1
|
Chen Q, Ishii K, Mori H, Nishijima A, Arai S, Miyazaki T, Rosenthal PB. Cryo-EM reveals structural basis for human AIM/CD5L recognition of polymeric immunoglobulin M. Nat Commun 2024; 15:9387. [PMID: 39477921 PMCID: PMC11525585 DOI: 10.1038/s41467-024-53615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cell surface scavenger receptors contribute to homoeostasis and the response to pathogens and products associated with damage by binding to common molecular features on a wide range of targets. Apoptosis inhibitor of macrophage (AIM/CD5L) is a soluble protein belonging to the scavenger receptor cysteine-rich (SRCR) superfamily that contributes to prevention of a wide range of diseases associated with infection, inflammation, and cancer. AIM forms complexes with IgM pentamers which helps maintain high-levels of circulating AIM in serum for subsequent activation on release from the complex. The structural basis for AIM recognition of IgM as well as other binding targets is unknown. Here we apply cryogenic electron microscopy imaging (cryo-EM) to show how interfaces on both of AIM's C-terminal SRCR domains interact with the Fcμ constant region and J chain components of the IgM core. Both SRCR interfaces are also shown to contribute interactions important for AIM binding to damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Kazuhiro Ishii
- The Institute for AIM Medicine, Tokyo, Japan
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan.
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
An Y, Wang C, Wang Z, Kong F, Liu H, Jiang M, Liu T, Zhang S, Du K, Yin L, Jiao P, Li Y, Fan B, Zhou C, Wang M, Sun H, Lei J, Zhao S, Gong Y. Tight junction protein LSR is a host defense factor against SARS-CoV-2 infection in the small intestine. EMBO J 2024:10.1038/s44318-024-00281-4. [PMID: 39443717 DOI: 10.1038/s44318-024-00281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The identification of host factors with antiviral potential is important for developing effective prevention and therapeutic strategies against SARS-CoV-2 infection. Here, by using immortalized cell lines, intestinal organoids, ex vivo intestinal tissues and humanized ACE2 mouse model as proof-of-principle systems, we have identified lipolysis-stimulated lipoprotein receptor (LSR) as a crucial host defense factor against SARS-CoV-2 infection in the small intestine. Loss of endogenous LSR enhances ACE2-dependent infection by SARS-CoV-2 Spike (S) protein-pseudotyped virus and authentic SARS-CoV-2 virus, and exogenous administration of LSR protects against viral infection. Mechanistically, LSR interacts with ACE2 both in cis and in trans, preventing its binding to S protein, and thus inhibiting viral entry and S protein-mediated cell-cell fusion. Finally, a small LSR-derived peptide blocks S protein binding to the ACE2 receptor in vitro. These results identify both a previously unknown function for LSR in antiviral host defense against SARS-CoV-2, with potential implications for peptide-based pan-variant therapeutic interventions.
Collapse
Affiliation(s)
- Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ziqi Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Feng Kong
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Liu
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Ti Liu
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Kaige Du
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Liang Yin
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng Jiao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ying Li
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxia Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Jie Lei
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China.
| | - Shengtian Zhao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China.
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Yongfeng Gong
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China.
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China.
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
3
|
Li M, Zhao X. LILRB4 in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024:00029330-990000000-01138. [PMID: 38973293 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | | |
Collapse
|
4
|
Santos RF, de Sousa Linhares A, Steinberger P, Davis SJ, Oliveira L, Carmo AM. The CD6 interactome orchestrates ligand-independent T cell inhibitory signaling. Cell Commun Signal 2024; 22:286. [PMID: 38790044 PMCID: PMC11127300 DOI: 10.1186/s12964-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.
Collapse
Affiliation(s)
- Rita F Santos
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ESS - IPP School of Health, Polytechnic of Porto, Porto, Portugal
| | - Annika de Sousa Linhares
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council, Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Liliana Oliveira
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Zhang C, Lu P, Wei S, Hu C, Miyoshi M, Okamoto K, Itoh H, Okuda S, Suzuki M, Kawakami H, Nagata K. Refolding, Crystallization, and Crystal Structure Analysis of a Scavenger Receptor Cysteine-Rich Domain of Human Salivary Agglutinin Expressed in Escherichia coli. Protein J 2024; 43:283-297. [PMID: 38265733 PMCID: PMC11058800 DOI: 10.1007/s10930-023-10173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
Scavenger receptors are a protein superfamily that typically consists of one or more repeats of the scavenger receptor cysteine-rich structural domain (SRCRD), which is an ancient and highly conserved protein module. The expression and purification of eukaryotic proteins containing multiple disulfide bonds has always been challenging. The expression systems that are commonly used to express SRCRD proteins mainly consist of eukaryotic protein expression systems. Herein, we established a high-level expression strategy of a Type B SRCRD unit from human salivary agglutinin using the Escherichia coli expression system, followed by a refolding and purification process. The untagged recombinant SRCRD was expressed in E. coli using the pET-32a vector, which was followed by a refolding process using the GSH/GSSG redox system. The SRCRD expressed in E. coli SHuffle T7 showed better solubility after refolding than that expressed in E. coli BL21(DE3), suggesting the importance of the disulfide bond content prior to refolding. The quality of the refolded protein was finally assessed using crystallization and crystal structure analysis. As proteins refolded from inclusion bodies exhibit a high crystal quality and reproducibility, this method is considered a reliable strategy for SRCRD protein expression and purification. To further confirm the structural integrity of the refolded SRCRD protein, the purified protein was subjected to crystallization using sitting-drop vapor diffusion method. The obtained crystals of SRCRD diffracted X-rays to a resolution of 1.47 Å. The solved crystal structure appeared to be highly conserved, with four disulfide bonds appropriately formed. The surface charge distribution of homologous SRCRD proteins indicates that the negatively charged region at the surface is associated with their calcium-dependent ligand recognition. These results suggest that a high-quality SRCRD protein expressed by E. coli SHuffle T7 can be successfully folded and purified, providing new options for the expression of members of the scavenger receptor superfamily.
Collapse
Affiliation(s)
- Changyu Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sibo Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chaoyue Hu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mitsuko Miyoshi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroshi Kawakami
- Department of Food Science and Nutrition, Faculty of Home Economics, Kyoritsu Women's University, 2-2-1 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8437, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
6
|
Wang Z, Xie C, Li Y, Cai J, Jian J, Xia L, Lu Y. A CD6 homolog of Nile tilapia (Oreochromis niloticus) conserved binding bacteria involved in the regulation of Streptococcus agalactiae induced inflammation. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109360. [PMID: 38184181 DOI: 10.1016/j.fsi.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
As a lymphocyte-specific surface receptor belonging to the cysteine-rich superfamily of scavenger receptors, CD6 acts as a pattern recognition receptor for microbial components and is involved in the regulation of inflammatory responses. However, the characteristics and functions of CD6 molecules in lower vertebrates represented by teleost fish are unknown. In this study, a CD6 homolog (designated OnCD6) was characterized from Nile tilapia (Oreochromis niloticus), and establishing its role as a PRRs that participates in immune recognition. OnCD6 contains an open reading frame of 1872 bp that encodes a peptide of 623 amino acids, and contains two conserved SR domain. Multiple sequence alignment revealed that OnCD6 shares a relatively high level of identity with those of other species. Transcriptional expression analysis revealed that OnCD6 was constitutively expressed in immunes tissues such as head kidney and thymus. The expression level of OnCD6 in mainly immune tissues were found significantly upregulated after the injection of Streptococcus agalactiae (S. agalactiae). Moreover, OnCD6 protein was located in the head kidney and brain, mainly over the plasma membrane of lymphocytes in these immune tissues. In vitro experiments showed that CD6 extracellular protein bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of bacterial surface conserved components LPS and LTA etc. In vivo experiments demonstrated that overexpression OnCD6 before S. agalactiae challenge significantly improved tilapia survival, and this was concomitant with reduced bacterial load and pro-inflammatory cytokines (IL-1β and TNF-α). Taken together, our results illustrated the function of CD6 molecular pattern recognition receptors (PRRs) is conserved and plays an important role in antibacterial infection.
Collapse
Affiliation(s)
- Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Caixia Xie
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
9
|
Cho WJ, Mittal SK, Chauhan SK. Mesenchymal Stromal Cells Suppress T-Cell-Mediated Delayed-Type Hypersensitivity via ALCAM-CD6 Interaction. Stem Cells Transl Med 2023; 12:221-233. [PMID: 36972356 PMCID: PMC10108723 DOI: 10.1093/stcltm/szad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Mounting evidence suggests mesenchymal stromal cells (MSCs) suppress CD4+ T-cell activation, but whether MSCs directly regulate activation and expansion of allogeneic T cells has not been fully deciphered. Here, we identified that both human and murine MSCs constitutively express ALCAM, a cognate ligand for CD6 receptors on T cells, and investigated its immunomodulatory function using in vivo and in vitro experiments. Our controlled coculture assays demonstrated that ALCAM-CD6 pathway is critical for MSCs to exert its suppressive function on early CD4+CD25- T-cell activation. Moreover, neutralizing ALCAM or CD6 results in the abrogation of MSC-mediated suppression of T-cell expansion. Using a murine model of delayed-type hypersensitivity response to alloantigen, we show that ALCAM-silenced MSCs lose the capacity to suppress the generation of alloreactive IFNγ-secreting T cells. Consequently, MSCs, following ALCAM knockdown, failed to prevent allosensitization and alloreactive T-cell-mediated tissue damage.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wang Z, Xie C, Li Y, Wang B, Jian J, Lu Y, Xia L, Chang M. Characterization of CD166 from Nile tilapia (Oreochromis niloticus) displays a broad pathogen recognition spectrum and involved the immune response to microbial aggression. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108516. [PMID: 36603790 DOI: 10.1016/j.fsi.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
CD166 is a member of the immunoglobulin superfamily of cell adhesion molecules, and its mediated adhesion plays a crucial role in different physiological and pathological phenomena, especially related to leukocyte extravasation, immune synapse stability, T cell activation and proliferation. In this study, CD166 was identified from Nile tilapia (Oreochromis niloticus, OnCD166). OnCD166 contains an open reading frame of 1671 bp that encodes a peptide of 556 amino acids, and contains five consecutive extracellular immunoglobulin domains. It's tissue distribution and expression patterns after S. agalactiae challenge were also investigated. OnCD166 is widely distributed in various tissues of healthy tilapia. After Streptococcus agalactiae challenge, OnCD166 expressions were significantly up-regulated in all tested immune tissues. Meanwhile, the recombinant OnCD166 (rOnCD166E) protein showed strong agglutinating activities against both Gram-negative bacteria and Gram-positive bacteria. Moreover, rOnCD166E could promote phagocytosis of macrophages. Taken together, our results illustrated that OnCD166 might as a receptor involved in the immune recognition and phagocytosis against invading pathogen, which play important roles in the immune responses of Nile tilapia against bacterial pathogens.
Collapse
Affiliation(s)
- Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Caixia Xie
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China.
| |
Collapse
|
11
|
Orlik C, Berschneider KM, Jahraus B, Niesler B, Balta E, Schäkel K, Schröder-Braunstein J, Souto-Carneiro MM, Samstag Y. Keratinocyte-induced costimulation of human T cells through CD6 - but not CD2 - activates mTOR and prevents oxidative stress. Front Immunol 2022; 13:1016112. [PMID: 36353616 PMCID: PMC9639098 DOI: 10.3389/fimmu.2022.1016112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
In psoriasis and other inflammatory skin diseases, keratinocytes (KCs) secrete chemokines that attract T cells, which, in turn, cause epidermal hyperplasia by secreting proinflammatory cytokines. To date, it remains unclear whether skin-homing T cells, particularly memory T cells, can also be activated by direct cell contact with KCs. In this study, we demonstrated the ability of primary human KCs to activate human memory T cells directly by transmitting costimulatory signals through the CD6/CD166/CD318 axis. Interestingly, despite being negative for CD80/CD86, KCs initiate a metabolic shift within T cells. Blockade of the CD6/CD166/CD318 axis prevents mammalian target of rapamycin activation and T cell proliferation but promotes oxidative stress and aerobic glycolysis. In addition, it diminishes formation of central memory T cells. Importantly, although KC-mediated costimulation by CD2/CD58 also activates T cells, it cannot compensate for the lack of CD6 costimulation. Therefore, KCs likely differentially regulate T cell functions in the skin through two distinct costimulatory receptors: CD6 and CD2. This may at least in part explain the divergent effects observed when treating inflammatory skin diseases with antibodies to CD6 versus CD2. Moreover, our findings may provide a molecular basis for selective interference with either CD6/CD166/CD318, or CD2/CD58, or both to specifically treat different types of inflammatory skin diseases.
Collapse
Affiliation(s)
- Christian Orlik
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karina M. Berschneider
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Jahraus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics and nCounter Core Facility, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jutta Schröder-Braunstein
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Yvonne Samstag,
| |
Collapse
|
12
|
Casadó‐Llombart S, Ajami T, Consuegra‐Fernández M, Carreras E, Aranda F, Armiger N, Alcaraz A, Mengual L, Lozano F. Gene variation impact on prostate cancer progression: Lymphocyte modulator, activation, and cell adhesion gene variant contribution. Prostate 2022; 82:1331-1337. [PMID: 35767366 PMCID: PMC9542726 DOI: 10.1002/pros.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The view of prostate cancer (PCa) progression as a result of the interaction of epithelial cancer cells with the host's immune system is supported by the presence of tumor infiltrating lymphocytes (TILs). TILs fate and interaction with the tumor microenvironment is mediated by accessory molecules such as CD5 and CD6, two signal-transducing coreceptors involved in fine-tuning of T cell responses. While the nature of the CD5 ligand is still controversial, CD6 binds CD166/ALCAM, a cell adhesion molecule involved in progression and dissemination of epithelial cancers, including PCa. The purpose of the present study was to determine the role of CD5, CD6, and CD166/ALCAM gene variants in PCa. METHODS Functionally relevant CD5 (rs2241002 and rs2229177), CD6 (rs17824933, rs11230563, and rs12360861) and CD166/ALCAM (rs6437585, rs579565, rs1044243, and rs35271455) single nucleotide polymorphisms (SNPs) were genotyped in germline DNA samples from 376 PCa patients. Their association with PCa prognostic factors, namely biochemical recurrence (BCR) and International Society of Urological Pathology (ISUP) grade was analyzed by generalized linear models and survival analyses. RESULT Proportional hazards regression showed that the minor CD6 rs12360861AA and CD166/ALCAM rs579565AA genotypes were associated with earlier BCR, with hazard ratios of 2.65 (95% CI: 1.39-5.05, p = 0.003) and 1.86, (95% CI: 1.02-3.39, p = 0.043), respectively. Individually, none of the analyzed SNPs was significantly associated with ISUP grade, but haplotype analyses revealed association of the CD5 rs2241002C -rs2229177T haplotype with ISUP grade ≥2, with odds ratio of 1.52 (95% CI: 1.05-2.21, p = 0.026). CONCLUSION The results show the impact on PCa aggressiveness and recurrence brought about by gene variants involved in modulation of lymphocyte activation (CD5, CD6) and immune-epithelial cell adhesion (CD166/ALCAM) in PCa aggressiveness and recurrence, thus supporting a role for host immune response in PCa pathophysiology.
Collapse
Affiliation(s)
- Sergi Casadó‐Llombart
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Tarek Ajami
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
| | - Marta Consuegra‐Fernández
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Antonio Alcaraz
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
| | - Lourdes Mengual
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
- Servei d'Immunologia, Centre de Diagnòstic BiomèdicHospital Clínic de BarcelonaBarcelonaSpain
| |
Collapse
|
13
|
Casadó-Llombart S, Velasco-de Andrés M, Català C, Leyton-Pereira A, Gutiérrez-Cózar R, Suárez B, Armiger N, Carreras E, Esteller M, Ricart E, Ordás I, Gisbert JP, Chaparro M, Esteve M, Márquez L, Busquets D, Iglesias E, García-Planella E, Martín-Arranz MD, Lohmann J, Ayata CK, Niess JH, Engel P, Panés J, Salas A, Domènech E, Lozano F. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease. Front Immunol 2022; 13:966184. [PMID: 36211446 PMCID: PMC9532939 DOI: 10.3389/fimmu.2022.966184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) resulting from the interaction of multiple environmental, genetic and immunological factors. CD5 and CD6 are paralogs encoding lymphocyte co-receptors involved in fine-tuning intracellular signals delivered upon antigen-specific recognition, microbial pattern recognition and cell adhesion. While CD5 and CD6 expression and variation is known to influence some immune-mediated inflammatory disorders, their role in IBD remains unclear. To this end, Cd5- and Cd6-deficient mice were subjected to dextran sulfate sodium (DSS)-induced colitis, the most widely used experimental animal model of IBD. The two mouse lines showed opposite results regarding body weight loss and disease activity index (DAI) changes following DSS-induced colitis, thus supporting Cd5 and Cd6 expression involvement in the pathophysiology of this experimental IBD model. Furthermore, DNA samples from IBD patients of the ENEIDA registry were used to test association of CD5 (rs2241002 and rs2229177) and CD6 (rs17824933, rs11230563, and rs12360861) single nucleotide polymorphisms with susceptibility and clinical parameters of CD (n=1352) and UC (n=1013). Generalized linear regression analyses showed association of CD5 variation with CD ileal location (rs2241002CC) and requirement of biological therapies (rs2241002C-rs2229177T haplotype), and with poor UC prognosis (rs2241002T-rs2229177T haplotype). Regarding CD6, association was observed with CD ileal location (rs17824933G) and poor prognosis (rs12360861G), and with left-sided or extensive UC, and absence of ankylosing spondylitis in IBD (rs17824933G). The present experimental and genetic evidence support a role for CD5 and CD6 expression and variation in IBD’s clinical manifestations and therapeutic requirements, providing insight into its pathophysiology and broadening the relevance of both immunomodulatory receptors in immune-mediated disorders.
Collapse
Affiliation(s)
- Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra Leyton-Pereira
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Belén Suárez
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier P. Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Lucía Márquez
- Gastroenterology Department, Hospital del Mar and Institut Hospital del Mar Investigacions Mèdiques, Barcelona, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Eva Iglesias
- Department of Gastroenterology, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - María Dolores Martín-Arranz
- Department of Gastroenterology, and Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliane Lohmann
- Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - C. Korcan Ayata
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital, Basel, Switzerland
| | - Pablo Engel
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Julián Panés
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Azucena Salas
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eugeni Domènech
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- *Correspondence: Francisco Lozano,
| | | |
Collapse
|
14
|
3D Structures of IgA, IgM, and Components. Int J Mol Sci 2021; 22:ijms222312776. [PMID: 34884580 PMCID: PMC8657937 DOI: 10.3390/ijms222312776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.
Collapse
|
15
|
Valcarcel A, Bensussen A, Álvarez-Buylla ER, Díaz J. Structural Analysis of SARS-CoV-2 ORF8 Protein: Pathogenic and Therapeutic Implications. Front Genet 2021; 12:693227. [PMID: 34552615 PMCID: PMC8450498 DOI: 10.3389/fgene.2021.693227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Current therapeutic strategies and vaccines against SARS-CoV-2 are mainly focused on the Spike protein despite there are other viral proteins with important roles in COVID-19 pathogenicity. For example, ORF8 restructures vesicular trafficking in the host cell, impacts intracellular immunity through the IFN-I signaling, and growth pathways through the mitogen-activated protein kinases (MAPKs). In this mini-review, we analyze the main structural similarities of ORF8 with immunological molecules such as IL-1, contributing to the immunological deregulation observed in COVID-19. We also propose that the blockage of some effector functions of ORF8 with Rapamycin, such as the mTORC1 activation through MAPKs 40 pathway, with Rapamycin, can be a promising approach to reduce COVID-19 mortality.
Collapse
Affiliation(s)
- Antonio Valcarcel
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antonio Bensussen
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Elena R Álvarez-Buylla
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evoluciónde Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Díaz
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
16
|
Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, Camus M, Marcellin M, Argenty J, Burlet-Schiltz O, Fiore F, Gonzalez de Peredo A, Malissen M, Roncagalli R, Malissen B. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J Exp Med 2021; 218:211516. [PMID: 33125054 PMCID: PMC7608068 DOI: 10.1084/jem.20201011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.
Collapse
Affiliation(s)
- Daiki Mori
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Rudy Aussel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
17
|
Cheng C, Zheng E, Yu B, Zhang Z, Wang Y, Liu Y, He Y. Recognition of lipoproteins by scavenger receptor class A members. J Biol Chem 2021; 297:100948. [PMID: 34252459 PMCID: PMC8353498 DOI: 10.1016/j.jbc.2021.100948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptor class A (SR-A) proteins are type II transmembrane glycoproteins that form homotrimers on the cell surface. This family has five known members (SCARA1 to 5, or SR-A1 to A5) that recognize a variety of ligands and are involved in multiple biological pathways. Previous reports have shown that some SR-A family members can bind modified low-density lipoproteins (LDLs); however, the mechanisms of the interactions between the SR-A members and these lipoproteins are not fully understood. Here, we systematically characterize the recognition of SR-A receptors with lipoproteins and report that SCARA1 (SR-A1, CD204), MARCO (SCARA2), and SCARA5 recognize acetylated or oxidized LDL and very-low-density lipoprotein in a Ca2+-dependent manner through their C-terminal scavenger receptor cysteine-rich (SRCR) domains. These interactions occur specifically between the SRCR domains and the modified apolipoprotein B component of the lipoproteins, suggesting that they might share a similar mechanism for lipoprotein recognition. Meanwhile, SCARA4, a SR-A member with a carbohydrate recognition domain instead of the SRCR domain at the C terminus, shows low affinity for modified LDL and very-low-density lipoprotein but binds in a Ca2+-independent manner. SCARA3, which does not have a globular domain at the C terminus, was found to have no detectable binding with these lipoproteins. Taken together, these results provide mechanistic insights into the interactions between SR-A family members and lipoproteins that may help us understand the roles of SR-A receptors in lipid transport and related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Enlin Zheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ze Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, China.
| |
Collapse
|
18
|
Contribution of Evolutionary Selected Immune Gene Polymorphism to Immune-Related Disorders: The Case of Lymphocyte Scavenger Receptors CD5 and CD6. Int J Mol Sci 2021; 22:ijms22105315. [PMID: 34070159 PMCID: PMC8158487 DOI: 10.3390/ijms22105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogens are one of the main selective pressures that ancestral humans had to adapt to. Components of the immune response system have been preferential targets of natural selection in response to such pathogen-driven pressure. In turn, there is compelling evidence showing that positively selected immune gene variants conferring increased resistance to past or present infectious agents are today associated with increased risk for autoimmune or inflammatory disorders but decreased risk of cancer, the other side of the same coin. CD5 and CD6 are lymphocytic scavenger receptors at the interphase of the innate and adaptive immune responses since they are involved in both: (i) microbial-associated pattern recognition; and (ii) modulation of intracellular signals mediated by the clonotypic antigen-specific receptor present in T and B cells (TCR and BCR, respectively). Here, we review available information on CD5 and CD6 as targets of natural selection as well as on the role of CD5 and CD6 variation in autoimmunity and cancer.
Collapse
|
19
|
Chen X, Yan H, Liu D, Xu Q, Duan H, Feng J, Yan X, Xie C. Structure basis for AA98 inhibition on the activation of endothelial cells mediated by CD146. iScience 2021; 24:102417. [PMID: 33997697 PMCID: PMC8093899 DOI: 10.1016/j.isci.2021.102417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
CD146 is an adhesion molecule that plays important roles in angiogenesis, cancer metastasis, and immune response. It exists as a monomer or dimer on the cell surface. AA98 is a monoclonal antibody that binds to CD146, which abrogates the activation of CD146-mediated signaling pathways and shows inhibitory effects on tumor growth. However, how AA98 inhibits the function of CD146 remains unclear. Here, we describe a crystal structure of the CD146/AA98 Fab complex at a resolution of 2.8 Å. Monomeric CD146 is stabilized by AA98 Fab binding to the junction region of CD146 domains 4 and 5. A higher-affinity AA98 variant (here named HA98) was thus rationally designed. Better binding to CD146 and prominent inhibition on cell migration were achieved with HA98. Further experiments on xenografted melanoma in mice with HA98 revealed superior inhibitory effects on tumor growth to those of AA98, which suggested future applications of this antibody in cancer therapy. Structural analysis elucidated how mAb AA98 inhibited CD146-mediated EC activation AA98-stabilized CD146 in monomer thus inhibited activation of EC Higher affinity monoclonal antibody HA98 was rationally designed for cancer treatment
Collapse
Affiliation(s)
- Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huiwen Yan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China.,High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, PR China.,International Magnetobiology Frontier Research Center, Science Island, Hefei 230031, China
| |
Collapse
|
20
|
Simões IT, Aranda F, Casadó-Llombart S, Velasco-de Andrés M, Català C, Álvarez P, Consuegra-Fernández M, Orta-Mascaró M, Merino R, Merino J, Alberola-Ila J, González-Aseguinolaza G, Carreras E, Martínez V, Lozano F. Multifaceted effects of soluble human CD6 in experimental cancer models. J Immunother Cancer 2020; 8:jitc-2019-000172. [PMID: 32217757 PMCID: PMC7174071 DOI: 10.1136/jitc-2019-000172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background CD6 is a lymphocyte surface co-receptor physically associated with the T-cell receptor (TCR)/CD3 complex at the center of the immunological synapse. There, CD6 assists in cell-to-cell contact stabilization and modulation of activation/differentiation events through interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), its main reported ligand. While accumulating evidence is attracting new interest on targeting CD6 for therapeutic purposes in autoimmune disorders, little is known on its potential in cancer. In an attempt to elucidate the in vivo relevance of blocking CD6-mediated interactions in health and disease, we explored the consequences of expressing high circulating levels of a soluble form CD6 (sCD6) as a decoy receptor. Methods High sCD6 serum levels were achieved by using transgenic C57BL/6 mice expressing human sCD6 under the control of lymphoid-specific transcriptional elements (shCD6LckEμTg) or wild type either transduced with hepatotropic adeno-associated virus coding for mouse sCD6 or undergoing repeated infusions of recombinant human sCD6 protein. Characterization of sCD6-induced changes was performed by ex vivo flow cytometry and functional analyses of mouse lymphoid organ cells. The in vivo relevance of those changes was explored by challenging mice with subcutaneous or metastatic tumors induced by syngeneic cancer cells of different lineage origins. Results Through a combination of in vitro and in vivo studies, we show that circulating sCD6 expression induces defective regulatory T cell (Treg) generation and function, decreased CD166/ALCAM-mediated tumor cell proliferation/migration and impaired galectin-induced T-cell apoptosis, supporting the fact that sCD6 modulates antitumor lymphocyte effector function and tumorigenesis. Accordingly, sCD6 expression in vivo resulted in delayed subcutaneous tumor growth and/or reduced metastasis on challenge of mice with syngeneic cancer cells. Conclusions Evidence is provided for the disruption of CD6 receptor–ligand interactions as a feasible immunomodulatory approach in cancer.
Collapse
Affiliation(s)
- Inês T Simões
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Pilar Álvarez
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Marc Orta-Mascaró
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Ramón Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-UC, Santander, Cantabria, Spain
| | - Jesús Merino
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - José Alberola-Ila
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Vanesa Martínez
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain .,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Yu B, Cheng C, Wu Y, Guo L, Kong D, Zhang Z, Wang Y, Zheng E, Liu Y, He Y. Interactions of ferritin with scavenger receptor class A members. J Biol Chem 2020; 295:15727-15741. [PMID: 32907880 DOI: 10.1074/jbc.ra120.014690] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptors are a superfamily of membrane-bound receptors that recognize both self and nonself targets. Scavenger receptor class A (SR-A) has five known members (SCARA1 to -5 or SR-A1 to -A5), which are type II transmembrane proteins that form homotrimers on the cell surface. SR-A members recognize various ligands and are involved in multiple biological pathways. Among them, SCARA5 can function as a ferritin receptor; however, the interaction between SCARA5 and ferritin has not been fully characterized. Here, we determine the crystal structures of the C-terminal scavenger receptor cysteine-rich (SRCR) domain of both human and mouse SCARA5 at 1.7 and 2.5 Å resolution, respectively, revealing three Ca2+-binding sites on the surface. Using biochemical assays, we show that the SRCR domain of SCARA5 recognizes ferritin in a Ca2+-dependent manner, and both L- and H-ferritin can be recognized by SCARA5 through the SRCR domain. Furthermore, the potential binding region of SCARA5 on the surface of ferritin is explored by mutagenesis studies. We also examine the interactions of ferritin with other SR-A members and find that SCARA1 (SR-A1, CD204) and MARCO (SR-A2, SCARA2), which are highly expressed on macrophages, also interact with ferritin. By contrast, SCARA3 and SCARA4, the two SR-A members without the SRCR domain, have no detectable binding with ferritin. Overall, these results provide a mechanistic view regarding the interactions between the SR-A members and ferritin that may help to understand the regulation of ferritin homeostasis by scavenger receptors.
Collapse
Affiliation(s)
- Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Cheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yichun Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Luqiang Guo
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Kong
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ze Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Enlin Zheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Bartolomé RA, Pintado-Berninches L, Jaén M, de Los Ríos V, Imbaud JI, Casal JI. SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166. Oncogene 2020; 39:6085-6098. [PMID: 32801337 DOI: 10.1038/s41388-020-01419-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
The mechanistic basis of liver metastasis in colorectal cancer remains poorly understood. We previously reported that the sclerostin domain containing-1 (SOSTDC1) protein is overexpressed in the secretome of metastatic colorectal cancer cells and can inhibit liver homing. Here, we investigated the mechanisms of SOSTDC1 for promoting invasiveness and progression of colorectal cancer liver metastasis. SOSTDC1 inhibition of BMP4 maintains the expression of cancer stem cell traits, including SOX2 and NANOG. Immunoprecipitation and mass spectrometry analyses reveal the association of SOSTDC1 with ALCAM/CD166, which was confirmed by confocal microscopy and competition ELISA. Interaction with ALCAM is mediated by the N-terminal region of SOSTDC1, which contains a sequence similar to the ALCAM-binding motif used by CD6. Knocking down either SOSTDC1 or ALCAM expression, or using blocking antibodies, reduces the invasive activity by inhibiting Src and PI3K/AKT signaling pathways. In addition, ALCAM interacts with the α2ß1 and α1ß1 integrins, providing a possible link to Src activation. Finally, inoculation of SOSTDC1-silenced metastatic cells increases mouse survival by inhibiting liver metastasis. In conclusion, SOSTDC1 promotes invasion and liver metastasis in colorectal cancer, by overcoming BMP4-specific antimetastatic signals and inducing ALCAM-mediated Src and PI3K/AKT activation. These experiments underscore the potential of SOSTDC1 as a therapeutic target in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain.
| | - Laura Pintado-Berninches
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Vivian de Los Ríos
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | | | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain.
| |
Collapse
|
23
|
Reichhardt MP, Loimaranta V, Lea SM, Johnson S. Structures of SALSA/DMBT1 SRCR domains reveal the conserved ligand-binding mechanism of the ancient SRCR fold. Life Sci Alliance 2020; 3:3/4/e201900502. [PMID: 32098784 PMCID: PMC7043408 DOI: 10.26508/lsa.201900502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
The structures of SALSA SRCR domains 1 and 8 reveal a cation-dependent mechanism for ligand recognition, contributing to important roles in the immune system and cellular signalling. The cation-binding sites are conserved across all SRCR domains, suggesting conserved functional mechanisms. The scavenger receptor cysteine-rich (SRCR) family of proteins comprises more than 20 membrane-associated and secreted molecules. Characterised by the presence of one or more copies of the ∼110 amino-acid SRCR domain, this class of proteins have widespread functions as antimicrobial molecules, scavenger receptors, and signalling receptors. Despite the high level of structural conservation of SRCR domains, no unifying mechanism for ligand interaction has been described. The SRCR protein SALSA, also known as DMBT1/gp340, is a key player in mucosal immunology. Based on detailed structural data of SALSA SRCR domains 1 and 8, we here reveal a novel universal ligand-binding mechanism for SALSA ligands. The binding interface incorporates a dual cation-binding site, which is highly conserved across the SRCR superfamily. Along with the well-described cation dependency on most SRCR domain–ligand interactions, our data suggest that the binding mechanism described for the SALSA SRCR domains is applicable to all SRCR domains. We thus propose to have identified in SALSA a conserved functional mechanism for the SRCR class of proteins.
Collapse
Affiliation(s)
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Cheng C, Hu Z, Cao L, Peng C, He Y. The scavenger receptor SCARA1 (CD204) recognizes dead cells through spectrin. J Biol Chem 2019; 294:18881-18897. [PMID: 31653705 DOI: 10.1074/jbc.ra119.010110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
Scavenger receptor class A member 1 (SCARA1 or CD204) is an immune receptor highly expressed on macrophages. It forms homotrimers on the cell surface and plays important roles in regulating immune responses via its involvement in multiple pathways. However, both the structure and the functional roles of SCARA1 are not fully understood. Here, we determined the crystal structure of the C-terminal SRCR domain of SCARA1 at 1.8 Å resolution, revealing its Ca2+-binding site. Results from cell-based assays revealed that SCARA1 can recognize dead cells, rather than live cells, specifically through its SRCR domain and in a Ca2+-dependent manner. Furthermore, by combining MS and biochemical assays, we found that cellular spectrin is the binding target of SCARA1 on dead cells and that the SRCR domain of SCARA1 recognizes the SPEC repeats of spectrin in the presence of Ca2+ We also found that macrophages can internalize dead cells or debris from both erythrocytes and other cells through the interaction between SCARA1 and spectrin, suggesting that SCARA1 could function as a scavenging receptor that recognizes dead cells. These results suggest that spectrin, which is one of the major components of the cytoskeleton, acts as a cellular marker that enables the recognition of dead cells by the immune system.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Peng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
25
|
Freitas RF, Basto A, Almeida SCP, Santos RF, Gonçalves CM, Corria-Osorio J, Carvalho T, Carmo AM, Oliveira VG, Leon K, Graca L. Modulation of CD4 T cell function via CD6-targeting. EBioMedicine 2019; 47:427-435. [PMID: 31481324 PMCID: PMC6796521 DOI: 10.1016/j.ebiom.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022] Open
Abstract
In recent years molecules involved on the immune synapse became successful targets for therapeutic immune modulation. CD6 has been extensively studied, yet, results regarding CD6 biology have been controversial, in spite of the ubiquitous presence of this molecule on virtually all CD4 T cells. We investigated the outcome of murine and human antibodies targeting CD6 domain 1. We found that CD6-targeting had a major impact on the functional specialization of CD4 cells, both human and murine. Differentiation of CD4 T cells towards a Foxp3+ Treg fate was prevented with increasing doses of anti-CD6, while Th1 polarization was favoured. No impact was observed on Th2 or Th17 specialization. These in vitro results provided an explanation for the dose-dependent outcome of in vivo anti-CD6 administration where the anti-inflammatory action is lost at the highest doses. Our data show that therapeutic targeting of the immune synapse may lead to paradoxical dose-dependent effects due to modification of T cell fate.
Collapse
Affiliation(s)
- Raquel Filipa Freitas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Afonso Basto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Silvia C P Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Carine M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | | | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Vanessa G Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Kalet Leon
- Centro de Inmunologia Molecular, Havana, Cuba
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
26
|
Kim MN, Hong JY, Shim DH, Sol IS, Kim YS, Lee JH, Kim KW, Lee JM, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Stimulates the T-Cell Response in Allergic Asthma. Am J Respir Crit Care Med 2019; 197:994-1008. [PMID: 29394080 DOI: 10.1164/rccm.201703-0532oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE The activated leukocyte cell adhesion molecule (ALCAM) is a cluster of differentiation 6 ligand that is important for stabilizing the immunological synapse and inducing T-cell activation and proliferation. OBJECTIVES In this study, we investigated the role of ALCAM in the development of inflammation in allergic asthma. METHODS An ovalbumin (OVA)-induced allergic asthma model was established in wild-type (WT) and ALCAM-deficient (ALCAM-/-) mice. T-cell proliferation was evaluated in cocultures with dendritic cells (DCs). Bone marrow-derived dendritic cells (BMDCs) from WT and ALCAM-/- mice were cultured and adoptively transferred to OT-II mice for either OVA sensitization or challenge. An anti-ALCAM antibody was administered to assess its therapeutic potential. ALCAM concentrations in the sputum and serum of children with asthma were quantified by ELISA. MEASUREMENTS AND MAIN RESULTS Inflammatory responses were lower in ALCAM-/- mice than in WT mice, and T cells cocultured with DCs from ALCAM-/- mice showed reduced proliferation relative to those cocultured with DCs from WT mice. A decreased inflammatory response was observed upon adoptive transfer of BMDCs from ALCAM-/- mice as compared with that observed after transfer of BMDCs from WT mice. In addition, anti-ALCAM antibody-treated mice showed a reduced inflammatory response, and sputum and serum ALCAM concentrations were higher in children with asthma than in control subjects. CONCLUSIONS ALCAM contributes to OVA-induced allergic asthma by stimulating T-cell activation and proliferation, suggesting it as a potential therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Mi Na Kim
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| | - Jung Yeon Hong
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| | - Doo Hee Shim
- 5 Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - In Suk Sol
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| | - Yun Seon Kim
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| | - Ji Hyun Lee
- 6 Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Won Kim
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| | - Jae Myun Lee
- 4 Brain Korea 21 PLUS Project for Medical Science, and.,5 Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Myung Hyun Sohn
- 1 Department of Pediatrics.,2 Institute of Allergy.,3 Severance Hospital.,4 Brain Korea 21 PLUS Project for Medical Science, and
| |
Collapse
|
27
|
Santos RF, Oliveira L, Brown MH, Carmo AM. Domain-specific CD6 monoclonal antibodies identify CD6 isoforms generated by alternative-splicing. Immunology 2019; 157:296-303. [PMID: 31162836 PMCID: PMC6620187 DOI: 10.1111/imm.13087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
The characterization of the architecture, structure and extracellular interactions of the CD6 glycoprotein, a transmembrane receptor expressed in medullary thymocytes and all mature T‐cell populations, has been enhanced by the existence of monoclonal antibodies (mAbs) that specifically recognize the various scavenger receptor cysteine‐rich (SRCR) domains of the ectodomain. Using engineered isoforms of CD6 including or excluding each of the three SRCR domains, either expressed at the membranes of cells or in soluble forms, we provide conclusive and definitive evidence that domain 2 of CD6, previously not identifiable, can be recognized by the CD6 mAbs OX125 and OX126, and that OX124 targets domain 3 and can block the interaction at the cell surface of CD6 with its major ligand CD166. Alternative splicing‐dependent CD6 isoforms can now be confidently identified. We confirm that following T‐cell activation there is a partial replacement of full‐length CD6 by the CD6Δd3 isoform, which lacks the CD166‐binding domain, and we find no evidence for the expression of other CD6 isoforms at the mRNA or protein levels.
Collapse
Affiliation(s)
- Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
28
|
Kureel AK, Kumari S, Saini S, Satyaprakash, Singh B, Rai AK. Identification of a novel transcript variant of the human CD6 gene that lacks exon 9. Immunobiology 2019; 224:666-671. [PMID: 31235289 DOI: 10.1016/j.imbio.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 01/27/2023]
Abstract
CD6 is a transmembrane glycoprotein, mainly expressed by all T cells and a subset of B cells. It has been shown that the human CD6 gene has six reported transcript isoforms, including full length and Δ3 isoforms. These are CD6a, CD6b, CD6c, CD6d, CD6e and CD6Δ3. In every isoform, particular exon(s) are known to be alternatively spliced out. In our findings, we observed a novel transcript isoform of CD6, where exon 9 is spliced out. Semi-qPCR and nucleotide sequencing confirmed the presence of a novel isoform of CD6 i.e. CD6f in human mononuclear cells. Quantitative expression showed significant high expression of CD6f over the full length transcript variant i.e. CD6a. Interestingly, their expressions get further increased upon polyclonal activation.
Collapse
Affiliation(s)
- Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Satyaprakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
29
|
Gonçalves CM, Henriques SN, Santos RF, Carmo AM. CD6, a Rheostat-Type Signalosome That Tunes T Cell Activation. Front Immunol 2018; 9:2994. [PMID: 30619347 PMCID: PMC6305463 DOI: 10.3389/fimmu.2018.02994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Following T cell receptor triggering, T cell activation is initiated and amplified by the assembly at the TCR/CD3 macrocomplex of a multitude of stimulatory enzymes that activate several signaling cascades. The potency of signaling is, however, modulated by various inhibitory components already at the onset of activation, long before co-inhibitory immune checkpoints are expressed to help terminating the response. CD5 and CD6 are surface glycoproteins of T cells that have determinant roles in thymocyte development, T cell activation and immune responses. They belong to the superfamily of scavenger receptor cysteine-rich (SRCR) glycoproteins but whereas the inhibitory role of CD5 has been established for long, there is still controversy on whether CD6 may have similar or antagonistic functions on T cell signaling. Analysis of the structure and molecular associations of CD5 and CD6 indicates that these molecules assemble at the cytoplasmic tail a considerable number of signaling effectors that can putatively transduce diverse types of intracellular signals. Biochemical studies have concluded that both receptors can antagonize the flow of TCR-mediated signaling; however, the impact that CD5 and CD6 have on T cell development and T cell-mediated immune responses may be different. Here we analyze the signaling function of CD6, the common and also the different properties it exhibits comparing with CD5, and interpret the functional effects displayed by CD6 in recent animal models.
Collapse
Affiliation(s)
- Carine M Gonçalves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sónia N Henriques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rita F Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
30
|
Breuning J, Brown MH. A sequence conserved between CD5 and CD6 binds an FERM domain and exerts a restraint on T-cell activation. Immunology 2018; 156:270-276. [PMID: 30460991 PMCID: PMC6376265 DOI: 10.1111/imm.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
CD5 and CD6 are related surface receptors that limit and promote T‐cell responses. Co‐stimulatory effects of CD6 depend on binding a cell surface ligand, CD166, and recruitment of the intracellular adaptor proteins GADS and SLP‐76 by C‐terminal phosphotyrosines. We have continued to identify interactions of CD5 and CD6 to understand their roles in T‐cell activation. In a screen to identify binding partners for peptides containing a cytoplasmic sequence, SDSDY conserved between CD5 and CD6, we identified ezrin radixin moesin (ERM) proteins, which link plasma membrane proteins to actin. Purified radixin FERM domain bound directly to CD5 and CD6 SDSDY peptides in a phosphorylation‐dependent manner (KD = 0·5‐2 μm) at 37°. In human T‐cell blasts, mutation of the CD6 SDSDY sequence enhanced CD69 expression in response to CD3 monoclonal antibody. In this proximal readout, interactions of the SDSDY sequence were dominant compared with the C‐terminal tyrosines of CD6. In contrast, in a more downstream readout, interleukin‐2 expression, in response to immobilized CD3 and CD6 monoclonal antibodies, the C‐terminal tyrosines were dominant. The data suggest that varying functional effects of CD6 and potentially CD5 depend on interactions of different cytoplasmic regions with the cytoskeleton and alter depending on the stimuli.
Collapse
Affiliation(s)
- Johannes Breuning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Hiramoto E, Tsutsumi A, Suzuki R, Matsuoka S, Arai S, Kikkawa M, Miyazaki T. The IgM pentamer is an asymmetric pentagon with an open groove that binds the AIM protein. SCIENCE ADVANCES 2018; 4:eaau1199. [PMID: 30324136 PMCID: PMC6179379 DOI: 10.1126/sciadv.aau1199] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Soluble immunoglobulin M (IgM) forms a pentamer containing a joining (J) chain polypeptide. While IgM pentamer has various immune functions, it also behaves as a carrier of circulating apoptosis inhibitor of macrophage (AIM; also called CD5L) protein that facilitates repair during different diseases. AIM binds to the IgM pentamer solely in the presence of the J chain. Here, using a single-particle negative-stain electron microscopy, we found that the IgM pentamer exhibits an asymmetric pentagon containing one large gap, which is markedly different from the textbook symmetric pentagon model. A single AIM molecule specifically fits into the gap, cross-bridging two IgM-Fc that form the edges of the gap through a disulfide bond at one side and a charge-based interaction at the other side. The discovery of the bona fide shape of the IgM pentamer advances our structural understanding of the pentameric IgM and its binding mode with AIM.
Collapse
Affiliation(s)
- Emiri Hiramoto
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Risa Suzuki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Corresponding author. (T.M.); (S.A.)
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Corresponding author. (T.M.); (S.A.)
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Max Planck–The University of Tokyo Center for Integrative Inflammology, Tokyo, Japan
- Corresponding author. (T.M.); (S.A.)
| |
Collapse
|
32
|
Samaha H, Pignata A, Fousek K, Ren J, Lam FW, Stossi F, Dubrulle J, Salsman VS, Krishnan S, Hong SH, Baker ML, Shree A, Gad AZ, Shum T, Fukumura D, Byrd TT, Mukherjee M, Marrelli SP, Orange JS, Joseph SK, Sorensen PH, Taylor MD, Hegde M, Mamonkin M, Jain RK, El-Naggar S, Ahmed N. A homing system targets therapeutic T cells to brain cancer. Nature 2018; 561:331-337. [PMID: 30185905 PMCID: PMC6402337 DOI: 10.1038/s41586-018-0499-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.
Collapse
Affiliation(s)
- Heba Samaha
- Children's Cancer Hospital Egypt-57357, Cairo, Egypt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Antonella Pignata
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Kristen Fousek
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jun Ren
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fong W Lam
- Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases at the Michael E DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Fabio Stossi
- Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Julien Dubrulle
- Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Shanmugarajan Krishnan
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung-Ha Hong
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Matthew L Baker
- Baylor College of Medicine, Houston, TX, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Children's Cancer Hospital Egypt-57357, Cairo, Egypt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiara T Byrd
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Malini Mukherjee
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Jordan S Orange
- Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sujith K Joseph
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Poul H Sorensen
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Arthur and Sonia Labatt Brain Tumour Research Centre, Division of Neurosurgery, Departments of Surgery, Laboratory Medicine and Pathobiology, and of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Hospital, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nabil Ahmed
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
- Baylor College of Medicine, Houston, TX, USA.
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Houston Methodist Hospital, Houston, TX, USA.
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Garner LI, Hartland A, Breuning J, Brown MH. CD6 monoclonal antibodies differ in epitope, kinetics and mechanism of action. Immunology 2018; 155:273-282. [PMID: 29772075 DOI: 10.1111/imm.12952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
CD6 is a type I T-cell surface receptor that modulates antigen receptor signalling. Its activity is regulated by binding of its membrane proximal domain (domain 3) to a cell surface ligand, CD166. CD6 monoclonal antibodies (mAbs) specific for the membrane distal domain (domain 1) perturb CD6 function including itolizumab (Alzumab™), which has reached the clinic for treatment of autoimmune disease. We characterized molecular and functional properties of several CD6 mAbs including itolizumab to define potential mechanisms of action. Epitope mapping using the crystal structure of CD6 to design mutants identified two distinct binding sites on different faces of domain 1, one containing residue R77, crucial for MT605 and T12.1 binding and the other, E63, which is crucial for itolizumab and MEM98. Analysis of binding kinetics revealed that itolizumab has a lower affinity compared with other CD6 domain 1 mAbs. We compared potential agonistic (triggering) and antagonistic (blocking) properties of CD6 mAbs in assays where the mechanism of action was well defined. CD6 domain 1 and 3 mAbs were equally effective in triggering interleukin-2 production by a cell line expressing a chimeric antigen receptor containing the extracellular region of CD6. CD6 domain 1 mAbs hindered binding of multivalent immobilized CD166 but were inferior compared with blocking by soluble CD166 or a CD6 domain 3 mAb. Characterization of CD6 mAbs provides an insight into how their functional effects in vivo may be interpreted and their therapeutic use optimized.
Collapse
Affiliation(s)
- Lee I Garner
- Sir William Dunn School of Pathology, Oxford, UK
| | | | | | | |
Collapse
|
34
|
Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol 2018; 104:777-786. [PMID: 29882603 DOI: 10.1002/jlb.3vmr0118-036r] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a ubiquitous and multifunctional secreted glycoprotein originally identified and mainly studied in the context of neoplastic transformation and cancer progression. However, Gal-3BP expression is induced in viral infection and by a multitude of molecules that either mimic or are characteristic for an ongoing inflammation and microbial infection, such as IFN-α, IFN-β, IFN-γ, TNF-α, poly(I:C), dsRNA, and dsDNA. Furthermore, Gal-3BP belongs to the scavenger receptor cysteine-rich (SRCR) domain-containing protein family, by virtue of its N-terminal SRCR domain. The SRCR domain is found in soluble or membrane-associated innate immunity-related proteins and is implicated in self-nonself discrimination. This review summarizes the current knowledge of structural features of Gal-3BP and its proposed intracellular and extracellular innate immunity functions with special emphasis on viral and bacterial infections.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Turku, Finland.,Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland.,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Olli Laaksoaho
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| |
Collapse
|
35
|
Consuegra-Fernández M, Lin F, Fox DA, Lozano F. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Martínez-Florensa M, Català C, Velasco-de Andrés M, Cañadas O, Fraile-Ágreda V, Casadó-Llombart S, Armiger-Borràs N, Consuegra-Fernández M, Casals C, Lozano F. Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis. Front Immunol 2018; 9:627. [PMID: 29706953 PMCID: PMC5906529 DOI: 10.3389/fimmu.2018.00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer) mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW). All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM) and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM) bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.
Collapse
Affiliation(s)
- Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Cañadas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Pinchuk IV, Powell DW. Immunosuppression by Intestinal Stromal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:115-129. [DOI: 10.1007/978-3-319-78127-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Xu Z, Chang CC, Li M, Zhang QY, Vasilescu ERM, D’Agati V, Floratos A, Vlad G, Suciu-Foca N. ILT3.Fc–CD166 Interaction Induces Inactivation of p70 S6 Kinase and Inhibits Tumor Cell Growth. THE JOURNAL OF IMMUNOLOGY 2017; 200:1207-1219. [DOI: 10.4049/jimmunol.1700553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
|
39
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
40
|
Abstract
It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.
Collapse
|
41
|
Bughani U, Saha A, Kuriakose A, Nair R, Sadashivarao RB, Venkataraman R, Patel S, Deshchougule AT, S. SK, Montero E, Pai HV, Palanivelu DV, Melarkode R, Nair P. T cell activation and differentiation is modulated by a CD6 domain 1 antibody Itolizumab. PLoS One 2017; 12:e0180088. [PMID: 28672038 PMCID: PMC5495335 DOI: 10.1371/journal.pone.0180088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/09/2017] [Indexed: 12/24/2022] Open
Abstract
CD6 is associated with T-cell modulation and is implicated in several autoimmune diseases. We previously demonstrated that Itolizumab, a CD6 domain 1 (CD6D1) specific humanized monoclonal antibody, inhibited the proliferation and cytokine production by T lymphocytes stimulated with anti-CD3 antibody or when co-stimulated with ALCAM. Aberrant IL-17 producing CD4+ helper T-cells (Th17) have been identified as pivotal for the pathogenesis of certain inflammatory autoimmune disorders, including psoriasis. Itolizumab has demonstrated efficacy in human diseases known to have an IL-17 driven pathogenesis. Here, in in vitro experiments we show that by day 3 of human PBMC activation using anti-CD3 and anti-CD28 co-stimulation in a Th17 polarizing milieu, 15-35% of CD4+ T-cells overexpress CD6 and there is an establishment of differentiated Th17 cells. Addition of Itolizumab reduces the activation and differentiation of T cells to Th17 cells and decreases production of IL-17. These effects are associated with the reduction of key transcription factors pSTAT3 and RORγT. Further, transcription analysis studies in these conditions indicate that Itolizumab suppressed T cell activation by primarily reducing cell cycle, DNA transcription and translation associated genes. To understand the mechanism of this inhibition, we evaluated the effect of this anti-human CD6D1 mAb on ALCAM-CD6 as well as TCR-mediated T cell activation. We show that Itolizumab but not its F(ab')2 fragment directly inhibits CD6 receptor hyper-phosphorylation and leads to subsequent decrease in associated ZAP70 kinase and docking protein SLP76. Since Itolizumab binds to CD6 expressed only on human and chimpanzee, we developed an antibody binding specifically to mouse CD6D1. This antibody successfully ameliorated the incidence of experimental autoimmune encephalitis in the mice model. These results position CD6 as a key molecule in sustaining the activation and differentiation of T cells and an important target for modulating autoimmune diseases.
Collapse
Affiliation(s)
- Usha Bughani
- Research and Development, Biocon Research Limited, Bangalore, India
| | - Arindam Saha
- Research and Development, Biocon Research Limited, Bangalore, India
| | - Anshu Kuriakose
- Research and Development, Biocon Research Limited, Bangalore, India
| | - Reshmi Nair
- Research and Development, Biocon Research Limited, Bangalore, India
| | | | | | - Swati Patel
- Research and Development, Biocon Research Limited, Bangalore, India
| | | | - Satish Kumar S.
- Research and Development, Biocon Research Limited, Bangalore, India
| | - Enrique Montero
- Research and Development, Biocon Research Limited, Bangalore, India
| | - Harish V. Pai
- Research and Development, Biocon Research Limited, Bangalore, India
| | | | | | - Pradip Nair
- Research and Development, Biocon Research Limited, Bangalore, India
- * E-mail:
| |
Collapse
|
42
|
Carrasco E, Escoda-Ferran C, Climent N, Miró-Julià C, Simões IT, Martínez-Florensa M, Sarukhan A, Carreras E, Lozano F. Human CD6 Down-Modulation following T-Cell Activation Compromises Lymphocyte Survival and Proliferative Responses. Front Immunol 2017; 8:769. [PMID: 28713387 PMCID: PMC5492662 DOI: 10.3389/fimmu.2017.00769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/16/2017] [Indexed: 11/30/2022] Open
Abstract
Available evidence indicates that the CD6 lymphocyte surface receptor is involved in T-cell developmental and activation processes, by facilitating cell-to-cell adhesive contacts with antigen-presenting cells and likely modulating T-cell receptor (TCR) signaling. Here, we show that in vitro activation of human T cells under different TCR-ligation conditions leads to surface downregulation of CD6 expression. This phenomenon was (i) concomitant to increased levels of soluble CD6 (sCD6) in culture supernatants, (ii) partially reverted by protease inhibitors, (iii) not associated to CD6 mRNA down-regulation, and (iv) reversible by stimulus removal. CD6 down-modulation inversely correlated with the upregulation of CD25 in both FoxP3− (Tact) and FoxP3+ (Treg) T-cell subsets. Furthermore, ex vivo analysis of peripheral CD4+ and CD8+ T cells with activated (CD25+) or effector memory (effector memory T cell, CD45RA−CCR7−) phenotype present lower CD6 levels than their naïve or central memory (central memory T cell, CD45RA−CCR7+) counterparts. CD6lo/− T cells resulting from in vitro T-cell activation show higher apoptosis and lower proliferation levels than CD6hi T cells, supporting the relevance of CD6 in the induction of proper T-cell proliferative responses and resistance to apoptosis. Accordingly, CD6 transfectants also showed higher viability when exposed to TCR-independent apoptosis-inducing conditions in comparison with untransfected cells. Taken together, these results provide insight into the origin of sCD6 and the previously reported circulating CD6-negative T-cell subset in humans, as well as into the functional consequences of CD6 down-modulation on ongoing T-cell responses, which includes sensitization to apoptotic events and attenuation of T-cell proliferative responses.
Collapse
Affiliation(s)
- Esther Carrasco
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Escoda-Ferran
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Climent
- IDIBAPS-AIDS Research Group, HIVACAT, Barcelona, Spain
| | - Cristina Miró-Julià
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inês T Simões
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Martínez-Florensa
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Adelaida Sarukhan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Esther Carreras
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Grup d'Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Consuegra-Fernández M, Martínez-Florensa M, Aranda F, de Salort J, Armiger-Borràs N, Lozano T, Casares N, Lasarte JJ, Engel P, Lozano F. Relevance of CD6-Mediated Interactions in the Regulation of Peripheral T-Cell Responses and Tolerance. Front Immunol 2017; 8:594. [PMID: 28611770 PMCID: PMC5447708 DOI: 10.3389/fimmu.2017.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
The CD6 lymphocyte receptor has been involved in the pathophysiology of different autoimmune disorders and is now considered a feasible target for their treatment. In vitro data show the relevance of CD6 in the stabilization of adhesive contacts between T-cell and antigen-presenting cells, and the modulation of T-cell receptor signals. However, the in vivo consequences of such a function are yet undisclosed due to the lack of suitable genetically modified animal models. Here, the in vitro and in vivo challenge of CD6-deficient (CD6-/-) cells with allogeneic cells was used as an approach to explore the role of CD6 in immune responses under relative physiological stimulatory conditions. Mixed lymphocyte reaction (MLR) assays showed lower proliferative responses of splenocytes from CD6-/- mice together with higher induction of regulatory T cells (Treg, CD4+CD25+FoxP3+) with low suppressive activity on T and B-cell proliferation. In line with these results, CD6-/- mice undergoing a lupus-like disorder induced by chronic graft-versus-host disease (cGvHD) showed higher serum titers of anti-double-stranded DNA and nucleosome autoantibodies. This occurred together with reduced splenomegaly, which was associated with lower in vivo bromodesoxyuridine incorporation of spleen cells and with increased percentages of spleen follicular B cells (B2, CD21+CD23hi) and Treg cells. Interestingly, functional analysis of in vivo-generated CD6-/- Treg cells exhibited defective suppressive activity. In conclusion, the data from MLR and cGvHD-induced lupus-like models in CD6-/- mice illustrate the relevance of CD6 in T (and B) cell proliferative responses and, even more importantly, Treg induction and suppressive function in the in vivo maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Marta Consuegra-Fernández
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José de Salort
- Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Pablo Engel
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.,Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
T Cell Costimulation by CD6 Is Dependent on Bivalent Binding of a GADS/SLP-76 Complex. Mol Cell Biol 2017; 37:MCB.00071-17. [PMID: 28289074 PMCID: PMC5440646 DOI: 10.1128/mcb.00071-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
The cell surface receptor CD6 regulates T cell activation in both activating and inhibitory manners. The adaptor protein SLP-76 is recruited to the phosphorylated CD6 cytoplasmic Y662 residue during T cell activation, providing an activating signal to T cells. In this study, a biochemical approach identified the SH2 domain-containing adaptor protein GADS as the dominant interaction partner for the CD6 cytoplasmic Y629 residue. Functional experiments in human Jurkat and primary T cells showed that both mutations Y629F and Y662F abolished costimulation by CD6. In addition, a restraint on T cell activation by CD6 was revealed in primary T cells expressing CD6 mutated at Y629 and Y662. These data are consistent with a model in which bivalent recruitment of a GADS/SLP-76 complex is required for costimulation by CD6.
Collapse
|
45
|
Lozano F, Martínez-Florensa M. Commentary: The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front Immunol 2017; 8:366. [PMID: 28396672 PMCID: PMC5366910 DOI: 10.3389/fimmu.2017.00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francisco Lozano
- Grup d’Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultat de Medicina, Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Francisco Lozano,
| | - Mario Martínez-Florensa
- Grup d’Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Abstract
CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell-driven autoimmune conditions.
Collapse
|
47
|
Dogra S, Uprety S, Suresh SH. Itolizumab, a novel anti-CD6 monoclonal antibody: a safe and efficacious biologic agent for management of psoriasis. Expert Opin Biol Ther 2017; 17:395-402. [DOI: 10.1080/14712598.2017.1279601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sunil Dogra
- Department of Dermatology, Venereology & Leprology Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Shraddha Uprety
- Dept of Dermatology, Venereology and Leprology, Chitwan Medical College, Tribhuvan University, Bharatpur, Nepal
| | | |
Collapse
|
48
|
The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection. J Virol 2017; 91:JVI.01897-16. [PMID: 27881657 DOI: 10.1128/jvi.01897-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has become an economically critical factor in swine industry since its worldwide spread in the 1990s. Infection by its causative agent, PRRS virus (PRRSV), was proven to be mediated by an indispensable receptor, porcine CD163 (pCD163), and the fifth scavenger receptor cysteine-rich domain (SRCR5) is essential for virus infection. However, the structural details and specific residues of pCD163 SRCR5 involved in infection have not been defined yet. In this study, we prepared recombinant pCD163 SRCR5 in Drosophila melanogaster Schneider 2 (S2) cells and determined its crystal structure at a high resolution of 2.0 Å. This structure includes a markedly long loop region and shows a special electrostatic potential, and these are significantly different from those of other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF). Subsequently, we carried out structure-based mutational studies to identify that the arginine residue at position 561 (Arg561) in the long loop region is important for PRRSV infection. Further, we showed Arg561 probably takes effect on the binding of pCD163 to PRRSV during virus invasion. Altogether the current work provides the first view of the CD163 SRCR domain, expands our knowledge of the invasion mechanism of PRRSV, and supports a molecular basis for prevention and control of the virus. IMPORTANCE PRRS has caused huge economic losses to pig farming. The syndrome is caused by PRRSV, and PRRSV infection has been shown to be mediated by host cell surface receptors. One of them, pCD163, is especially indispensable, and its SRCR5 domain has been further demonstrated to play a significant role in virus infection. However, its structural details and the residues involved in infection are unknown. In this study, we determined the crystal structure of pCD163 SRCR5 and then carried out site-directed mutational studies based on the crystal structure to elucidate which residue is important. Our work not only provides structural information on the CD163 SRCR domain for the first time but also indicates the molecular mechanism of PRRSV infection and lays a foundation for future applications in prevention and control of PRRS.
Collapse
|
49
|
Protective Effects of Human and Mouse Soluble Scavenger-Like CD6 Lymphocyte Receptor in a Lethal Model of Polymicrobial Sepsis. Antimicrob Agents Chemother 2016; 61:AAC.01391-16. [PMID: 27895015 DOI: 10.1128/aac.01391-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/01/2016] [Indexed: 12/26/2022] Open
Abstract
Sepsis still constitutes an unmet clinical need, which could benefit from novel adjunctive strategies to conventional antibiotic therapy. The soluble form of the scavenger-like human CD6 lymphocyte receptor (shCD6) binds to key pathogenic components from Gram-positive and -negative bacteria and shows time- and dose-dependent efficacy in mouse models of monobacterial sepsis. The objective of the present work was to demonstrate the effectiveness of infusing mouse and human sCD6 by different systemic routes, either alone or as adjunctive therapy to gold standard antibiotics, in a lethal model of polymicrobial sepsis. To this end, C57BL/6 mice undergoing high-grade septic shock induced by cecal ligation and puncture (CLP; ≥90% lethality) were infused via the intraperitoneal (i.p.) or intravenous (i.v.) route with shCD6 at different doses and time points, either alone or in combination with imipenem/cilastatin (I/C) at a dose of 33 mg/kg of body weight every 8 h. Significantly reduced mortality and proinflammatory cytokine levels were observed by i.p. infusion of a single shCD6 dose (1.25 mg/kg) 1 h pre- or post-CLP. When using the i.v. route, mice survival was significantly extended by starting shCD6 infusion at later time points post-CLP (up to 6 h after CLP). Significant adjunctive effects on mouse survival were observed by i.p. or i.v. infusion of shCD6 in combination with i.p. I/C post-CLP. Similar results were obtained in mice expressing high sustained levels (5 to 10 μg/ml) of mouse sCD6 in serum by means of transduction with hepatotropic adeno-associated virus (AAV). Taken together, the data support the conserved antibacterial effects of human and mouse sCD6 and their use as adjunctive therapy in experimental models of complex and severe polymicrobial sepsis.
Collapse
|
50
|
Genetic Variation in CD166 Gene and Its Association with Bladder Cancer Risk in North Indian Population. Indian J Clin Biochem 2016; 32:292-300. [PMID: 28811688 DOI: 10.1007/s12291-016-0606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/13/2016] [Indexed: 01/01/2023]
Abstract
Adhesion molecules play a key role in cancer progression and tumorigenesis. Genetic polymorphism of adhesion molecules may alter the normal functioning thereby leading to bladder cancer susceptibility. Hence we aimed to evaluate three SNPs of CD166 gene (CD166rs6437585 C/T, CD166rs10511244 C/T, and CD166rs1157 A/G) in bladder cancer patients and normal controls of North Indian population. A total of 270 healthy controls and 240 confirmed bladder cancer patients were recruited for this study. Three SNPs of CD166 gene viz. CD166rs6437585 C/T, CD166rs10511244 C/T, and CD166rs1157 A/G were selected for this study. CD166rs6437585 C/T and CD166rs10511244 C/T were genotyped by Taqman allelic discrimination assay and CD166rs1157 A/G was genotyped by PCR-RFLP. The statistical analysis was done using the SPSS software, version 16.0 (SPSS, Chicago, IL), and p < 0.05 was considered statistically significant. Haplotypic analysis was done by using SNP analyzer version 1.2A. CD166rs6437585 C/T and CD166rs10511244 C/T showed significant association with reduced risk in bladder cancer while CD166rs1157 A/G showed significant high risk along with association at genotypic and allelic levels. Haplotypic analysis showed 1.8-folds risk in CCG combination, whereas CTA and TCG showed significant association with reduced risk. Further stratification on the basis of smoking, tumor grade/stage and BGC therapy revealed no association of these three polymorphic sites of CD166. Our study suggests that CD166rs6437585 C/T and CD166rs10511244 C/T are predictive for the reduced risk of bladder cancer, whereas CD166rs1157 A/G had shown significant association with high risk of bladder cancer in North Indians. This somehow suggests that CD166rs1157 A/G can be used as a marker for risk prediction of bladder cancer.
Collapse
|