cy (b.–.b.d), Tpm1.12br (b.–.b.c), or Tpm3.1cy (b.–.a.d). Our results show the extent to which the association of filamentous β-actin with these different tropomyosin cofilaments affects the actin-mediated activation of NM-2B and the release of the ATP hydrolysis products ADP and phosphate from the active site. Phosphate release gates a transition from weak to strong F-actin–binding states. The release of ADP has the opposite effect. These changes in dominant rate-limiting steps have a direct effect on the duty ratio, the fraction of time that NM-2B spends in strongly F-actin–bound states during ATP turnover. The duty ratio is increased ∼3-fold in the presence of Tpm1.12 and 5-fold for both Tpm1.8 and Tpm3.1. The presence of Tpm1.12 extends the time required per ATP hydrolysis cycle 3.7-fold, whereas it is shortened by 27 and 63% in the presence of Tpm1.8 and Tpm3.1, respectively. The resulting Tpm isoform–specific changes in the frequency, duration, and efficiency of actomyosin interactions establish a molecular basis for the ability of these complexes to support cellular processes with widely divergent demands in regard to force production, capacity to move processively, and speed of movement.
Collapse
Affiliation(s)
| | | | | | | | | | - Dietmar J Manstein
- From the Institute for Biophysical Chemistry and .,the Division for Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
33
|
Hashem S, Tiberti M, Fornili A. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. PLoS Comput Biol 2017; 13:e1005826. [PMID: 29108014 PMCID: PMC5690683 DOI: 10.1371/journal.pcbi.1005826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/16/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations.
Collapse
Affiliation(s)
- Shaima Hashem
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Matteo Tiberti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Ušaj M, Henn A. Kinetic adaptation of human Myo19 for active mitochondrial transport to growing filopodia tips. Sci Rep 2017; 7:11596. [PMID: 28912602 PMCID: PMC5599584 DOI: 10.1038/s41598-017-11984-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are actin-based molecular motors which are enzymatically adapted for their cellular functions such as transportation and membrane tethering. Human Myo19 affects mitochondrial motility, and promotes their localization to stress-induced filopodia. Therefore, studying Myo19 enzymology is essential to understand how this motor may facilitate mitochondrial motility. Towards this goal, we have purified Myo19 motor domain (Myo19-3IQ) from a human-cell expression system and utilized transient kinetics to study the Myo19-3IQ ATPase cycle. We found that Myo19-3IQ exhibits noticeable conformational changes (isomerization steps) preceding both ATP and ADP binding, which may contribute to nucleotide binding regulation. Notably, the ADP isomerization step and subsequent ADP release contribute significantly to the rate-limiting step of the Myo19-3IQ ATPase cycle. Both the slow ADP isomerization and ADP release prolong the time Myo19-3IQ spend in the strong actin binding state and hence contribute to its relatively high duty ratio. However, the predicted duty ratio is lower than required to support motility as a monomer. Therefore, it may be that several Myo19 motors are required to propel mitochondria movement on actin filaments efficiently. Finally, we provide a model explaining how Myo19 translocation may be regulated by the local ATP/ADP ratio, coupled to the mitochondria presence in the filopodia.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Arnon Henn
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
35
|
Zattelman L, Regev R, Ušaj M, Reinke PYA, Giese S, Samson AO, Taft MH, Manstein DJ, Henn A. N-terminal splicing extensions of the human MYO1C gene fine-tune the kinetics of the three full-length myosin IC isoforms. J Biol Chem 2017; 292:17804-17818. [PMID: 28893906 DOI: 10.1074/jbc.m117.794008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
The MYO1C gene produces three alternatively spliced isoforms, differing only in their N-terminal regions (NTRs). These isoforms, which exhibit both specific and overlapping nuclear and cytoplasmic functions, have different expression levels and nuclear-cytoplasmic partitioning. To investigate the effect of NTR extensions on the enzymatic behavior of individual isoforms, we overexpressed and purified the three full-length human isoforms from suspension-adapted HEK cells. MYO1CC favored the actomyosin closed state (AMC), MYO1C16 populated the actomyosin open state (AMO) and AMC equally, and MYO1C35 favored the AMO state. Moreover, the full-length constructs isomerized before ADP release, which has not been observed previously in truncated MYO1CC constructs. Furthermore, global numerical simulation analysis predicted that MYO1C35 populated the actomyosin·ADP closed state (AMDC) 5-fold more than the actomyosin·ADP open state (AMDO) and to a greater degree than MYO1CC and MYO1C16 (4- and 2-fold, respectively). On the basis of a homology model of the 35-amino acid NTR of MYO1C35 (NTR35) docked to the X-ray structure of MYO1CC, we predicted that MYO1C35 NTR residue Arg-21 would engage in a specific interaction with post-relay helix residue Glu-469, which affects the mechanics of the myosin power stroke. In addition, we found that adding the NTR35 peptide to MYO1CC yielded a protein that transiently mimics MYO1C35 kinetic behavior. By contrast, NTR35, which harbors the R21G mutation, was unable to confer MYO1C35-like kinetic behavior. Thus, the NTRs affect the specific nucleotide-binding properties of MYO1C isoforms, adding to their kinetic diversity. We propose that this level of fine-tuning within MYO1C broadens its adaptability within cells.
Collapse
Affiliation(s)
- Lilach Zattelman
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ronit Regev
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Marko Ušaj
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Y A Reinke
- the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sven Giese
- the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Abraham O Samson
- the Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311520, Israel, and
| | - Manuel H Taft
- the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dietmar J Manstein
- the Institute for Biophysical Chemistry, Hannover Medical School, OE 4350, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Arnon Henn
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel,
| |
Collapse
|
36
|
The Conserved Lysine-265 Allosterically Modulates Nucleotide- and Actin-binding Site Coupling in Myosin-2. Sci Rep 2017; 7:7650. [PMID: 28794442 PMCID: PMC5550493 DOI: 10.1038/s41598-017-07933-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/05/2017] [Indexed: 11/18/2022] Open
Abstract
Myosin motor proteins convert chemical energy into force and movement through their interactions with nucleotide and filamentous actin (F-actin). The evolutionarily conserved lysine-265 (K265) of the myosin-2 motor from Dictyostelium discoideum (Dd) is proposed to be a key residue in an allosteric communication pathway that mediates actin-nucleotide coupling. To better understand the role of K265, point mutations were introduced within the Dd myosin-2 M765-2R framework, replacing this lysine with alanine (K265A), glutamic acid (K265E) or glutamine (K265Q), and the functional and kinetic properties of the resulting myosin motors were assessed. The alanine and glutamic acid substitutions reduced actin-activated ATPase activity, slowed the in vitro sliding velocity and attenuated the inhibitory potential of the allosteric myosin inhibitor pentabromopseudilin (PBP). However, glutamine substitution did not substantially change these parameters. Structural modelling suggests that K265 interacts with D590 and Q633 to establish a pivotal allosteric branching point. Based on our results, we propose: (1) that the K265-D590 interaction functions to reduce myosins basal ATPase activity in the absence of F-actin, and (2) that the dynamic formation of the K265-Q633 salt bridge upon actin cleft closure regulates the activation of product release by actin filaments.
Collapse
|
37
|
Nowakowski SG, Regnier M, Daggett V. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin. Protein Sci 2017; 26:749-762. [PMID: 28097776 DOI: 10.1002/pro.3121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
Abstract
Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2-deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross-bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross-bridge formation and reveal a potential mechanism that may underlie dATP-induced improvements in cardiac function.
Collapse
Affiliation(s)
- Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington, 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5013
| |
Collapse
|
38
|
Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One 2017; 12:e0170822. [PMID: 28182693 PMCID: PMC5300139 DOI: 10.1371/journal.pone.0170822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts.
Collapse
|
39
|
Mueller MP, Goody RS. Review: Ras GTPases and myosin: Qualitative conservation and quantitative diversification in signal and energy transduction. Biopolymers 2017; 105:422-30. [PMID: 27018658 PMCID: PMC5084828 DOI: 10.1002/bip.22840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/03/2022]
Abstract
Most GTPases and many ATPases belong to the P‐loop class of proteins with significant structural and mechanistic similarities. Here we compare and contrast the basic properties of the Ras family GTPases and myosin, and conclude that there are fundamental similarities but also distinct differences related to their specific roles. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 422–430, 2016.
Collapse
Affiliation(s)
- Matthias P Mueller
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Roger S Goody
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| |
Collapse
|
40
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
41
|
Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood 2016; 128:1870-1878. [PMID: 27421960 DOI: 10.1182/blood-2016-03-707679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that skeletal muscle myosins can directly influence blood coagulation and thrombosis, ex vivo studies of the effects of myosin on thrombogenesis in fresh human blood were conducted. Addition of myosin to blood augmented the thrombotic responses of human blood flowing over collagen-coated surfaces (300 s-1 shear rate). Perfusion of human blood over myosin-coated surfaces also caused fibrin and platelet deposition, evidencing myosin's thrombogenicity. Myosin markedly enhanced thrombin generation in both platelet-rich plasma and platelet-poor plasma, indicating that myosin promoted thrombin generation in plasma primarily independent of platelets. In purified reaction mixtures composed only of factor Xa, factor Va, prothrombin, and calcium ions, myosin greatly enhanced prothrombinase activity. The Gla domain of factor Xa was not required for myosin's prothrombinase enhancement. When binding of purified clotting factors to immobilized myosin was monitored using biolayer interferometry, factors Xa and Va each showed favorable binding interactions. Factor Va reduced by 100-fold the apparent Kd of myosin for factor Xa (Kd ∼0.48 nM), primarily by reducing koff, indicating formation of a stable ternary complex of myosin:Xa:Va. In studies to assess possible clinical relevance for this discovery, we found that antimyosin antibodies inhibited thrombin generation in acute trauma patient plasmas more than in control plasmas (P = .0004), implying myosin might contribute to acute trauma coagulopathy. We posit that myosin enhancement of thrombin generation could contribute either to promote hemostasis or to augment thrombosis risk with consequent implications for myosin's possible contributions to pathophysiology in the setting of acute injuries.
Collapse
|
42
|
Manstein DJ, Mulvihill DP. Tropomyosin-Mediated Regulation of Cytoplasmic Myosins. Traffic 2016; 17:872-7. [DOI: 10.1111/tra.12399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Dietmar J. Manstein
- Institute for Biophysical Chemistry; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
- Division for Structural Analysis; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | | |
Collapse
|
43
|
Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, O’Leary PW, Olson TM. Recessive
MYH6
Mutations in Hypoplastic Left Heart With Reduced Ejection Fraction. ACTA ACUST UNITED AC 2015; 8:564-71. [DOI: 10.1161/circgenetics.115.001070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022]
Abstract
Background—
The molecular underpinnings of hypoplastic left heart are poorly understood. Staged surgical palliation has dramatically improved survival, yet eventual failure of the systemic right ventricle necessitates cardiac transplantation in a subset of patients. We sought to identify genetic determinants of hypoplastic left heart with latent right ventricular dysfunction in individuals with a Fontan circulation.
Methods and Results—
Evaluation of cardiac structure and function by echocardiography in patients with hypoplastic left heart and their first-degree relatives identified 5 individuals with right ventricular ejection fraction ≤40% after Fontan operation. Whole genome sequencing was performed on DNA from 21 family members, filtering for genetic variants with allele frequency <1% predicted to alter protein structure or expression. Secondary family-based filtering for de novo and recessive variants revealed rare inherited missense mutations on both paternal and maternal alleles of
MYH6
, encoding myosin heavy chain 6, in 2 patients who developed right ventricular dysfunction 3 to 11 years postoperatively. Parents and siblings who were heterozygous carriers had normal echocardiograms. Protein modeling of the 4 highly conserved amino acid substitutions, residing in both head and tail domains, predicted perturbation of protein structure and function.
Conclusions—
In contrast to dominant
MYH6
mutations with variable penetrance identified in other congenital heart defects and dilated cardiomyopathy, this study reveals compound heterozygosity for recessive
MYH6
mutations in patients with hypoplastic left heart and reduced systemic right ventricular ejection fraction. These findings implicate a shared molecular basis for the developmental arrest and latent myopathy of left and right ventricles, respectively.
Collapse
Affiliation(s)
- Jeanne L. Theis
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Michael T. Zimmermann
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Jared M. Evans
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Bruce W. Eckloff
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Eric D. Wieben
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Muhammad Y. Qureshi
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Patrick W. O’Leary
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| | - Timothy M. Olson
- From the Cardiovascular Genetics Research Laboratory (J.L.T., T.M.O.), Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.Y.Q., P.W.O’L., T.M.O.), Division of Cardiovascular Diseases, Department of Internal Medicine (T.M.O.), Departments of Health Sciences Research and Biomedical Statistics and Informatics (M.T.Z., J.M.E.), Medical Genome Facility (B.W.E., E.D.W.), and Department of Biochemistry and Molecular Biology (E.D.W.), Mayo Clinic, Rochester, MN
| |
Collapse
|
44
|
High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label. Proc Natl Acad Sci U S A 2015; 112:7972-7. [PMID: 26056276 DOI: 10.1073/pnas.1500625112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Using electron paramagnetic resonance (EPR) of a bifunctional spin label (BSL) bound stereospecifically to Dictyostelium myosin II, we determined with high resolution the orientation of individual structural elements in the catalytic domain while myosin is in complex with actin. BSL was attached to a pair of engineered cysteine side chains four residues apart on known α-helical segments, within a construct of the myosin catalytic domain that lacks other reactive cysteines. EPR spectra of BSL-myosin bound to actin in oriented muscle fibers showed sharp three-line spectra, indicating a well-defined orientation relative to the actin filament axis. Spectral analysis indicated that orientation of the spin label can be determined within <2.1° accuracy, and comparison with existing structural data in the absence of nucleotide indicates that helix orientation can also be determined with <4.2° accuracy. We used this approach to examine the crucial ADP release step in myosin's catalytic cycle and detected reversible rotations of two helices in actin-bound myosin in response to ADP binding and dissociation. One of these rotations has not been observed in myosin-only crystal structures.
Collapse
|
45
|
Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding. J Mol Biol 2014; 426:2070-81. [PMID: 24636949 DOI: 10.1016/j.jmb.2014.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 11/20/2022]
Abstract
Myosin 1c (Myo1c) plays a key role in supporting motile events that underlie cell migration, vesicle trafficking, insulin-stimulated glucose uptake and hearing. Here, we present the crystal structure of the human Myo1c motor in complex with its light chain calmodulin. Our structure reveals tight interactions of the motor domain with calmodulin bound to the first IQ motif in the neck region. Several of the calmodulin residues contributing to this interaction are also involved in Ca(2+) binding. Contact residues in the motor domain are linked to the central β-sheet and the HO helix, suggesting a mechanism for communicating changes in Ca(2+) binding in the neck region to the actin and nucleotide binding regions of the motor domain. The structural context and the chemical environment of Myo1c mutations that are involved in sensorineural hearing loss in humans are described and their impact on motor function is discussed. We show that a construct consisting of the motor domain of Myo1c and the first IQ motif is sufficient to establish a tight interaction with 14-3-3β (KD=0.9 μM) and present the model of a double-headed Myo1c-14-3-3 complex. This complex has been implicated in the exocytosis of glucose transporter 4 storage vesicles during insulin-stimulated glucose uptake.
Collapse
|