1
|
Yu SM, Zhao MM, Zheng YZ, Zhang JC, Liu ZP, Tu PF, Wang H, Wei CY, Zeng KW. Chemoproteomic Strategy Identifies PfUCHL3 as the Target of Halofuginone. Chembiochem 2024; 25:e202400269. [PMID: 38923255 DOI: 10.1002/cbic.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.
Collapse
Affiliation(s)
- Si-Miao Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ji-Chao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zheng-Ping Liu
- Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of New Sustained and Controlled Release Formulations and Drug Targeted Delivery Systems, Jinan, 250101, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Chun-Yan Wei
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Olotu F, Tali MBT, Chepsiror C, Sheik Amamuddy O, Boyom FF, Tastan Bishop Ö. Repurposing DrugBank compounds as potential Plasmodium falciparum class 1a aminoacyl tRNA synthetase multi-stage pan-inhibitors with a specific focus on mitomycin. Int J Parasitol Drugs Drug Resist 2024; 25:100548. [PMID: 38805932 PMCID: PMC11152978 DOI: 10.1016/j.ijpddr.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 μM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.
Collapse
Affiliation(s)
- Fisayo Olotu
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Mariscal Brice Tchatat Tali
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Curtis Chepsiror
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa.
| |
Collapse
|
3
|
Mishra S, Malhotra N, Laleu B, Chakraborti S, Yogavel M, Sharma A. ATP mimetics targeting prolyl-tRNA synthetases as a new avenue for antimalarial drug development. iScience 2024; 27:110049. [PMID: 39104570 PMCID: PMC11298890 DOI: 10.1016/j.isci.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/24/2023] [Accepted: 05/17/2024] [Indexed: 08/07/2024] Open
Abstract
The prolyl-tRNA synthetase (PRS) is an essential enzyme for protein translation and a validated target against malaria parasite. We describe five ATP mimetics (L95, L96, L97, L35, and L36) against PRS, exhibiting enhanced thermal stabilities in co-operativity with L-proline. L35 displays the highest thermal stability akin to halofuginone, an established inhibitor of Plasmodium falciparum PRS. Four compounds exhibit nanomolar inhibitory potency against PRS. L35 exhibits the highest potency of ∼1.6 nM against asexual-blood-stage (ABS) and ∼100-fold (effective concentration [EC50]) selectivity for the parasite. The macromolecular structures of PfPRS with L95 and L97 in complex with L-pro reveal their binding modes and catalytic site malleability. Arg401 of PfPRS oscillates between two rotameric configurations when in complex with L95, whereas it is locked in one of the configurations due to the larger size of L97. Harnessing such specific and selective chemical features holds significant promise for designing potential inhibitors and expediting drug development efforts.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Nipun Malhotra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Manickam Yogavel
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
4
|
Ivanesthi IR, Latifah E, Amrullah LF, Tseng YK, Chuang TH, Pan HC, Yang CS, Liu SY, Wang CC. Adaptation of a eukaryote-like ProRS to a prokaryote-like tRNAPro. Nucleic Acids Res 2024; 52:7158-7170. [PMID: 38842939 PMCID: PMC11229370 DOI: 10.1093/nar/gkae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024] Open
Abstract
Prolyl-tRNA synthetases (ProRSs) are unique among aminoacyl-tRNA synthetases (aaRSs) in having two distinct structural architectures across different organisms: prokaryote-like (P-type) and eukaryote/archaeon-like (E-type). Interestingly, Bacillus thuringiensis harbors both types, with P-type (BtProRS1) and E-type ProRS (BtProRS2) coexisting. Despite their differences, both enzymes are constitutively expressed and functional in vivo. Similar to BtProRS1, BtProRS2 selectively charges the P-type tRNAPro and displays higher halofuginone tolerance than canonical E-type ProRS. However, these two isozymes recognize the primary identity elements of the P-type tRNAPro-G72 and A73 in the acceptor stem-through distinct mechanisms. Moreover, BtProRS2 exhibits significantly higher tolerance to stresses (such as heat, hydrogen peroxide, and dithiothreitol) than BtProRS1 does. This study underscores how an E-type ProRS adapts to a P-type tRNAPro and how it may contribute to the bacterium's survival under stress conditions.
Collapse
Affiliation(s)
- Indira Rizqita Ivanesthi
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| | - Emi Latifah
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| | - Luqman Fikri Amrullah
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Zhongli District, Taoyuan320317, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli 35053, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chih-Shiang Yang
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| | - Shih-Yang Liu
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320317, Taiwan
| |
Collapse
|
5
|
Zhou J, Xia M, Huang Z, Qiao H, Yang G, Qian Y, Li P, Zhang Z, Gao X, Jiang L, Wang J, Li W, Fang P. Structure-guided conversion from an anaplastic lymphoma kinase inhibitor into Plasmodium lysyl-tRNA synthetase selective inhibitors. Commun Biol 2024; 7:742. [PMID: 38890421 PMCID: PMC11189516 DOI: 10.1038/s42003-024-06455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.
Collapse
Affiliation(s)
- Jintong Zhou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Xinai Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Pengfei Fang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Latifah E, Ivanesthi IR, Tseng Y, Pan H, Wang C. Adaptive evolution: Eukaryotic enzyme's specificity shift to a bacterial substrate. Protein Sci 2024; 33:e5028. [PMID: 38757396 PMCID: PMC11099734 DOI: 10.1002/pro.5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.
Collapse
Affiliation(s)
- Emi Latifah
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| | | | - Yi‐Kuan Tseng
- Graduate Institute of StatisticsNational Central UniversityTaoyuanTaiwan
| | - Hung‐Chuan Pan
- Department of NeurosurgeryTaichung Veterans General HospitalTaichungTaiwan
| | - Chien‐Chia Wang
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| |
Collapse
|
7
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
8
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
10
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
11
|
Nasim F, Qureshi IA. Aminoacyl tRNA Synthetases: Implications of Structural Biology in Drug Development against Trypanosomatid Parasites. ACS OMEGA 2023; 8:14884-14899. [PMID: 37151504 PMCID: PMC10157851 DOI: 10.1021/acsomega.3c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
The ensemble of aminoacyl tRNA synthetases is regarded as a key component of the protein translation machinery. With the progressive increase in structure-based studies on tRNA synthetase-ligand complexes, the detailed picture of these enzymes is becoming clear. Having known their critical role in deciphering the genetic code in a living system, they have always been chosen as one of the important targets for development of antimicrobial drugs. Later on, the role of aminoacyl tRNA synthetases (aaRSs) on the survivability of trypanosomatids has also been validated. It became evident through several gene knockout studies that targeting even one of these enzymes affected parasitic growth drastically. Such successful studies have inspired researchers to search for inhibitors that could specifically target trypanosomal aaRSs, and their never-ending efforts have provided fruitful results. Taking all such studies into consideration, these macromolecules of prime importance deserve further investigation for the development of drugs that cure spectrum of infections caused by trypanosomatids. In this review, we have compiled advancements of over a decade that have taken place in the pursuit of devising drugs by using trypanosomatid aaRSs as a major target of interest. Several of these inhibitors work on an exemplary low concentration range without posing any threat to the mammalian cells which is a very critical aspect of the drug discovery process. Advancements have been made in terms of using structural biology as an important tool to analyze the architecture of the trypanosomatids aaRSs and concoction of inhibitors with augmented specificities toward their targets. Some of the inhibitors that have been tested on other parasites successfully but their efficacy has so far not been validated against these trypanosomatids have also been appended.
Collapse
|
12
|
Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep 2023; 13:5396. [PMID: 37012275 PMCID: PMC10070243 DOI: 10.1038/s41598-023-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1-132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug-protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
Collapse
Affiliation(s)
- Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Nassira
- Polymer Division, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
13
|
Istvan ES, Guerra F, Abraham M, Huang KS, Rocamora F, Zhao H, Xu L, Pasaje C, Kumpornsin K, Luth MR, Cui H, Yang T, Diaz SP, Gomez-Lorenzo MG, Qahash T, Mittal N, Ottilie S, Niles J, Lee MCS, Llinas M, Kato N, Okombo J, Fidock DA, Schimmel P, Gamo FJ, Goldberg DE, Winzeler EA. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci Transl Med 2023; 15:eadc9249. [PMID: 36888694 PMCID: PMC10286833 DOI: 10.1126/scitranslmed.adc9249] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.
Collapse
Affiliation(s)
- Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Francisco Guerra
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Lan Xu
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - Charisse Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | | | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Jacquin Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Manuel Llinas
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Nobutaka Kato
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Sharma VK, Chhibber-Goel J, Yogavel M, Sharma A. Structural characterization of glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum. Mol Biochem Parasitol 2023; 253:111530. [PMID: 36370911 DOI: 10.1016/j.molbiopara.2022.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Molecular Medicine - Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine - Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Manickam Yogavel
- Molecular Medicine - Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine - Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
15
|
Yogavel M, Bougdour A, Mishra S, Malhotra N, Chhibber-Goel J, Bellini V, Harlos K, Laleu B, Hakimi MA, Sharma A. Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis. PLoS Pathog 2023; 19:e1011124. [PMID: 36854028 PMCID: PMC9974123 DOI: 10.1371/journal.ppat.1011124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 03/02/2023] Open
Abstract
The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.
Collapse
Affiliation(s)
- Manickam Yogavel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
16
|
Gill J, Sharma A. Exploration of aminoacyl-tRNA synthetases from eukaryotic parasites for drug development. J Biol Chem 2022; 299:102860. [PMID: 36596362 PMCID: PMC9978631 DOI: 10.1016/j.jbc.2022.102860] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
17
|
Cheng B, Cai Z, Luo Z, Luo S, Luo Z, Cheng Y, Yu Y, Guo J, Ju Y, Gu Q, Xu J, Jiang X, Li G, Zhou H. Structure-Guided Design of Halofuginone Derivatives as ATP-Aided Inhibitors Against Bacterial Prolyl-tRNA Synthetase. J Med Chem 2022; 65:15840-15855. [PMID: 36394909 DOI: 10.1021/acs.jmedchem.2c01496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are promising antimicrobial targets due to their essential roles in protein translation, and expanding their inhibitory mechanisms will provide new opportunities for drug discovery. We report here that halofuginone (HF), an herb-derived medicine, moderately inhibits prolyl-tRNA synthetases (ProRSs) from various pathogenic bacteria. A cocrystal structure of Staphylococcus aureus ProRS (SaProRS) with HF and an ATP analog was determined, which guided the design of new HF analogs. Compound 3 potently inhibited SaProRS at IC50 = 0.18 μM and Kd = 30.3 nM and showed antibacterial activities with an MIC of 1-4 μg/mL in vitro. The bacterial drug resistance to 3 only developed at a rate similar to or slower than those of clinically used antibiotics in vitro. Our study indicates that the scaffold and ATP-aided inhibitory mechanism of HF could apply to bacterial ProRS and also provides a chemical validation for using bacterial ProRS as an antibacterial target.
Collapse
Affiliation(s)
- Bao Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhengjun Cai
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ziqing Luo
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Siting Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanfang Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junsong Guo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
18
|
Guerra F, Winzeler EA. New targets for antimalarial drug discovery. Curr Opin Microbiol 2022; 70:102220. [PMID: 36228458 PMCID: PMC9934905 DOI: 10.1016/j.mib.2022.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023]
Abstract
Phenotypic screening methods have placed numerous preclinical candidates into the antimalarial drug-discovery pipeline. As more chemically validated targets become available, efforts are shifting to target-based drug discovery. Here, we briefly review some of the most attractive targets that have been identified in recent years.
Collapse
Affiliation(s)
- Francisco Guerra
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
19
|
Zhang S, Cai J, Xie Y, Zhang X, Yang X, Lin S, Xiang W, Zhang J. Anti-Phytophthora Activity of Halofuginone and the Corresponding Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12364-12371. [PMID: 36126316 DOI: 10.1021/acs.jafc.2c04266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Febrifugine, a natural alkaloid, exhibits specific anti-phytophthora activity; however, its mode of action is unclear. In this study, halofuginone, a synthetic derivative of febrifugine, showed significantly higher anti-phytophthora activities than those of febrifugine and the commercial drug metalaxyl against Phytophthora sojae, Phytophthora capsici, and Phytophthora infestans with effective concentration for 50% inhibition (EC50) values of 0.665, 0.673, and 0.178 μg/mL, respectively. Proline could alleviate the growth inhibition of halofuginone on P. capsici, implying that halofuginone might target prolyl-tRNA synthetase (PcPRS). The anti-phytophthora mechanism of halofuginone was then investigated by molecular docking, fluorescence titration, and enzymatic inhibition assays. The results revealed that halofuginone could bind to PcPRS and shared a similar binding site with the substrate proline. Point mutations at Glu316 and Arg345 led to 24.5 and 16.1% decreases in the enzymatic activity of PcPRS but 816.742- and 459.557-fold increases in the resistance to halofuginone, respectively. The results further confirmed that halofuginone was a competitive inhibitor of proline against PcPRS, and Glu316 and Arg345 played important roles in the binding of halofuginone and proline. Taken together, the results indicated that halofuginone is an alternative anti-phytophthora drug candidate and that PcPRS represents a potential target for the development of new pesticides.
Collapse
Affiliation(s)
- Saisai Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Jialing Cai
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Yimeng Xie
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Xinyu Zhang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Xilang Yang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Shenyuan Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang110866, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Ji Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| |
Collapse
|
20
|
Gill J, Sharma A. Genomic analysis of single nucleotide polymorphisms in malaria parasite drug targets. Parasit Vectors 2022; 15:309. [PMID: 36042490 PMCID: PMC9425944 DOI: 10.1186/s13071-022-05422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Malaria is a life-threatening parasitic disease caused by members of the genus Plasmodium. The development and spread of drug-resistant strains of Plasmodium parasites represent a major challenge to malaria control and elimination programmes. Evaluating genetic polymorphism in a drug target improves our understanding of drug resistance and facilitates drug design. Approximately 450 and 19 whole-genome assemblies of Plasmodium falciparum and Plasmodium vivax, respectively, are currently available, and numerous sequence variations have been found due to the presence of single nucleotide polymorphism (SNP). In the study reported here, we analysed global SNPs in the malaria parasite aminoacyl-tRNA synthetases (aaRSs). Our analysis revealed 3182 unique SNPs in the 20 cytoplasmic P. falciparum aaRSs. Structural mapping of SNPs onto the three-dimensional inhibitor-bound complexes of the three advanced drug targets within aaRSs revealed a remarkably low mutation frequency in the crucial aminoacylation domains, low overall occurrence of mutations across samples and high conservation in drug/substrate binding regions. In contrast to aaRSs, dihydropteroate synthase (DHPS), also a malaria drug target, showed high occurrences of drug resistance-causing mutations. Our results show that it is pivotal to screen potent malaria drug targets against global SNP profiles to assess genetic variances to ensure success in designing drugs against validated targets and tackle drug resistance early on.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077, New Delhi, India. .,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
21
|
Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S, Whitman M, Mota MM, Winzeler EA, Lukens AK, Derbyshire ER, Oppermann U, Wirth DF, Mazitschek R. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 2022; 13:4976. [PMID: 36008486 PMCID: PMC9403976 DOI: 10.1038/s41467-022-32630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
Collapse
Affiliation(s)
- Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lọla Fagbami
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akansha Pant
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Gill J, Sharma A. Prospects of halofuginone as an antiprotozoal drug scaffold. Drug Discov Today 2022; 27:2586-2592. [DOI: 10.1016/j.drudis.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
23
|
Sharma VK, Gupta S, Chhibber-Goel J, Yogavel M, Sharma A. A single amino acid substitution alters activity and specificity in Plasmodium falciparum aspartyl & asparaginyl-tRNA synthetases. Mol Biochem Parasitol 2022; 250:111488. [DOI: 10.1016/j.molbiopara.2022.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
24
|
Inhibition of Plasmodium falciparum phenylalanine tRNA synthetase provides opportunity for antimalarial drug development. Structure 2022; 30:962-972.e3. [PMID: 35460612 DOI: 10.1016/j.str.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
Abstract
Bicyclic azetidine compounds possess antimalarial activity via targeting of the cytoplasmic Plasmodium falciparum (Pf) protein translation enzyme phenylalanine-tRNA synthetase (cFRS). These drugs kill parasites both in vitro and in vivo, including the blood, liver, and transmission developmental stages. Here we present the co-crystal structure of PfcFRS with a potent inhibitor, the bicyclic azetidine BRD7929. Our studies reveal high-affinity binding of BRD7929 with PfcFRS along with exquisite specificity compared with the human enzyme, leading in turn to potent and selective inhibition of the parasite enzyme. Our co-crystal structure shows that BRD7929 binds in the active site in the α subunit of PfcFRS, where it occupies the amino acid site, an auxiliary site, and partially the ATP site. This structural snapshot of inhibitor-bound PfcFRS thus provides a platform for the structure-guided optimization of novel antimalarial compounds.
Collapse
|
25
|
Fehr M, Koch A, Merget B, Winter C. Quinazolinone Alkaloid Febrifugine and its Analogues to Control Phytopathogenic Diseases Caused by Oomycete Fungi. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Christian Winter
- BASF SE Crop Protection Research Carl-Bosch-Strasse 38 67056 Ludwigshafen GERMANY
| |
Collapse
|
26
|
Manickam Y, Malhotra N, Mishra S, Babbar P, Dusane A, Laleu B, Bellini V, Hakimi MA, Bougdour A, Sharma A. Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLoS Pathog 2022; 18:e1010363. [PMID: 35333915 PMCID: PMC9004777 DOI: 10.1371/journal.ppat.1010363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional ‘single target–single drug’ approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3’-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins. Among infectious diseases, parasitic diseases are a major cause of death and morbidity. Toxoplasmosis is caused by an infection of the apicomplexan parasite Toxoplasma gondii. In immunocompromised patients Toxoplasmosis may lead to seizures, encephalitis or death. Novel therapeutics for human parasites are constantly needed. In recent years, the aminoacyl-tRNA synthetase (aaRS) enzyme family has been validated as a drug target for several parasitic infections. The Toxoplasma gondii prolyl-tRNA synthetase inhibitor halofuginone (HFG) has been validated earlier but here we show that an ATP-mimic called L95 is a potent inhibitor and can bind to the target enzyme in the presence of HFG. Thus, the two inhibitors described in this study simultaneously occupy all three natural substrate (ATP, L-amino acid and 3’-end of tRNA) binding pockets and thereby inhibit the enzyme leading to parasite death. This unprecedented double drugging of a pathogen enzyme may delay resistance mutation generation and this approach opens the path to multi-drugging of validated parasite proteins.
Collapse
Affiliation(s)
- Yogavel Manickam
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Palak Babbar
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abhishek Dusane
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- * E-mail: (AB); (AS)
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- * E-mail: (AB); (AS)
| |
Collapse
|
27
|
K Zaidan R, Evans P. Stereoselective synthesis of analogues of deoxyfebrifugine. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211047209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation of six new optically active analogues of the natural product febrifugine (1) is reported. These analogues, lacking the hydroxy group from the natural product, were prepared from optically active N-protected S-pelletierine (7) and differ in terms of the specific quinazolinone portion included. The required S-7 (80% enantiomeric excess) was prepared from an asymmetric Mannich reaction between piperideine (8) and acetone in the presence of l-proline. The differently substituted quinazolinone used in this study (10a–10g) was either commercially available or was prepared from the corresponding substituted anthranilic acid and were installed via a bromination–alkylation sequence. N-Deprotection of the subsequent adducts (12a–12g) gave target compounds 13a–13f and completed the synthetic sequence.
Collapse
Affiliation(s)
- Raed K Zaidan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
- Department of Chemistry, College of Science, University of Basra, Basra, Iraq
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Long S, Duarte D, Carvalho C, Oliveira R, Santarém N, Palmeira A, Resende DISP, Silva AMS, Moreira R, Kijjoa A, Cordeiro da Silva A, Nogueira F, Sousa E, Pinto MMM. Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones Active against Plasmodium and Trypanosomatids. ACS Med Chem Lett 2022; 13:225-235. [PMID: 35178179 PMCID: PMC8842117 DOI: 10.1021/acsmedchemlett.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit β-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.
Collapse
Affiliation(s)
- Solida Long
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Department
of Bioengineering, Royal University of Phnom
Penh, Russian Confederation
Blvd, 12156 Phnom
Penh, Cambodia
| | - Denise Duarte
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Carla Carvalho
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rafael Oliveira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Nuno Santarém
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Andreia Palmeira
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Artur M. S. Silva
- QOPNA
- Química
Orgânica, Produtos Naturais e Agroalimentares, Departamento
de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Moreira
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade
de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Anake Kijjoa
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Anabela Cordeiro da Silva
- Parasite
Disease Group, IBMC-Instituto de Biologia
Molecular e Celular, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Departamento
de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina
Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Emília Sousa
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena M. M. Pinto
- Laboratório
de Química Orgânica e Farmacêutica, Faculdade
de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR
- Centro Interdisciplinar de Investigação Marinha e
Ambiental, Terminal de
Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
29
|
Perner J, Kucera M, Frantova H, Urbanova V, Kopacek P, Sima R. Lyme disease transmission by severely impaired ticks. Open Biol 2022; 12:210244. [PMID: 35167765 PMCID: PMC8846998 DOI: 10.1098/rsob.210244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Matej Kucera
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Helena Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Veronika Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Radek Sima
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
30
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
31
|
Mishra S, Looger LL, Porter LL. A sequence-based method for predicting extant fold switchers that undergo α-helix ↔ β-strand transitions. Biopolymers 2021; 112:e23471. [PMID: 34498740 PMCID: PMC8545793 DOI: 10.1002/bip.23471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Extant fold-switching proteins remodel their secondary structures and change their functions in response to cellular stimuli, regulating biological processes and affecting human health. Despite their biological importance, these proteins remain understudied. Predictive methods are needed to expedite the process of discovering and characterizing more of these shapeshifting proteins. Most previous approaches require a solved structure or all-atom simulations, greatly constraining their use. Here, we propose a high-throughput sequence-based method for predicting extant fold switchers that transition from α-helix in one conformation to β-strand in the other. This method leverages two previous observations: (a) α-helix ↔ β-strand prediction discrepancies from JPred4 are a robust predictor of fold switching, and (b) the fold-switching regions (FSRs) of some extant fold switchers have different secondary structure propensities when expressed by themselves (isolated FSRs) than when expressed within the context of their parent protein (contextualized FSRs). Combining these two observations, we ran JPred4 on 99-fold-switching proteins and found strong correspondence between predicted and experimentally observed α-helix ↔ β-strand discrepancies. To test the overall robustness of this finding, we randomly selected regions of proteins not expected to switch folds (single-fold proteins) and found significantly fewer predicted α-helix ↔ β-strand discrepancies. Combining these discrepancies with the overall percentage of predicted secondary structure, we developed a classifier to identify extant fold switchers (Matthews correlation coefficient of .71). Although this classifier had a high false-negative rate (7/17), its false-positive rate was very low (2/136), suggesting that it can be used to predict a subset of extant fold switchers from a multitude of available genomic sequences.
Collapse
Affiliation(s)
- Soumya Mishra
- National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
- Howard Hughes Medical Institute, Janelia Research CampusAshburnVirginiaUSA
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Research CampusAshburnVirginiaUSA
| | - Lauren L. Porter
- National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
32
|
Chhibber-Goel J, Yogavel M, Sharma A. Structural analyses of the malaria parasite aminoacyl-tRNA synthetases provide new avenues for antimalarial drug discovery. Protein Sci 2021; 30:1793-1803. [PMID: 34184352 DOI: 10.1002/pro.4148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Manickam Yogavel
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India.,ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
33
|
Pang L, Weeks SD, Juhás M, Strelkov SV, Zitko J, Van Aerschot A. Towards Novel 3-Aminopyrazinamide-Based Prolyl-tRNA Synthetase Inhibitors: In Silico Modelling, Thermal Shift Assay and Structural Studies. Int J Mol Sci 2021; 22:ijms22157793. [PMID: 34360555 PMCID: PMC8346053 DOI: 10.3390/ijms22157793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.
Collapse
Affiliation(s)
- Luping Pang
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49—Box 822, 3000 Leuven, Belgium; (L.P.); (S.D.W.); (S.V.S.)
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1041, 3000 Leuven, Belgium
| | - Stephen D. Weeks
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49—Box 822, 3000 Leuven, Belgium; (L.P.); (S.D.W.); (S.V.S.)
- Pledge Therapeutics, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Martin Juhás
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Sergei V. Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49—Box 822, 3000 Leuven, Belgium; (L.P.); (S.D.W.); (S.V.S.)
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
- Correspondence: (J.Z.); (A.V.A.)
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1041, 3000 Leuven, Belgium
- Correspondence: (J.Z.); (A.V.A.)
| |
Collapse
|
34
|
Babbar P, Sato M, Manickam Y, Mishra S, Harlos K, Gupta S, Parvez S, Kikuchi H, Sharma A. Inhibition of Plasmodium falciparum Lysyl-tRNA Synthetase via a Piperidine-Ring Scaffold Inspired Cladosporin Analogues. Chembiochem 2021; 22:2468-2477. [PMID: 33969584 DOI: 10.1002/cbic.202100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Plasmodium falciparum lysyl-tRNA synthetase (PfKRS) represents a promising therapeutic anti-malarial target. Cladosporin was identified as a selective and potent PfKRS inhibitor but lacks metabolic stability. Here, we report chemical synthesis, biological evaluation and structural characterization of analogues where the tetrahydropyran (THP) frame of cladosporin is replaced with the piperidine ring bearing functional group variations. Thermal binding, enzymatic, kinetic and parasitic assays complemented with X-ray crystallography reveal compounds that are moderate in potency. Co-crystals of Cla-B and Cla-C with PfKRS reveal key atomic configurations that allow drug binding to and inhibition of the enzyme. Collectively these piperidine ring scaffold inhibitors lay a framework for further structural editing and functional modifications of the cladosporin scaffold to obtain a potent lead.
Collapse
Affiliation(s)
- Palak Babbar
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mizuki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yogavel Manickam
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Siddhartha Mishra
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Swati Gupta
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
- Present affiliation: Division of Natural Medicines, Faculty of Pharmacy, Keio University, Japan
| | - Amit Sharma
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, New Delhi, 110077, India
| |
Collapse
|
35
|
Babbar P, Das P, Manickam Y, Mankad Y, Yadav S, Parvez S, Sharma A, Reddy DS. Design, Synthesis, and Structural Analysis of Cladosporin-Based Inhibitors of Malaria Parasites. ACS Infect Dis 2021; 7:1777-1794. [PMID: 33843204 DOI: 10.1021/acsinfecdis.1c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we have described a systematic structure activity relationship (SAR) of a set of compounds inspired from cladosporin, a tool compound that targets parasite (Plasmodium falciparum) lysyl tRNA synthetase (KRS). Four sets of analogues, synthesized based on point changes in the chemical scaffold of cladosporin and other logical modifications and hybridizations, were assessed using high throughput enzymatic and parasitic assays along with in vitro pharmacokinetics. Co-crystallization of the most potent compound in our series (CL-2) with PfKRS revealed its structural basis of enzymatic binding and potency. Further, we report that CL-2 has performed better than cladosporin in terms of metabolic stability. It thus represents a new lead for further optimization toward the development of antimalarial drugs. Collectively, along with a lead compound, the series offers insights on how even the slightest chemical modification might play an important role in enhancing or decreasing the potency of a chemical scaffold.
Collapse
Affiliation(s)
- Palak Babbar
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pronay Das
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogavel Manickam
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yash Mankad
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Swati Yadav
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Amit Sharma
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- ICMR−National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - D. Srinivasa Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR−Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
36
|
Okaniwa M, Shibata A, Ochida A, Akao Y, White KL, Shackleford DM, Duffy S, Lucantoni L, Dey S, Striepen J, Yeo T, Mok S, Aguiar ACC, Sturm A, Crespo B, Sanz LM, Churchyard A, Baum J, Pereira DB, Guido RVC, Dechering KJ, Wittlin S, Uhlemann AC, Fidock DA, Niles JC, Avery VM, Charman SA, Laleu B. Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as Plasmodium Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infect Dis 2021; 7:1680-1689. [PMID: 33929818 PMCID: PMC8204304 DOI: 10.1021/acsinfecdis.1c00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Prolyl-tRNA synthetase
(PRS) is a clinically validated antimalarial
target. Screening of a set of PRS ATP-site binders, initially designed
for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives representing a novel antimalarial scaffold. Evidence designates
cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains
and development of liver schizonts. No cross-resistance with strains
resistant to other known antimalarials was noted. In addition, a similar
level of growth inhibition was observed against clinical field isolates
of Pf and P. vivax. The slow killing
profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However,
potent blood stage and antischizontal activity are compelling for
causal prophylaxis which does not require fast onset of action. Achieving
sufficient on-target selectivity appears to be particularly challenging
and should be the primary focus during the next steps of optimization
of this chemical series. Encouraging preliminary off-target profile
and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives represent a promising starting point for the identification
of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.
Collapse
Affiliation(s)
- Masanori Okaniwa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akira Shibata
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anna Caroline C. Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Angelika Sturm
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Benigno Crespo
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Laura M. Sanz
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Dhelio B. Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, Rondonia 76812-329, Brazil
| | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Koen J. Dechering
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| |
Collapse
|
37
|
Travin DY, Severinov K, Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem Biol 2021; 2:468-485. [PMID: 34382000 PMCID: PMC8323819 DOI: 10.1039/d0cb00208a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
- Waksman Institute for Microbiology, Rutgers, Piscataway New Jersey USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
38
|
Sandoval DR, Clausen TM, Nora C, Cribbs AP, Denardo A, Clark AE, Garretson AF, Coker JKC, Narayanan A, Majowicz SA, Philpott M, Johansson C, Dunford JE, Spliid CB, Golden GJ, Payne NC, Tye MA, Nowell CJ, Griffis ER, Piermatteo A, Grunddal KV, Alle T, Magida JA, Hauser BM, Feldman J, Caradonna TM, Pu Y, Yin X, McVicar RN, Kwong EM, Weiss RJ, Downes M, Tsimikas S, Smidt AG, Ballatore C, Zengler K, Evans RM, Chanda SK, Croker BA, Leibel SL, Jose J, Mazitschek R, Oppermann U, Esko JD, Carlin AF, Gordts PLSM. The Prolyl-tRNA Synthetase Inhibitor Halofuginone Inhibits SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791697 PMCID: PMC8010724 DOI: 10.1101/2021.03.22.436522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone 1 , a compound in clinical trials for anti-fibrotic and anti-inflammatory applications 2 , as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry 3 . We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry and is 1,000-fold more potent than Remdesivir 4 . Inhibition of HS biosynthesis and SARS-CoV-2 infection depends on specific inhibition of PRS, possibly due to translational suppression of proline-rich proteins. We find that pp1a and pp1ab polyproteins of SARS-CoV-2, as well as several HS proteoglycans, are proline-rich, which may make them particularly vulnerable to halofuginone's translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a near-term clinical trial candidate for the treatment of COVID-19.
Collapse
|
39
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
40
|
Mangwegape DK, Zuma NH, Aucamp J, N'Da DD. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch Pharm (Weinheim) 2021; 354:e2000280. [PMID: 33491807 DOI: 10.1002/ardp.202000280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022]
Abstract
Leishmaniasis is a major vector-borne parasitic disease that affects thousands of people in tropical and subtropical developing countries. In 2019 alone, it killed 26,000-65,000 individuals. Leishmaniasis is curable, yet its eradication and elimination are hampered by major hurdles, such as the availability of only a handful of clinical toxic drugs and the emergence of pathogenic resistance against them. This underscores the imperative need for new and effective antileishmanial drugs. In search for such agents, we synthesized and evaluated the in vitro antileishmanial potential of a small library of benzothiadiazine derivatives by assessing their activity against the promastigotes of three strains of Leishmania and toxicity in healthy cells. The derivatives were found to have no toxicity to the mammalian cells and were, in general, active against all parasites. The benzothiadiazine derivative 1e, 3-methyl-2-[3-(trifluoromethyl)benzyl]-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was found to be the most active (IC50 , 0.2 μM) against Leishmania major, responsible for the most prevalent disease form, cutaneous leishmaniasis. Conversely, benzothiadiazine 2c, 2-(4-bromobenzyl)-3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was the most potent (IC50 , 6.5 μM) against Leishmania donovani, a causative strain of the lethal visceral leishmaniasis. Both compounds stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.
Collapse
Affiliation(s)
- Daisy K Mangwegape
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Nonkululeko H Zuma
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
41
|
Sharma M, Malhotra N, Yogavel M, Harlos K, Melillo B, Comer E, Gonse A, Parvez S, Mitasev B, Fang FG, Schreiber SL, Sharma A. Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines. Nat Commun 2021; 12:343. [PMID: 33436639 PMCID: PMC7803973 DOI: 10.1038/s41467-020-20478-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
The inhibition of Plasmodium cytosolic phenylalanine tRNA-synthetase (cFRS) by a novel series of bicyclic azetidines has shown the potential to prevent malaria transmission, provide prophylaxis, and offer single-dose cure in animal models of malaria. To date, however, the molecular basis of Plasmodium cFRS inhibition by bicyclic azetidines has remained unknown. Here, we present structural and biochemical evidence that bicyclic azetidines are competitive inhibitors of L-Phe, one of three substrates required for the cFRS-catalyzed aminoacylation reaction that underpins protein synthesis in the parasite. Critically, our co-crystal structure of a PvcFRS-BRD1389 complex shows that the bicyclic azetidine ligand binds to two distinct sub-sites within the PvcFRS catalytic site. The ligand occupies the L-Phe site along with an auxiliary cavity and traverses past the ATP binding site. Given that BRD1389 recognition residues are conserved amongst apicomplexan FRSs, this work lays a structural framework for the development of drugs against both Plasmodium and related apicomplexans.
Collapse
Affiliation(s)
- Manmohan Sharma
- Molecular Medicine, Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nipun Malhotra
- Molecular Medicine, Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manickam Yogavel
- Molecular Medicine, Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Karl Harlos
- Division of Structural Biology, Welcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, England
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eamon Comer
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
| | - Arthur Gonse
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Branko Mitasev
- Eisai Inc., 35 Cambridgepark Drive Suite 200, Cambridge, MA, 02140, USA
| | - Francis G Fang
- Eisai Inc., 35 Cambridgepark Drive Suite 200, Cambridge, MA, 02140, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Amit Sharma
- Molecular Medicine, Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- National Institute of Malarial Research, Sector 8 Dwarka, New Delhi, 110077, India.
| |
Collapse
|
42
|
Zhiqiang Y, Lizhi F, Wengui F, Hua Z, Hongmei T, Shaoqin Z, Chunlin C. Influence of Qingchang Oral Liquid on Second Generation Merozoite of the Chicken Eimeria tenella. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2021-1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Y Zhiqiang
- Chongqing Academy of Animal Sciences, China
| | - F Lizhi
- Chongqing Academy of Animal Sciences, China
| | - F Wengui
- Chongqing Academy of Animal Sciences, China
| | - Z Hua
- Chongqing Academy of Animal Sciences, China
| | - T Hongmei
- Chongqing Academy of Animal Sciences, China
| | - Z Shaoqin
- Chongqing Academy of Animal Sciences, China
| | - C Chunlin
- Chongqing Academy of Animal Sciences, China
| |
Collapse
|
43
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) have been considered very attractive drug-targets for decades. This interest probably emerged with the identification of differences in AARSs between prokaryotic and eukaryotic species, which provided a rationale for the development of antimicrobials targeting bacterial AARSs with minimal effect on the homologous human AARSs. Today we know that AARSs are not only attractive, but also valid drug targets as they are housekeeping proteins that: (i) play a fundamental role in protein translation by charging the corresponding amino acid to its cognate tRNA and preventing mistranslation mistakes [1], a critical process during fast growing conditions of microbes; and (ii) present significant differences between microbes and humans that can be used for drug development [2]. Together with the vast amount of available data on both pathogenic and mammalian AARSs, it is expected that, in the future, the numerous reported inhibitors of AARSs will provide the basis to develop new therapeutics for the treatment of human diseases. In this chapter, a detailed summary on the state-of-the-art in drug discovery and drug development for each aminoacyl-tRNA synthetase will be presented.
Collapse
Affiliation(s)
- Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
44
|
Stereoselective total synthesis of all the stereoisomers of (+)- and (−)-febrifugine and halofuginone. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
In vitro effects of febrifugine on Schistosoma mansoni adult worms. Trop Med Health 2020; 48:42. [PMID: 32518498 PMCID: PMC7271449 DOI: 10.1186/s41182-020-00230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Reports on the antischistosomal effect of several antimalarial drugs such as artesunate, mefloquine, and amodiaquine suggest that febrifugine, which exerts an antimalarial effect, can also be expected to possess antischistosomal potential. The present study investigates the antischistosomal effects of febrifugine. Methods In experiment 1, Schistosoma mansoni adult worm pairs were incubated in a medium alone as a control or supplemented with febrifugine at 0.05, 0.1, 0.2, and 0.5 μg/ml for 14 days. The morphology of the worms and the egg production of the female worms were observed simultaneously. In experiment 2, the incubation was conducted as in experiment 1, except that the febrifugine concentrations were reduced to 0.005, 0.01, and 0.02 μg/ml. In addition, S. mansoni adult worms were incubated with either 0.5 μg/ml febrifugine or none as a control for 5 days and stained with neutral red dye. Results Febrifugine significantly reduced the survival of S. mansoni male and female worms at concentrations of 0.02-0.5 μg/ml following incubation for 14 days and remarkably inhibited the daily egg output of the female worms. The non-treated male and female worms remained morphologically normal within the period of 14 days, whereas male and female worms treated with febrifugine at different concentrations gradually twisted and subsequently died. In addition, S. mansoni adult worms were incubated with either 0.5 μg/ml febrifugine or none as a control for 5 days and stained with neutral red dye. Non-treated male worms were morphologically normal and stained dark red with neutral red, while febrifugine-treated male worms appeared similar to those in the control group and were stained at a slightly lower level of dark red than the non-treated male worms. Non-treated female worms were morphologically normal, and their intestinal tract and vitellaria were stained deep red and dark red, respectively. In contrast, febrifugine-treated female worms were morphologically damaged, and their intestinal tract and vitellaria remained mostly unstained and stained dark red, respectively. Conclusion Febrifugine exerts potent antischistosomal effects and can be expected to contribute to the development of a novel antischistosomal drug.
Collapse
|
46
|
Nyamai DW, Tastan Bishop Ö. Identification of Selective Novel Hits against Plasmodium falciparum Prolyl tRNA Synthetase Active Site and a Predicted Allosteric Site Using in silico Approaches. Int J Mol Sci 2020; 21:E3803. [PMID: 32471245 PMCID: PMC7312540 DOI: 10.3390/ijms21113803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed. Further, to understand the effect of ligand binding on the protein communication, dynamic residue network (DRN) analysis of the MD trajectories was carried out using the MD-TASK tool. A total of ten potential natural hit compounds were identified with strong binding energy scores. Binding of ligands to the protein caused observable global and residue level changes. Dynamic residue network calculations showed increase in betweenness centrality (BC) metric of residues at the allosteric site implying these residues are important in protein communication. A loop region at the catalytic domain between residues 300 and 350 and the anticodon binding domain showed significant contributions to both PC1 and PC2. Large motions were observed at a loop in the Z-domain between residues 697 and 710 which was also in agreement with RMSF calculations that showed increase in flexibility of residues in this region. Residues in this loop region are implicated in ATP binding and thus a change in dynamics may affect ATP binding affinity. Free energy landscape (FEL) calculations showed that the holo protein (protein-ADN complex) and PfProRS-SANC184 complexes were stable, as shown by the low energy with very few intermediates and hardly distinguishable low energy barriers. In addition, FEL results agreed with backbone RMSD distribution plots where stable complexes showed a normal RMSD distribution while unstable complexes had multimodal RMSD distribution. The betweenness centrality metric showed a loss of functional importance of key ATP binding site residues upon allosteric ligand binding. The deep basins in average L observed at the allosteric region imply that there is high accessibility of residues at this region. To further analyse BC and average L metrics data, we calculated the ΔBC and ΔL values by taking each value in the holo protein BC or L matrix less the corresponding value in the ligand-bound complex BC or L matrix. Interestingly, in allosteric complexes, residues located in a loop region implicated in ATP binding had negative ΔL values while in orthosteric complexes these residues had positive ΔL values. An increase in contact frequency between residues Ser263, Thr267, Tyr285, and Leu707 at the allosteric site and residues Thr397, Pro398, Thr402, and Gln395 at the ATP binding TXE loop was observed. In summary, this study identified five potential orthosteric inhibitors and five allosteric modulators against PfProRS. Allosteric modulators changed ATP binding site dynamics, as shown by RMSF, PCA, and DRN calculations. Changes in dynamics of the ATP binding site and increased contact frequency between residues at the proposed allosteric site and the ATP binding site may explain how allosteric modulators distort the ATP binding site and thus might inhibit PfProRS. The scaffolds of the identified hits in the study can be used as a starting point for antimalarial inhibitor development with low human cytotoxicity.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
47
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
48
|
Mishra S, Malhotra N, Kumari S, Sato M, Kikuchi H, Yogavel M, Sharma A. Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase. Acta Crystallogr F Struct Biol Commun 2019; 75:714-724. [PMID: 31702585 PMCID: PMC6839821 DOI: 10.1107/s2053230x19014808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022] Open
Abstract
Prolyl-tRNA synthetase (PRS) is a member of the aminoacyl-tRNA synthetase family that drives protein translation in cells. The apicomplexan PRSs are validated targets of febrifugine (FF) and its halogenated derivative halofuginone (HF). PRSs are of great interest for drug development against Plasmodium falciparum and Toxoplasma gondii. In this study, structures of apo and FF-bound T. gondii (TgPRS) are revealed and the dynamic nature of the conformational changes that occur upon FF binding is unraveled. In addition, this study highlights significant conformational plasticity within two different crystal structures of apo PRSs but not within drug-bound PRSs. The apo PRSs exist in multi-conformational states and manifest pseudo-dimeric structures. In contrast, when FF is bound the PRS dimer adopts a highly symmetrical architecture. It is shown that TgPRS does not display extant fold switching, in contrast to P. falciparum PRS, despite having over 65% sequence identity. Finally, structure-comparison analyses suggest the utility of r.m.s.d. per residue (r.m.s.d./res) as a robust tool to detect structural alterations even when the r.m.s.d. is low. Apo TgPRS reveals FF/HF-induced rigidity and this work has implications for drug-design studies that rely on the apo structures of target proteins.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Nipun Malhotra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Shreya Kumari
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Mizuki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Manickam Yogavel
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Amit Sharma
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| |
Collapse
|
49
|
Chhibber-Goel J, Joshi S, Sharma A. Aminoacyl tRNA synthetases as potential drug targets of the Panthera pathogen Babesia. Parasit Vectors 2019; 12:482. [PMID: 31610802 PMCID: PMC6792207 DOI: 10.1186/s13071-019-3717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background A century ago, pantheras were abundant across Asia. Illegal hunting and trading along with loss of habitat have resulted in the designation of Panthera as a genus of endangered species. In addition to the onslaught from humans, pantheras are also susceptible to outbreaks of several infectious diseases, including babesiosis. The latter is a hemoprotozoan disease whose causative agents are the eukaryotic parasites of the apicomplexan genus Babesia. Babesiosis affects a varied range of animals including humans (Homo sapiens), bovines (e.g. Bos taurus), pantheras (e.g. Panthera tigris, P. leo, P. pardus) and equines. Babesia spp. are transmitted by the tick vector Ixodes scapularis or ticks of domestic animals, namely Rhipicephalus (Boophilus) microplus and R. (B.) decoloratus. At the level of protein translation within these organisms, the conserved aminoacyl tRNA synthetase (aaRS) family offers an opportunity to identify the sequence and structural differences in the host (Panthera) and parasites (Babesia spp.) in order to exploit these for drug targeting Babesia spp. Methods Using computational tools we investigated the genomes of Babesia spp. and Panthera tigris so as to annotate their aaRSs. The sequences were analysed and their subcellular localizations were predicted using Target P1.1, SignalP 3.0, TMHMM v.2.0 and Deeploc 1.0 web servers. Structure-based analysis of the aaRSs from P. tigris and its protozoan pathogens Babesia spp. was performed using Phyre2 and chimera. Results We identified 33 (B. bovis), 34 (B. microti), 33 (B. bigemina) and 33 (P. tigris) aaRSs in these respective organisms. Poor sequence identity (~ 20–50%) between aaRSs from Babesia spp. and P. tigris was observed and this merits future experiments to validate new drug targets against Babesia spp. Conclusions Overall this work provides a foundation for experimental investigation of druggable aaRSs from Babesia sp. in an effort to control Babesiosis in Panthera.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sarthak Joshi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
50
|
Targeting the apicoplast in malaria. Biochem Soc Trans 2019; 47:973-983. [PMID: 31383817 DOI: 10.1042/bst20170563] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022]
Abstract
Malaria continues to be one of the leading causes of human mortality in the world, and the therapies available are insufficient for eradication. Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum Apicomplexan parasites, including the Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess an essential plastid organelle, named the apicoplast. Since humans and animals have no plastids, the apicoplast is an attractive target for drug development. Indeed, after its discovery, the apicoplast was found to host the target pathways of some known antimalarial drugs, which motivated efforts for further research into its biological functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 'delayed death', whereby parasite killing is seen only at the end of one invasion-egress cycle. This slow action is not in line with the current standard for antimalarials, which seeded scepticism about the potential of compounds targeting apicoplast functions as good candidates for drug development. Intriguingly, recent evidence of apicoplast inhibitors causing rapid killing could put this organelle back in the spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, alongside recent findings in apicoplast biology that may provide new avenues for drug development.
Collapse
|