1
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Yan M, Su L, Wu K, Mei Y, Liu Z, Chen Y, Zeng W, Xiao Y, Zhang J, Cai G, Bai Y. USP7 promotes cardiometabolic disorders and mitochondrial homeostasis dysfunction in diabetic mice via stabilizing PGC1β. Pharmacol Res 2024; 205:107235. [PMID: 38815879 DOI: 10.1016/j.phrs.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1β was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1β and suggested that silencing USP7 may be a therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Liyan Su
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
| | - Kaile Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Mei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingfei Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guida Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunlong Bai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Chronic Disease Research Institute, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
3
|
Pandya MJ, Augustyniak W, Cliff MJ, Lindner I, Stinn A, Kahmann J, Temmerman K, Dannatt HRW, Waltho JP, Watson MJ. Backbone 1H, 13C and 15N resonance assignment of the ubiquitin specific protease 7 catalytic domain (residues 208-554) in complex with a small molecule ligand. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:33-44. [PMID: 38472728 DOI: 10.1007/s12104-024-10165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024]
Abstract
The backbone 1H, 13C and 15N resonance assignment of Ubiquitin Specific Protease 7 catalytic domain (residues 208-554) was performed in its complex with a small molecule ligand and in its apo form as a reference. The amide 1H-15N signal intensities were boosted by an amide hydrogen exchange protocol, where expressed 2H, 13C, 15N-labeled protein was unfolded and re-folded to ensure exchange of amide deuterons to protons. The resonance assignments were used to determine chemical shift perturbations on ligand binding, which are consistent with the binding site observed by crystallography.
Collapse
Affiliation(s)
- Maya J Pandya
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, United Kingdom
| | - Wojciech Augustyniak
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, United Kingdom.
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Ilka Lindner
- Biophysics Department, NMR and Protein Production, Evotec SE, Hamburg, Germany
| | - Anne Stinn
- Biophysics Department, NMR and Protein Production, Evotec SE, Hamburg, Germany
| | - Jan Kahmann
- Biophysics Department, NMR and Protein Production, Evotec SE, Hamburg, Germany
| | - Koen Temmerman
- Biophysics Department, NMR and Protein Production, Evotec SE, Hamburg, Germany
| | - Hugh R W Dannatt
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, United Kingdom
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Martin J Watson
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, United Kingdom
| |
Collapse
|
4
|
Velázquez-Libera JL, Caballero J, Alzate-Morales J, Ruiz-Pernía JJ, Tuñón I. Understanding the Interactions of Ubiquitin-Specific Protease 7 with Its Substrates through Molecular Dynamics Simulations: Insights into the Role of Its C-Terminal Domains in Substrate Recognition. J Chem Inf Model 2024; 64:4134-4148. [PMID: 38703206 DOI: 10.1021/acs.jcim.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinase enzyme that plays a critical role in regulating various cellular processes by cleaving ubiquitin molecules from target proteins. The C-terminal loop (CTL) motif is a specific region at the C-terminal end of the USP7 enzyme. Recent experiments suggest that the CTL motif plays a role in USP7's catalytic activity by contributing to the enzyme's structural stability, substrate recognition, and catalytic efficiency. The objective of this work is to elucidate these roles through the utilization of computational methods for molecular simulations. For this, we conducted extensive molecular dynamics (MD) simulations to investigate the conformational dynamics and protein-protein interactions within the USP7 enzyme-substrate complex with the substrate consisting of the ubiquitin tagged with the fluorescent label rhodamine 110-gly (Ub-Rho). Our results demonstrate that the CTL motif plays a crucial role in stabilizing the Ubl domains' conformation and augmenting the stability of active conformations within the enzyme-substrate complex. Conversely, the absence of the CTL motif results in increased flexibility and variability in Ubl domains' motion, leading to a reduced percentage of active conformations. Furthermore, our analysis of protein-protein interactions highlights the significance of the CTL motif in anchoring the Ubl45 domains to the catalytic domain (CD), thereby facilitating stable interactions with the substrate. Overall, our findings provide valuable insights into the conformational dynamics and protein-protein interactions inherent in the USP7 enzyme-substrate complex. These insights shed light on some mechanistic details of USP7 concerning the substrate's recognition before its catalytic action.
Collapse
Affiliation(s)
- José Luis Velázquez-Libera
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Jans Alzate-Morales
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | | | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, Valencia 46100, Spain
| |
Collapse
|
5
|
Brytan W, Shortall K, Duarte F, Soulimane T, Padrela L. Contribution of a C-Terminal Extension to the Substrate Affinity and Oligomeric Stability of Aldehyde Dehydrogenase from Thermus thermophilus HB27. Biochemistry 2024; 63:1075-1088. [PMID: 38602394 PMCID: PMC11080044 DOI: 10.1021/acs.biochem.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Aldehyde dehydrogenase enzymes (ALDHs) are widely studied for their roles in disease propagation and cell metabolism. Their use in biocatalysis applications, for the conversion of aldehydes to carboxylic acids, has also been recognized. Understanding the structural features and functions of both prokaryotic and eukaryotic ALDHs is key to uncovering novel applications of the enzyme and probing its role in disease propagation. The thermostable enzyme ALDHTt originating fromThermus thermophilus, strain HB27, possesses a unique extension of its C-terminus, which has been evolutionarily excluded from mesophilic counterparts and other thermophilic enzymes in the same genus. In this work, the thermophilic adaptation is studied by the expression and optimized purification of mutant ALDHTt-508, with a 22-amino acid truncation of the C-terminus. The mutant shows increased activity throughout production compared to native ALDHTt, indicating an opening of the active site upon C-terminus truncation and giving rationale into the evolutionary exclusion of the C-terminal extension from similar thermophilic and mesophilic ALDH proteins. Additionally, the C-terminus is shown to play a role in controlling substrate specificity of native ALDH, particularly in excluding catalysis of certain large and certain aromatic ortho-substituted aldehydes, as well as modulating the protein's pH tolerance by increasing surface charge. Dynamic light scattering and size-exclusion HPLC methods are used to show the role of the C-terminus in ALDHTt oligomeric stability at the cost of catalytic efficiency. Studying the aggregation rate of ALDHTt with and without a C-terminal extension leads to the conclusion that ALDHTt follows a monomolecular reaction aggregation mechanism.
Collapse
Affiliation(s)
- Wiktoria Brytan
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Kim Shortall
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| | - Luis Padrela
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| |
Collapse
|
6
|
Salomonsson J, Wallner B, Sjöstrand L, D'Arcy P, Sunnerhagen M, Ahlner A. Transient interdomain interactions in free USP14 shape its conformational ensemble. Protein Sci 2024; 33:e4975. [PMID: 38588275 PMCID: PMC11001199 DOI: 10.1002/pro.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.
Collapse
Affiliation(s)
- Johannes Salomonsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Moghadasi SA, Moraes SN, Harris RS. Cellular Assays for Dynamic Quantification of Deubiquitinase Activity and Inhibition. J Mol Biol 2023; 435:168316. [PMID: 37858708 DOI: 10.1016/j.jmb.2023.168316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Deubiquitinases (DUBs) are proteolytic enzymes that catalyze the removal of ubiquitin from protein substrates. The critical role of DUBs in regulating protein ubiquitination makes them attractive drug targets in oncology, neurodegenerative disease, and antiviral development. Biochemical assays for quantifying DUB activity have enabled characterization of substrate preferences and discovery of small molecule inhibitors. However, assessing the efficacy of these inhibitors in cellular contexts to support clinical drug development has been limited by a lack of tractable cell-based assays. To address this gap, we developed a two-color flow cytometry-based assay that allows for sensitive quantification of DUB activity and inhibition in living cells. The utility of this system was demonstrated by quantifying the potency of GRL0617 against the viral DUB SARS-CoV-2 PLpro, identifying potential GRL0617 resistance mutations, and performing structure-function analysis of the vOTU domain from the recently emerged Yezo virus. In addition, the system was optimized for cellular DUBs by modifying a GFP-targeting nanobody to recruit USP7 and USP28 to benchmark a panel of reported inhibitors and assess inhibition kinetics. Together, these results demonstrate the utility of these assays for studying DUB biology in a cellular context with potential to aid in inhibitor discovery and development.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
12
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
13
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
14
|
Song Y, Wang S, Zhao M, Yu B. Development of a robust HTRF assay with USP7 full length protein expressed in E. coli prokaryotic system for the identification of USP7 inhibitors. J Pharm Biomed Anal 2023; 227:115305. [PMID: 36812797 DOI: 10.1016/j.jpba.2023.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) is a promising therapeutic target. Several USP7 inhibitors accommodated in the catalytic triad of USP7 have been reported with the aid of high-throughput screening (HTS) methods using USP7 catalytic domain truncation. However, the drawbacks of previously reported biochemical cleavage assays, including poor stability, fluorescence interference, time-consuming, expensive, more importantly the selectivity issue, have challenged the USP7-targeted drug discovery. In this work, we demonstrated the functional heterogeneity and essential role of different structural elements in the USP7 full activation, highlighting the necessity of USP7 full length in drug discovery. Apart from reported two pockets in the catalytic triad, five additional ligandable pockets were predicted based on the proposed USP7 full length models by AlphaFold and homology modelling. A reliable homogeneous time-resolved fluorescence (HTRF) HTS method was established based on the cleavage mechanism of USP7 towards the ubiquitin precursor UBA10. The USP7 full length protein was successfully expressed in the relatively cost-effective E. coli prokaryotic system and used to simulate the auto-activated USP7 in nature. Via screening our in-house library (∼ 1500 compounds), 19 hit compounds with >20% of inhibition rate were identified for further optimization. This assay will enrich the toolbox for the identification of highly potent and selective USP7 inhibitors for clinical use.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Liu L, Wang Z, Zheng J, Ke Y, Liu H, Zhang Q. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
16
|
Kramer L, Sarkar A, Foderaro T, Markley AL, Lee J, Edstrom H, Sharma S, Gill E, Traylor MJ, Fox JM. Genetically Encoded Detection of Biosynthetic Protease Inhibitors. ACS Synth Biol 2023; 12:83-94. [PMID: 36574400 PMCID: PMC10072156 DOI: 10.1021/acssynbio.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteases are an important class of drug targets that continue to drive inhibitor discovery. These enzymes are prone to resistance mutations, yet their promise for treating viral diseases and other disorders continues to grow. This study develops a general approach for detecting microbially synthesized protease inhibitors and uses it to screen terpenoid pathways for inhibitory compounds. The detection scheme relies on a bacterial two-hybrid (B2H) system that links protease inactivation to the transcription of a swappable reporter gene. This system, which can accomodate multiple biochemical outputs (i.e., luminescence and antibiotic resistance), permitted the facile incorporation of four disease-relevant proteases. A B2H designed to detect the inactivation of the main protease of severe acute respiratory syndrome coronavirus 2 enabled the identification of a terpenoid inhibitor of modest potency. An analysis of multiple pathways that make this terpenoid, however, suggested that its production was necessary but not sufficient to confer a survival advantage in growth-coupled assays. This finding highlights an important challenge associated with the use of genetic selection to search for inhibitors─notably, the influence of pathway toxicity─and underlines the value of including multiple pathways with overlapping product profiles in pathway screens. This study provides a detailed experimental framework for using microbes to screen libraries of biosynthetic pathways for targeted protease inhibitors.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Andrew L Markley
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Hannah Edstrom
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Shajesh Sharma
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Eden Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| |
Collapse
|
17
|
Activation Dynamics of Ubiquitin Specific Protease 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523550. [PMID: 36711877 PMCID: PMC9882073 DOI: 10.1101/2023.01.11.523550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme responsible for the regulation of key human oncoproteins and tumor suppressors including Mdm2 and p53, respectively. Unlike other members of the USP family of proteases, the isolated catalytic domain of USP7 adopts an enzymatically inactive conformation that has been well characterized using X-ray crystallography. The catalytic domain also samples an active conformation, which has only been captured upon USP7 substrate-binding. Here, we utilized CPMG NMR relaxation dispersion studies to observe the dynamic motions of USP7 in solution. Our results reveal that the catalytic domain of USP7 exchanges between two distinct conformations, the inactive conformation populated at 95% and the active conformation at 5%. The largest structural changes are localized within functionally important regions of the enzyme including the active site, the ubiquitin-binding fingers, and the allosteric helix of the enzyme, suggesting that USP7 can adopt its active conformation in the absence of a substrate. Furthermore, we show that the allosteric L299A activating mutation disturbs this equilibrium, slows down the exchange, and increases the residence time of USP7 in its active conformation, thus, explaining the elevated activity of the mutant. Overall, this work shows that the isolated USP7 catalytic domain pre-samples its "invisible" active conformation in solution, which may contribute to its activation mechanism.
Collapse
|
18
|
USP7 Inhibitors in Cancer Immunotherapy: Current Status and Perspective. Cancers (Basel) 2022; 14:cancers14225539. [PMID: 36428632 PMCID: PMC9688046 DOI: 10.3390/cancers14225539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular proteins involved in the suppression of anti-tumor immune responses and its overexpression is associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach, though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the therapeutic potential of targeting USP7 functions.
Collapse
|
19
|
Valles G, Pozhidaeva A, Korzhnev DM, Bezsonova I. Backbone and ILV side-chain NMR resonance assignments of the catalytic domain of human deubiquitinating enzyme USP7. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:197-203. [PMID: 35536398 PMCID: PMC9529858 DOI: 10.1007/s12104-022-10079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme, which removes ubiquitin tag from numerous protein substrates involved in diverse cellular processes such as cell cycle regulation, apoptosis and DNA damage response. USP7 affects stability, interaction network and cellular localization of its cellular and viral substrates by controlling their ubiquitination status. The large 41 kDa catalytic domain of USP7 harbors the active site of the enzyme. Here we present a nearly complete (93%) NMR resonance assignment of isoleucine, leucine and valine (ILV) side-chains of the USP7 catalytic domain along with a refined nearly complete (93%) assignment of its backbone resonances. The reported ILV methyl group assignment will facilitate further NMR investigations of structure, interactions and conformational dynamics of the USP7 enzyme.
Collapse
Affiliation(s)
- Gabrielle Valles
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alexandra Pozhidaeva
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| |
Collapse
|
20
|
Oliveira RI, Guedes RA, Salvador JAR. Highlights in USP7 inhibitors for cancer treatment. Front Chem 2022; 10:1005727. [PMID: 36186590 PMCID: PMC9520255 DOI: 10.3389/fchem.2022.1005727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a member of one of the most largely studied families of deubiquitylating enzymes. It plays a key role modulating the levels of multiple proteins, including tumor suppressors, transcription factors, epigenetic modulators, DNA repair proteins, and regulators of the immune response. The abnormal expression of USP7 is found in various malignant tumors and a high expression signature generally indicates poor tumor prognosis. This suggests USP7 as a promising prognostic and druggable target for cancer therapy. Nonetheless, no approved drugs targeting USP7 have already entered clinical trials. Therefore, the development of potent and selective USP7 inhibitors still requires intensive research and development efforts before the pre-clinical benefits translate into the clinic. This mini review systematically summarizes the role of USP7 as a drug target for cancer therapeutics, as well as the scaffolds, activities, and binding modes of some of the most representative small molecule USP7 inhibitors reported in the scientific literature. To wind up, development challenges and potential combination therapies using USP7 inhibitors for less tractable tumors are also disclosed.
Collapse
Affiliation(s)
- Rita I. Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
21
|
Qin X, Wang R, Xu H, Tu L, Chen H, Li H, Liu N, Wang J, Li S, Yin F, Xu N, Li Z. Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Autophagy 2022; 18:2178-2197. [PMID: 34989313 PMCID: PMC9397470 DOI: 10.1080/15548627.2021.2022360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial-anchored deubiquitinating enzyme USP30 (ubiquitin specific peptidase 30) antagonizes PRKN/parkin-mediated mitophagy, making it a potential target for treating Parkinson disease. However, few inhibitors targeting USP30 have been reported. Here, we report a novel peptide (Q14) derived from the transmembrane (TM) domain of USP30 that can target mitochondrial-anchored USP30 directly and increase mitophagy through two intriguing and distinct mechanisms: a novel autoinhibition mechanism in USP30 and accelerated autophagosome formation via the LC3-interacting region (LIR) of the Q14 peptide. We identified the potential binding sites between the Q14 peptide and USP30 and postulated that an allosteric autoinhibition mechanism regulates USP30 activity. Furthermore, the LIR motif in the Q14 peptide offers additional binding with LC3 and accelerated autophagosome formation. The two mechanisms synergistically enhance mitophagy. Our work provides novel insight and direction to the design of inhibitors for USP30 or other deubiquitinating enzymes (DUBs).Abbreviations: 3-MA: 3-methyladenine; ATTEC: autophagosome-tethering compound; BafA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; FP: fluorescence polarization; FUNDC1: FUN14 domain containing 1; HCQ: hydroxychloroquine; LIR: LC3-interacting region; MST: microscale thermophoresis; mtDNA: mitochondrial DNA; mtPA-GFP: mitochondria-targeted photoactive fluorescence protein; OMM: outer mitochondrial membrane; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; Rap: rapamycin; SA: streptavidin; TM: transmembrane; Ub: ubiquitin; Ub-AMC: Ub-7-amido-4-methylcoumarin; UPS: ubiquitin-protease system; USP: ubiquitin specific peptidase; USP30: ubiquitin specific peptidase 30.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Heng Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,CONTACT Feng Yin Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Naihan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Naihan Xu Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,Zigang Li State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
22
|
Srivastava M, Mittal L, Kumari A, Agrahari AK, Singh M, Mathur R, Asthana S. Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Sci 2022; 31:e4398. [PMID: 36629250 PMCID: PMC9835771 DOI: 10.1002/pro.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.
Collapse
Affiliation(s)
- Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
- Delhi Pharmaceutical Sciences and Research University (DPSRU)New DelhiIndia
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | | | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Rajani Mathur
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR)New DelhiIndia
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| |
Collapse
|
23
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|
24
|
The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis 2022; 13:677. [PMID: 35931679 PMCID: PMC9356134 DOI: 10.1038/s41419-022-05113-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Dysregulated abundance, location and transcriptional output of Hippo signaling effector TAZ have been increasingly linked to human cancers including head neck squamous cell carcinoma (HNSCC). TAZ is subjected to ubiquitination and degradation mediated by E3 ligase β-TRCP. However, the deubiquitinating enzymes and mechanisms responsible for its protein stability remain underexplored. Here, we exploited customized deubiquitinases siRNA and cDNA library screen strategies and identified USP7 as a bona fide TAZ deubiquitinase in HNSCC. USP7 promoted cell proliferation, migration, invasion in vitro and tumor growth by stabilizing TAZ. Mechanistically, USP7 interacted with, deubiquitinated and stabilized TAZ by selectively removing its K48-linked ubiquitination chain independent of canonical Hippo kinase cascade. USP7 potently antagonized β-TRCP-mediated ubiquitin-proteasomal degradation of TAZ and enhanced its nuclear retention and transcriptional output. Importantly, overexpression of USP7 correlated with TAZ upregulation, tumor aggressiveness and unfavorable prognosis in HNSCC patients. Pharmacological inhibition of USP7 significantly suppressed tumor growth in both xenograft and PDX models. Collectively, these findings identify USP7 as an essential regulator of TAZ and define USP7-TAZ signaling axis as a novel biomarker and potential therapeutic target for HNSCC.
Collapse
|
25
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
26
|
Xu G, Su H, Lu L, Liu X, Zhao L, Tang B, Ming Z. Structural insights into the catalytic mechanism and ubiquitin recognition of USP34. J Mol Biol 2022; 434:167634. [PMID: 35588869 DOI: 10.1016/j.jmb.2022.167634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Huizhao Su
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Xiaomeng Liu
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
27
|
Mitoxantrone stacking does not define the active or inactive state of USP15 catalytic domain. J Struct Biol 2022; 214:107862. [DOI: 10.1016/j.jsb.2022.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
|
28
|
Structural basis for the SUMO protease activity of the atypical ubiquitin-specific protease USPL1. Nat Commun 2022; 13:1819. [PMID: 35383180 PMCID: PMC8983731 DOI: 10.1038/s41467-022-29485-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Post-translational protein modifications by ubiquitin and ubiquitin-like modifiers regulate many major pathways in the cell. These modifications can be reversed by de-ubiquitinating enzymes such as ubiquitin-specific proteases (USPs). Proteolytic activity towards ubiquitin-modified substrates is common to all USP family members except for USPL1, which shows a unique preference for the ubiquitin-like modifier SUMO. Here, we present the crystal structure of USPL1 bound to SUMO2, defining the key structural elements for the unusual deSUMOylase activity of USPL1. We identify specific contacts between SUMO2 and the USPL1 subdomains, including a unique hydrogen bond network of the SUMO2 C-terminal tail. In addition, we find that USPL1 lacks major structural elements present in all canonical USPs members such as the so-called blocking loops, which facilitates SUMO binding. Our data give insight into how a structural protein scaffold designed to bind ubiquitin has evolved to bind SUMO, providing an example of divergent evolution in the USP family. USPL1 is a non-canonical member of the ubiquitin-specific protease (USP) family with activity toward SUMO instead of ubiquitin. Here, the authors present a crystal structure of USPL1 bound to SUMO2, revealing how this enzyme has evolved to bind SUMO as an example of divergent evolution in the USP family.
Collapse
|
29
|
Al-Eidan A, Wang Y, Skipp P, Ewing RM. The USP7 protein interaction network and its roles in tumorigenesis. Genes Dis 2022; 9:41-50. [PMID: 35005106 PMCID: PMC8720671 DOI: 10.1016/j.gendis.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-specific protease (USP7), also known as Herpesvirus-associated ubiquitin-specific protease (HAUSP), is a deubiquitinase. There has been significant recent attention on USP7 following the discovery that USP7 is a key regulator of the p53-MDM2 pathway. The USP7 protein is 130 kDa in size and has multiple domains which bind to a diverse set of proteins. These interactions mediate key developmental and homeostatic processes including the cell cycle, immune response, and modulation of transcription factor and epigenetic regulator activity and localization. USP7 also promotes carcinogenesis through aberrant activation of the Wnt signalling pathway and stabilization of HIF-1α. These findings have shown that USP7 may induce tumour progression and be a therapeutic target. Together with interest in developing USP7 as a target, several studies have defined new protein interactions and the regulatory networks within which USP7 functions. In this review, we focus on the protein interactions of USP7 that are most important for its cancer-associated roles.
Collapse
Affiliation(s)
- Ahood Al-Eidan
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Yihua Wang
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M. Ewing
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
30
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
31
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC, Zhang H. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem 2021; 116:105273. [PMID: 34474304 DOI: 10.1016/j.bioorg.2021.105273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
The ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings. Moreover, challenges and advantages of these strategies, as well as perspectives in USP7-MDM2-p53 field are analyzed in detail. The investigation and application of MDM2 and USP7 inhibitors will deepen our understanding of the function of USP7-MDM2-p53 network, and feed in the development of effective and safe cancer therapies where USP7-MDM2-p53 network is implicated.
Collapse
Affiliation(s)
- Chrisanta Harakandi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lauraine Nininahazwe
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bingrui Liu
- College of Public Health, North China University of Science and Technology, Tangshan 063503, China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
32
|
Bassani S, Beelen E, Rossel M, Voisin N, Morgan A, Arribat Y, Chatron N, Chrast J, Cocca M, Delprat B, Faletra F, Giannuzzi G, Guex N, Machavoine R, Pradervand S, Smits JJ, van de Kamp JM, Ziegler A, Amati F, Marlin S, Kremer H, Locher H, Maurice T, Gasparini P, Girotto G, Reymond A. Variants in USP48 encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss. Hum Mol Genet 2021; 30:1785-1796. [PMID: 34059922 DOI: 10.1093/hmg/ddab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant affects a loop that controls binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane, and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 Hz and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining exome sequencing, animal modeling, immunohistology and molecular assays.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Edward Beelen
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | | | - Flavio Faletra
- Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Roxane Machavoine
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jeroen J Smits
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alban Ziegler
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sandrine Marlin
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|
34
|
Cheung BB, Kleynhans A, Mittra R, Kim PY, Holien JK, Nagy Z, Ciampa OC, Seneviratne JA, Mayoh C, Raipuria M, Gadde S, Massudi H, Wong IPL, Tan O, Gong A, Suryano A, Diakiw SM, Liu B, Arndt GM, Liu T, Kumar N, Sangfelt O, Zhu S, Norris MD, Haber M, Carter DR, Parker MW, Marshall GM. A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma. Oncogene 2021; 40:2367-2381. [PMID: 33658627 PMCID: PMC8016666 DOI: 10.1038/s41388-021-01712-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Ane Kleynhans
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Rituparna Mittra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Patrick Y Kim
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Olivia C Ciampa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mukesh Raipuria
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Satyanarayana Gadde
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Hassina Massudi
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Iris Poh Ling Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Owen Tan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew Gong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Aldwin Suryano
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sonya M Diakiw
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael W Parker
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
35
|
Ashton NW, Valles GJ, Jaiswal N, Bezsonova I, Woodgate R. DNA Polymerase ι Interacts with Both the TRAF-like and UBL1-2 Domains of USP7. J Mol Biol 2021; 433:166733. [PMID: 33279577 PMCID: PMC7873624 DOI: 10.1016/j.jmb.2020.166733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Reversible protein ubiquitination is an essential signaling mechanism within eukaryotes. Deubiquitinating enzymes are critical to this process, as they mediate removal of ubiquitin from substrate proteins. Ubiquitin-specific protease 7 (USP7) is a prominent deubiquitinating enzyme, with an extensive network of interacting partners and established roles in cell cycle activation, immune responses and DNA replication. Characterized USP7 substrates primarily interact with one of two major binding sites outside the catalytic domain. These are located on the USP7 N-terminal TRAF-like (TRAF) domain and the first and second UBL domains (UBL1-2) within the C-terminal tail. Here, we report that DNA polymerase iota (Pol ι) is a novel USP7 substrate that interacts with both TRAF and UBL1-2. Through the use of biophysical approaches and mutational analysis, we characterize both interfaces and demonstrate that bipartite binding to both USP7 domains is required for efficient Pol ι deubiquitination. Together, these data establish a new bipartite mode of USP7 substrate binding.
Collapse
Affiliation(s)
- Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA.
| | - Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA.
| | - Nancy Jaiswal
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA.
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
36
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
37
|
The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov Today 2020; 26:490-502. [PMID: 33157193 DOI: 10.1016/j.drudis.2020.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that removes the ubiquitin (Ub) protein and spares substrates from degradation. Given its regulation of proteins involved in several cellular processes, abnormal expression and activity of USP7 are associated with several types of disease, including cancer. In this review, we summarize the developments in our understanding of USP7 over the past 5 years, focusing on its role in related cancers. Furthermore, we discuss clinical studies of USP7, including in vivo and pharmacological studies, as well as the development of USP7 inhibitors. A comprehensive understanding of USP7 will expand our knowledge of the structure and function of USP7-mediated signaling and shed light on drug discovery for different diseases in which USP7 is implicated.
Collapse
|
38
|
Jiang HK, Kurkute P, Li CL, Wang YH, Chen PJ, Lin SY, Wang YS. Revealing USP7 Deubiquitinase Substrate Specificity by Unbiased Synthesis of Ubiquitin Tagged SUMO2. Biochemistry 2020; 59:3796-3801. [PMID: 33006472 DOI: 10.1021/acs.biochem.0c00701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitination and SUMOylation of protein are crucial for various biological responses. The recent unraveling of cross-talk between SUMO and ubiquitin (Ub) has shown the pressing needs to develop the platform for the synthesis of Ub tagged SUMO2 dimers to decipher its biological functions. Still, the platforms for facile synthesis of dimers under native condition are less explored and remain major challenges. Here, we have developed the platform that can expeditiously synthesize all eight Ub tagged SUMO2 and SUMOylated proteins under native condition. Expanding genetic code (EGC) method was employed to incorporate Se-alkylselenocysteine at lysine positions. Oxidative selenoxide elimination generates the electrophilic center, dehydroalanine, which upon Michael addition with C-terminal modified ubiquitin, a nucleophile, yield Ub tagged SUMO2. The dimers were further interrogated with USP7, a SUMO2 deubiquitinase, which is involved in DNA repair, to understand specificity toward the Ub tagged SUMO2 dimer. Our results have shown that the C-terminal domain of USP7 is crucial for USP7 efficiency and selectivity for the Ub tagged SUMO2 dimer.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Prashant Kurkute
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Lung Li
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Zhang Q, Cao C, Gong W, Bao K, Wang Q, Wang Y, Bi L, Ma S, Zhao J, Liu L, Tian S, Zhang K, Yang J, Yao Z, Song N, Shi L. A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis. Am J Cancer Res 2020; 10:10769-10790. [PMID: 32929379 PMCID: PMC7482815 DOI: 10.7150/thno.46878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: A number of guanine nucleotide exchange factors (GEFs) including epithelial cell transforming factor ECT2 are believed to drive carcinogenesis through activating distinct oncogenic GTPases. Yet, whether GEF-independent activity of ECT2 also plays a role in tumorigenesis remains unclear. Methods: Immunohistochemical (IHC) staining, colony formation and xenograft assays were used to examine the role of ECT2 in breast carcinogenesis. Co-immunoprecipitation, immunofluorescent stainings, in vivo deubiquitination and in vitro deubiquitination experiments were performed to examine the physical and functional interaction between ECT2 and ubiquitin-specific protease USP7. High-throughput RNA sequencing, quantitative reverse transcription-PCR and Western blotting were employed to investigate the biological significance of the interplay between ECT2 and USP7. Results: We report that ECT2 plays a tumor-promoting role in breast cancer, and GEF activity-deficient ECT2 is able to alleviate ECT2 depletion associated growth defects in breast cancer cells. Mechanistically, we demonstrated that ECT2 physically interacts with ubiquitin-specific protease USP7 and functionally facilitates USP7 intermolecular self-association, -deubiquitination and -stabilization in a GEF activity-independent manner. USP7 in turn, deubiquitinates and stabilizes ECT2, resulting in a feedforward regulatory circuit that ultimately sustains the expression of oncogenic protein MDM2. Conclusion: Our study uncovers a GEF-independent role of ECT2 in promoting survival of breast cancer cells, provides a molecular insight for the reciprocal regulation of ECT2 and USP7, and supports the pursuit of ECT2/USP7 as potential targets for breast cancer intervention.
Collapse
|
40
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Bashore C, Jaishankar P, Skelton NJ, Fuhrmann J, Hearn BR, Liu PS, Renslo AR, Dueber EC. Cyanopyrrolidine Inhibitors of Ubiquitin Specific Protease 7 Mediate Desulfhydration of the Active-Site Cysteine. ACS Chem Biol 2020; 15:1392-1400. [PMID: 32302100 DOI: 10.1021/acschembio.0c00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitin specific protease 7 (USP7) regulates the protein stability of key cellular regulators in pathways ranging from apoptosis to neuronal development, making it a promising therapeutic target. Here we used an engineered, activated variant of the USP7 catalytic domain to perform structure-activity studies of electrophilic peptidomimetic inhibitors. Employing this USP7 variant, we found that inhibitors with a cyanopyrrolidine warhead unexpectedly promoted a β-elimination reaction of the initial covalent adducts, thereby converting the active-site cysteine residue to dehydroalanine. We determined that this phenomenon is specific for the USP7 catalytic cysteine and that structural features of the inhibitor and protein microenvironment impact elimination rates. Using comprehensive docking studies, we propose that the characteristic conformational dynamics of USP7 allow access to conformations that promote the ligand-induced elimination. Unlike in conventional reversible-covalent inhibition, the compounds described here irreversibly destroy a catalytic residue while simultaneously converting the inhibitor to a nonelectrophilic byproduct. Accordingly, this unexpected finding expands the scope of covalent inhibitor modalities and offers intriguing insights into enzyme-inhibitor dynamics.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | | | | - Brian R. Hearn
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | |
Collapse
|
42
|
Liu S, Zhou X, Li M, Zhao W, Zhou S, Cheng K, Xu Q, Chen C, Wen X, Sun H, Yuan H. Discovery of Ubiquitin-Specific Protease 7 (USP7) Inhibitors with Novel Scaffold Structures by Virtual Screening, Molecular Dynamics Simulation, and Biological Evaluation. J Chem Inf Model 2020; 60:3255-3264. [PMID: 32282203 DOI: 10.1021/acs.jcim.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
USP7 has been regarded as a potential therapeutic target for cancer. In this study, virtual screening, molecular dynamics (MD) simulation, and biological evaluation have been applied for the discovery of novel USP7 inhibitors targeting the catalytic active site. Among the obtained compounds, compound 12 with a novel scaffold structure exhibited certain USP7 inhibitory activity (Ub-AMC assay IC50 = 18.40 ± 1.75 μM, Ub-Rho assay IC50 = 7.75 μM). The binding affinity between USP7CD (USP7 catalytic domain) and this hit compound was confirmed with a KD value of 4.46 ± 0.86 μM. Preliminary in vitro studies disclosed its antiproliferative activity on human prostate cancer cell line LNCaP with an IC50 value of 15.43 ± 3.49 μM. MD simulation revealed the detailed differences of protein-ligand interactions between USP7CD and the ligands, including the reference compound ALM4 and compound 12, providing some important information for improving the bioactivity of 12. This hit compound will serve as a promising starting point for facilitating the further discovery of novel USP7 inhibitors.
Collapse
Affiliation(s)
- Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinyu Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Minglei Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenfeng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shuxi Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
43
|
de la Vega E, González N, Cabezas F, Montecino F, Blanco N, Olguín H. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors. FEBS J 2020; 287:4659-4677. [PMID: 32115872 DOI: 10.1111/febs.15269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
Satellite cells (SCs) are myogenic progenitors responsible for skeletal muscle regeneration and maintenance. Upon activation, SCs enter a phase of robust proliferation followed by terminal differentiation. Underlying this myogenic progression, the sequential expression of muscle regulatory transcription factors (MRFs) and the downregulation of transcription factor paired box gene 7 (Pax7) are key steps regulating SC fate. In addition to transcriptional regulation, post-translational control of Pax7 and the MRFs provides another layer of spatiotemporal control to the myogenic process. In this context, previous work showed that Pax7 is ubiquitinated by the E3 ligase neural precursor cell-expressed developmentally downregulated protein 4 and interacts with several proteins related to the ubiquitin-proteasome system, including the deubiquitinase ubiquitin-specific protease 7 (USP7). Although USP7 functions in diverse cellular contexts, its role(s) during myogenesis remains poorly explored. Here, we show that USP7 is transiently expressed in adult muscle progenitors, correlating with the onset of myogenin expression, while it is downregulated in newly formed myotubes/myofibers. Acute inhibition of USP7 activity upon muscle injury results in persistent expression of early regeneration markers and a significant reduction in the diameter of regenerating myofibers. At the molecular level, USP7 downregulation or pharmacological inhibition impairs muscle differentiation by affecting myogenin stability. Co-immunoprecipitation and in vitro activity assays indicate that myogenin is a novel USP7 target for deubiquitination. These results suggest that USP7 regulates SC myogenic progression by enhancing myogenin stability.
Collapse
Affiliation(s)
- Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Montecino
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natasha Blanco
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet? Front Cell Dev Biol 2020; 8:233. [PMID: 32300595 PMCID: PMC7142254 DOI: 10.3389/fcell.2020.00233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The p53 tumor suppressor protein and its major negative regulators MDM2 and MDMX oncoproteins form the MDM2/MDMX-p53 circuitry, which plays critical roles in regulating cancer cell growth, proliferation, cell cycle progression, apoptosis, senescence, angiogenesis, and immune response. Recent studies have shown that the stabilities of p53, MDM2, and MDMX are tightly controlled by the ubiquitin-proteasome system. Ubiquitin specific protease 7 (USP7), one of the most studied deubiquitinating enzymes plays a crucial role in protecting MDM2 and MDMX from ubiquitination-mediated proteasomal degradation. USP7 is overexpressed in human cancers and contributes to cancer initiation and progression. USP7 inhibition promotes the degradation of MDM2 and MDMX, activates the p53 signaling, and causes cell cycle arrest and apoptosis, making USP7 a potential target for cancer therapy. Several small-molecule inhibitors of USP7 have been developed and shown promising efficacy in preclinical settings. In the present review, we focus on recent advances in the understanding of the USP7-MDM2/MDMX-p53 network in human cancers as well as the discovery and development of USP7 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Si-Min Qi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
45
|
Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc Natl Acad Sci U S A 2020; 117:4664-4674. [PMID: 32071216 DOI: 10.1073/pnas.1915534117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During protein degradation by the ubiquitin-proteasome pathway, latent 26S proteasomes in the cytosol must assume an active form. Proteasomes are activated when ubiquitylated substrates bind to them and interact with the proteasome-bound deubiquitylase Usp14/Ubp6. The resulting increase in the proteasome's degradative activity was recently shown to be mediated by Usp14's ubiquitin-like (Ubl) domain, which, by itself, can trigger proteasome activation. Many other proteins with diverse cellular functions also contain Ubl domains and can associate with 26S proteasomes. We therefore tested if various Ubl-containing proteins that have important roles in protein homeostasis or disease also activate 26S proteasomes. All seven Ubl-containing proteins tested-the shuttling factors Rad23A, Rad23B, and Ddi2; the deubiquitylase Usp7, the ubiquitin ligase Parkin, the cochaperone Bag6, and the protein phosphatase UBLCP1-stimulated peptide hydrolysis two- to fivefold. Rather than enhancing already active proteasomes, Rad23B and its Ubl domain activated previously latent 26S particles. Also, Ubl-containing proteins (if present with an unfolded protein) increased proteasomal adenosine 5'-triphosphate (ATP) hydrolysis, the step which commits substrates to degradation. Surprisingly, some of these proteins also could stimulate peptide hydrolysis even when their Ubl domains were deleted. However, their Ubl domains were required for the increased ATPase activity. Thus, upon binding to proteasomes, Ubl-containing proteins not only deliver substrates (e.g., the shuttling factors) or provide additional enzymatic activities (e.g., Parkin) to proteasomes, but also increase their capacity for proteolysis.
Collapse
|
46
|
The Ubiquitin-Specific Protease Usp7, a Novel Merkel Cell Polyomavirus Large T-Antigen Interaction Partner, Modulates Viral DNA Replication. J Virol 2020; 94:JVI.01638-19. [PMID: 31801860 DOI: 10.1128/jvi.01638-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause for Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer predominantly found in elderly and immunosuppressed patients. The early viral gene products large T-antigen (LT) and small T-antigen (sT) are important for efficient viral DNA replication, and both contribute to transformation processes. These functions are executed mainly through interactions with host factors. Here, we identify the cellular ubiquitin-specific processing protease 7 (Usp7) as a new interaction partner of the MCPyV LT. Using glutathione S-transferase pulldown experiments, we show that MCPyV LT directly binds to Usp7 and that N- as well as C-terminal regions of LT bind to the TRAF (tumor necrosis factor receptor-associated) domain of Usp7. We demonstrate that endogenous Usp7 coprecipitates with MCPyV T-antigens and relocalizes to viral DNA replication centers in cells actively replicating MCPyV genomes. We show that Usp7 does not alter ubiquitination levels of the T-antigens; however, Usp7 binding increases the binding affinity of LT to the origin of replication, thereby negatively regulating viral DNA replication. Together, these data identify Usp7 as a restriction factor of MCPyV replication. In contrast to other DNA viruses, Usp7 does not affect MCPyV gene expression via its ubiquitination activity but influences MCPyV DNA replication solely via a novel mechanism that modulates binding of LT to viral DNA.IMPORTANCE MCPyV is the only human polyomavirus that is associated with cancer; the majority of Merkel cell cancers have a viral etiology. While much emphasis was placed on investigations to understand the transformation process by MCPyV oncoproteins and cellular factors, we have only limited knowledge of cellular factors participating in the MCPyV life cycle. Here, we describe Usp7, a cellular deubiquitination enzyme, as a new factor involved in MCPyV replication. Usp7 is known in the context of large DNA tumor viruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus, to restrict viral replication. Similar to EBV, where Usp7 binding to EBNA1 increases EBNA1 binding affinity to viral DNA, we find MCPyV LT binding to the origin of replication to be increased in the presence of Usp7, resulting in restriction of viral DNA replication. However, Usp7-induced restriction of MCPyV replication is independent of its enzymatic activity, thereby constituting a novel mechanism of Usp7-induced restriction of viral replication.
Collapse
|
47
|
Zhu Q, Ding N, Wei S, Li P, Wani G, He J, Wani AA. USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle 2019; 19:124-141. [PMID: 31775559 DOI: 10.1080/15384101.2019.1695996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Ding
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shengcai Wei
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ping Li
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gulzar Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jinshan He
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Altaf A Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Wang A, Zhu F, Liang R, Li D, Li B. Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell Immunol 2019; 340:103922. [PMID: 31078284 DOI: 10.1016/j.cellimm.2019.103922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
T cells play critical roles in immune responses to pathogens, autoimmunity, and antitumor immunity. During the past few decades, increasing numbers of studies have demonstrated the significance of protein ubiquitination in T cell-mediated immunity. Several E3 ubiquitin ligases and deubiquitinases (DUBs) have been identified as either positive or negative regulators of T cell development and function. In this review, we mainly focus on the roles of DUBs (especially ubiquitin-specific proteases (USPs)) in modulating T cell differentiation and function, as well as the molecular mechanisms. Understanding how T cell development and function is regulated by ubiquitination and deubiquitination will provide novel strategies for treating infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Aiting Wang
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fangming Zhu
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
49
|
Misawa K, Ozawa SI, Yoshida T, Nakagome I, Yamaotsu N, Hirono S. Identifying Inhibitors of USP7-HDM2 Protein-Protein Interaction (PPI) by the in Silico Fragment-mapping Method. YAKUGAKU ZASSHI 2019; 139:827-835. [DOI: 10.1248/yakushi.19-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kensuke Misawa
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| | - Shin-ichiro Ozawa
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| | - Tomoki Yoshida
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| | - Izumi Nakagome
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| | - Noriyuki Yamaotsu
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| | - Shuichi Hirono
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University
| |
Collapse
|
50
|
Wang Z, Kang W, You Y, Pang J, Ren H, Suo Z, Liu H, Zheng Y. USP7: Novel Drug Target in Cancer Therapy. Front Pharmacol 2019; 10:427. [PMID: 31114498 PMCID: PMC6502913 DOI: 10.3389/fphar.2019.00427] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUB) that erases ubiquitin and protects substrate protein from degradation. Full activity of USP7 requires the C-terminal Ub-like domains fold back onto the catalytic domain, allowing the remodeling of the active site to a catalytically competent state by the C-terminal peptide. Until now, numerous proteins have been identified as substrates of USP7, which play a key role in cell cycle, DNA repair, chromatin remodeling, and epigenetic regulation. Aberrant activation or overexpression of USP7 may promote oncogenesis and viral disease, making it a target for therapeutic intervention. Currently, several synthetic small molecules have been identified as inhibitors of USP7, and applied in the treatment of diverse diseases. Hence, USP7 may be a promising therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Zhiru Wang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China.,Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Wenting Kang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Yinghua You
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Jingru Pang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Hongmei Ren
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Zhenhe Suo
- Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| |
Collapse
|