1
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
3
|
D’Addabbo A, Tong T, Crooks ET, Osawa K, Xu J, Thomas A, Allen JD, Crispin M, Binley JM. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. Glycobiology 2024; 34:cwae063. [PMID: 39115361 PMCID: PMC11442005 DOI: 10.1093/glycob/cwae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1 infected donors are vaccine paradigms. These bNAbs recognize envelope glycoprotein trimers that carry 75-90 oligomannose and complex-type glycans. Although bNAbs and their precursors must navigate past glycans, they usually also make some glycan contacts. Glycan-modified vaccines may therefore be useful to initiate and guide bNAb development. Here, we describe two ways to modify Env glycans for possible vaccine use: 1) using a cocktail of glycosidases (termed "NGAF3" (Neuraminidase, β-Galactosidase, N-Acetylglucosaminidase, endoglycosidase F3 (endo F3)) to deplete complex glycans to try to minimize bNAb-glycan clashes and 2) co-expressing β-1,4-galactosyltransferase 1 (B4G) and β-galactoside α-2,6 sialyltransferase 1 (ST6) during Env biosynthesis, creating bNAb-preferred glycan structures. Mass spectrometry revealed that NGAF3 removed glycan heads at 3/7 sites occupied by complex glycans. B4G overexpression resulted in hybrid glycan development whenever complex glycans were closely spaced. The glycan at position 611 in of Env's gp41 transmembrane subunit was uniquely isolated from the effects of both endo F3 and B4G. B4G and ST6 co-expression increased hybrid and sialylated glycan abundance, reducing glycan complexity. In rabbit vaccinations, B4G + ST6 virus-like particles (VLPs) induced less frequent, weaker titer NAbs, implying that ST6-mediated increased Env charge dampens vaccine antibodies. In some cases, vaccine sera preferentially neutralized B4G + ST6-modified pseudovirus. HIV-1+ donor plasma NAbs were generally more effective against B4G + ST6 modified pseudovirus, suggesting a preference for less complex and/or α-2,6 sialylated Env trimers. Collectively, our data suggest that B4G and ST6 Env modifications are best suited for intermediate or late vaccine shots.
Collapse
Affiliation(s)
- Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tommy Tong
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Emma T Crooks
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Jiamin Xu
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James M Binley
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| |
Collapse
|
4
|
Chen J, Goerdeler F, Jaroentomeechai T, Hernandez FXS, Wang X, Clausen H, Narimatsu Y, Satchell KJF. Biantennary N-glycans As Receptors for MARTX Toxins in Vibrio Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611726. [PMID: 39314294 PMCID: PMC11418979 DOI: 10.1101/2024.09.12.611726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multifunctional Autoprocessing Repeats-in-Toxin (MARTX) toxins are a diverse effector delivery platform of many Gram-negative bacteria that infect mammals, insects, and aquatic animal hosts. The mechanisms by which these toxins recognize host cell receptors for translocation of toxic effectors into the cell have remained elusive. Here, we map the first surface receptor-binding domain of a MARTX toxin from the highly lethal foodborne pathogen Vibrio vulnificus. This domain corresponds to a 273-amino acid sequence with predicted symmetrical immunoglobulin-like folds. We demonstrate that this domain binds internal N-acetylglucosamine on complex biantennary N-glycans with select preference for L1CAM and other N-glycoproteins with multiple N-glycans on host cell surfaces. This receptor binding domain is essential for V. vulnificus pathogenesis during intestinal infection. The identification of a highly conserved motif universally present as part of all N-glycans correlates with the V. vulnificus MARTX toxin boasting broad specificity and targeting nearly all cell types.
Collapse
Affiliation(s)
- Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Francisco X. S. Hernandez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
5
|
Walimbwa SI, Maly P, Kafkova LR, Raska M. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. J Biomed Sci 2024; 31:83. [PMID: 39169357 PMCID: PMC11337606 DOI: 10.1186/s12929-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Stephen Ian Walimbwa
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567910. [PMID: 38045336 PMCID: PMC10690231 DOI: 10.1101/2023.11.20.567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, the College of Veterinary Medicine Graduate Program, and Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
12
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
13
|
Herschhorn A. Indirect Mechanisms of HIV-1 Evasion from Broadly Neutralizing Antibodies In Vivo. ACS Infect Dis 2023; 9:5-8. [PMID: 36512322 DOI: 10.1021/acsinfecdis.2c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
15
|
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun 2022; 13:7271. [PMID: 36434005 PMCID: PMC9700739 DOI: 10.1038/s41467-022-34961-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ian Zon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ana Chumbe
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Wen-Hsin Lee
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Sylvie Koekkoek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Gabriel Ozorowski
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Andrew B Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marit J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Janke Schinkel
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
16
|
Neralkar M, Xu B, Horiya S, Krauss IJ. Large-Scale Synthesis of Man 9GlcNAc 2 High-Mannose Glycan and the Effect of the Glycan Core on Multivalent Recognition by HIV Antibody 2G12. ACS Infect Dis 2022; 8:2232-2241. [PMID: 36278940 DOI: 10.1021/acsinfecdis.2c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Access to homogeneous high-mannose glycans in high-mg quantities is necessary for carbohydrate-based HIV vaccine development research. We have used directed evolution to design highly antigenic oligomannose clusters that are recognized in low-nM affinity by HIV antibodies. Herein we report an optimized large-scale synthesis of Man9GlcNAc2 including improved building block synthesis and a fully stereoselective 5 + 6 coupling, yielding 290 mg of glycan. We then use this glycan to study the effect of the GlcNAc2 core on the antigenicity of an evolved 2G12-binding glycopeptide, 10F2.
Collapse
Affiliation(s)
- Mahesh Neralkar
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Bokai Xu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
17
|
Saunders KO, Edwards RJ, Tilahun K, Manne K, Lu X, Cain DW, Wiehe K, Williams WB, Mansouri K, Hernandez GE, Sutherland L, Scearce R, Parks R, Barr M, DeMarco T, Eater CM, Eaton A, Morton G, Mildenberg B, Wang Y, Rountree RW, Tomai MA, Fox CB, Moody MA, Alam SM, Santra S, Lewis MG, Denny TN, Shaw GM, Montefiori DC, Acharya P, Haynes BF. Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Sci Transl Med 2022; 14:eabo5598. [PMID: 36070369 PMCID: PMC10034035 DOI: 10.1126/scitranslmed.abo5598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Microbiology and Molecular Genetics, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Chloe M. Eater
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | | | | | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - R. Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Mark A. Tomai
- 3M Corporate Research Materials Lab, 3M Company; St. Paul, MN, 55144, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Pediatrics, Duke University Medical Center; Durham, NC, 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center; Boston, MA, 02215, USA
| | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| |
Collapse
|
18
|
Miller NL, Raman R, Clark T, Sasisekharan R. Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Front Immunol 2022; 13:904609. [PMID: 35784339 PMCID: PMC9247215 DOI: 10.3389/fimmu.2022.904609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood. To structure our discussion, we present a framework for understanding epitope complexity as a spectrum along a series of axes, focusing primarily on 1) epitope biochemical complexity (e.g., epitopes involving N-glycans) and 2) antigen conformational/dynamic complexity (e.g., epitopes with differential properties depending on antigen state or fold-axis). We highlight additional epitope complexity factors including epitope tertiary/quaternary structure, which contribute to epistatic relationships between epitope residues within- or adjacent-to a given epitope, as well as epitope overlap resulting from polyclonal antibody responses, which is relevant when assessing antigenic pressure against a given epitope. Finally, we discuss how these different forms of epitope complexity can limit EPI analyses and therapeutic antibody development, as well as recent efforts to overcome these limitations.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Sun J, Zhao G, Bylund T, Lee M, Adibhatla S, Kwong PD, Chuang GY, Rawi R, Bewley CA. C3-Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity. ACS Chem Biol 2022; 17:1450-1459. [PMID: 35537058 PMCID: PMC10091857 DOI: 10.1021/acschembio.1c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.
Collapse
Affiliation(s)
- Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Srikar Adibhatla
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Lorin V, Fernández I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, Planchais C, Hieu T, Péhau-Arnaudet G, Hrebík D, Girelli-Zubani G, Fiquet O, Guivel-Benhassine F, Sanders RW, Walker BD, Schwartz O, Scheid JF, Dimitrov JD, Plevka P, Braibant M, Seaman MS, Bontems F, Di Santo JP, Rey FA, Mouquet H. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. J Exp Med 2022; 219:213042. [PMID: 35230385 PMCID: PMC8932546 DOI: 10.1084/jem.20212045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Collapse
Affiliation(s)
- Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Ignacio Fernández
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Guillemette Masse-Ranson
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Mélanie Bouvin-Pley
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | - Luis M Molinos-Albert
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Gérard Péhau-Arnaudet
- Imagopole, Plate-Forme de Microscopie Ultrastructurale and UMR 3528, Institut Pasteur, Paris, France
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Giulia Girelli-Zubani
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Oriane Fiquet
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Florence Guivel-Benhassine
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Olivier Schwartz
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martine Braibant
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | | | - François Bontems
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| |
Collapse
|
21
|
Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends Microbiol 2022; 30:866-881. [DOI: 10.1016/j.tim.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
|
22
|
Miller NL, Subramanian V, Clark T, Raman R, Sasisekharan R. Conserved topology of virus glycoepitopes presents novel targets for repurposing HIV antibody 2G12. Sci Rep 2022; 12:2594. [PMID: 35173180 PMCID: PMC8850445 DOI: 10.1038/s41598-022-06157-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vidya Subramanian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance in Research and Technology (SMART), Singapore, 138602, Singapore.
| |
Collapse
|
23
|
Chawla H, Jossi SE, Faustini SE, Samsudin F, Allen JD, Watanabe Y, Newby ML, Marcial-Juárez E, Lamerton RE, McLellan JS, Bond PJ, Richter AG, Cunningham AF, Crispin M. Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. J Mol Biol 2022; 434:167332. [PMID: 34717971 PMCID: PMC8550889 DOI: 10.1016/j.jmb.2021.167332] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.
Collapse
Affiliation(s)
- Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sian E Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sian E Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel E Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
24
|
Schorcht A, Cottrell CA, Pugach P, Ringe RP, Han AX, Allen JD, van den Kerkhof TLGM, Seabright GE, Schermer EE, Ketas TJ, Burger JA, van Schooten J, LaBranche CC, Ozorowski G, de Val N, Bader DLV, Schuitemaker H, Russell CA, Montefiori DC, van Gils MJ, Crispin M, Klasse PJ, Ward AB, Moore JP, Sanders RW. The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. J Virol 2022; 96:e0155221. [PMID: 34669426 PMCID: PMC8754230 DOI: 10.1128/jvi.01552-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Schorcht
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Alvin X. Han
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Joel D. Allen
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Tom L. G. M. van den Kerkhof
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Gemma E. Seabright
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Edith E. Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Jelle van Schooten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel L. V. Bader
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A. Russell
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
25
|
Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021; 413:7277-7294. [PMID: 34342671 PMCID: PMC8329908 DOI: 10.1007/s00216-021-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
26
|
Derking R, Sanders RW. Structure-guided envelope trimer design in HIV-1 vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25797. [PMID: 34806305 PMCID: PMC8606863 DOI: 10.1002/jia2.25797] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The development of a human immunodeficiency virus 1 (HIV-1) vaccine remains a formidable challenge. An effective vaccine likely requires the induction of broadly neutralizing antibodies (bNAbs), which likely involves the use of native-like HIV-1 envelope (Env) trimers at some or all stages of vaccination. Development of such trimers has been very difficult, but much progress has been made in the past decade, starting with the BG505 SOSIP trimer, elucidation of its atomic structure and implementing subsequent design iterations. This progress facilitated understanding the weaknesses of the Env trimer, fuelled structure-guided HIV-1 vaccine design and assisted in the development of new vaccine designs. This review summarizes the relevant literature focusing on studies using structural biology to reveal and define HIV-1 Env sites of vulnerability; to improve Env trimers, by creating more stable versions; understanding antibody responses in preclinical vaccination studies at the atomic level; understanding the glycan shield; and to improve "on-target" antibody responses versus "off-target" responses. METHODS The authors conducted a narrative review of recently published articles that made a major contribution to HIV-1 structural biology and vaccine design efforts between the years 2000 and 2021. DISCUSSION The field of structural biology is evolving at an unprecedented pace, where cryo-electron microscopy (cryo-EM) and X-ray crystallography provide complementary information. Resolving protein structures is necessary for defining which Env surfaces are accessible for the immune system and can be targeted by neutralizing antibodies. Recently developed techniques, such as electron microscopy-based polyclonal epitope mapping (EMPEM) are revolutionizing the way we are analysing immune responses and shed light on the immunodominant targets on new vaccine immunogens. Such information accelerates iterative vaccine design; for example, by reducing undesirable off-target responses, while improving immunogens to drive the more desirable on-target responses. CONCLUSIONS Resolving high-resolution structures of the HIV-1 Env trimer was instrumental in understanding and improving recombinant HIV-1 Env trimers that mimic the structure of viral HIV-1 Env spikes. Newly emerging techniques in structural biology are aiding vaccine design efforts and improving immunogens. The role of structural biology in HIV-1 vaccine design has indeed become very prominent and is unlikely to diminish any time soon.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rogier W. Sanders
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
27
|
Crooks ET, Almanza F, D’Addabbo A, Duggan E, Zhang J, Wagh K, Mou H, Allen JD, Thomas A, Osawa K, Korber BT, Tsybovsky Y, Cale E, Nolan J, Crispin M, Verkoczy LK, Binley JM. Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathog 2021; 17:e1009807. [PMID: 34679128 PMCID: PMC8565784 DOI: 10.1371/journal.ppat.1009807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 vaccine immunofocusing strategies may be able to induce broadly-reactive neutralizing antibodies (NAbs). Here, we engineered a panel of diverse, membrane-resident native HIV-1 trimers vulnerable to two broad targets-the V2 apex and fusion peptide (FP). Selection criteria included i) high expression and ii) infectious function, so that trimer neutralization sensitivity can be profiled in pseudovirus (PV) assays. Initially, we boosted the expression of 17 candidate trimers by truncating gp41 and introducing a gp120-gp41 SOS disulfide to prevent gp120 shedding. "Repairs" were made to fill glycan holes and eliminate other strain-specific aberrations. A new neutralization assay allowed PV infection when our standard assay was insufficient. Trimers with exposed V3 loops, a target of non-NAbs, were discarded. To try to increase V2-sensitivity, we removed clashing glycans and modified the C-strand. Notably, a D167N mutation improved V2-sensitivity in several cases. Glycopeptide analysis of JR-FL trimers revealed near complete sequon occupation and that filling the N197 glycan hole was well-tolerated. In contrast, sequon optimization and inserting/removing glycans at other positions frequently had global "ripple" effects on glycan maturation and sequon occupation throughout the gp120 outer domain and gp41. V2 MAb CH01 selectively bound to trimers with small high mannose glycans near the base of the V1 loop, thereby avoiding clashes. Knocking in a rare N49 glycan was found to perturb gp41 glycans, increasing FP NAb sensitivity-and sometimes improving expression. Finally, a biophysical analysis of VLPs revealed that i) ~25% of particles bear Env spikes, ii) spontaneous particle budding is high and only increases 4-fold upon Gag transfection, and iii) Env+ particles express ~30-40 spikes. Taken together, we identified 7 diverse trimers with a range of sensitivities to two targets to allow rigorous testing of immunofocusing vaccine concepts.
Collapse
Affiliation(s)
- Emma T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Francisco Almanza
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Erika Duggan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Jinsong Zhang
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Kshitij Wagh
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Huihui Mou
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yaroslav Tsybovsky
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Evan Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Nolan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Laurent K. Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
28
|
Parker Miller E, Finkelstein MT, Erdman MC, Seth PC, Fera D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021; 13:v13091774. [PMID: 34578355 PMCID: PMC8472920 DOI: 10.3390/v13091774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies that can neutralize diverse HIV-1 strains develop in ~10–20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.
Collapse
|
29
|
Mishra N, Kumar S, Singh S, Bansal T, Jain N, Saluja S, Kumar R, Bhattacharyya S, Palanichamy JK, Mir RA, Sinha S, Luthra K. Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathog 2021; 17:e1009958. [PMID: 34559854 PMCID: PMC8494312 DOI: 10.1371/journal.ppat.1009958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/06/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.
Collapse
Affiliation(s)
- Nitesh Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- ICGEB-Emory Vaccine Centre Program, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sumedha Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Riyaz Ahmad Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Go EP, Zhang S, Ding H, Kappes JC, Sodroski J, Desaire H. The opportunity cost of automated glycopeptide analysis: case study profiling the SARS-CoV-2 S glycoprotein. Anal Bioanal Chem 2021; 413:7215-7227. [PMID: 34448030 PMCID: PMC8390178 DOI: 10.1007/s00216-021-03621-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Glycosylation analysis of viral glycoproteins contributes significantly to vaccine design and development. Among other benefits, glycosylation analysis allows vaccine developers to assess the impact of construct design or producer cell line choices for vaccine production, and it is a key measure by which glycoproteins that are produced for use in vaccination can be compared to their native viral forms. Because many viral glycoproteins are multiply glycosylated, glycopeptide analysis is a preferrable approach for mapping the glycans, yet the analysis of glycopeptide data can be cumbersome and requires the expertise of an experienced analyst. In recent years, a commercial software product, Byonic, has been implemented in several instances to facilitate glycopeptide analysis on viral glycoproteins and other glycoproteomics data sets, and the purpose of the study herein is to determine the strengths and limitations of using this software, particularly in cases relevant to vaccine development. The glycopeptides from a recombinantly expressed trimeric S glycoprotein of the SARS-CoV-2 virus were first analyzed using an expert-based analysis strategy; subsequently, analysis of the same data set was completed using Byonic. Careful assessment of instances where the two methods produced different results revealed that the glycopeptide assignments from Byonic contained more false positives than true positives, even when the data were assessed using a 1% false discovery rate. The work herein provides a roadmap for removing the spurious assignments that Byonic generates, and it provides an assessment of the opportunity cost for relying on automated assignments for glycopeptide data sets from viral glycoproteins.
Collapse
Affiliation(s)
- Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS, 66049, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, 35233, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, 02215, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS, 66049, USA.
| |
Collapse
|
31
|
Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. J Virol 2021; 95:e0079721. [PMID: 34160251 PMCID: PMC8354232 DOI: 10.1128/jvi.00797-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield’s reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.
Collapse
|
32
|
Hangartner L, Beauparlant D, Rakasz E, Nedellec R, Hozé N, McKenney K, Martins MA, Seabright GE, Allen JD, Weiler AM, Friedrich TC, Regoes RR, Crispin M, Burton DR. Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Sci Transl Med 2021; 13:13/585/eabe3349. [PMID: 33731434 DOI: 10.1126/scitranslmed.abe3349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
Protection from immunodeficiency virus challenge in nonhuman primates (NHPs) by a first-generation HIV broadly neutralizing antibody (bnAb) b12 has previously been shown to benefit from interaction between the bnAb and Fcγ receptors (FcγRs) on immune cells. To investigate the mechanism of protection for a more potent second-generation bnAb currently in clinical trials, PGT121, we carried out a series of NHP studies. These studies included treating with PGT121 at a concentration at which only half of the animals were protected to avoid potential masking of FcγR effector function benefits by dominant neutralization and using a new variant that more completely eliminated all rhesus FcγR binding than earlier variants. In contrast to b12, which required FcγR binding for optimal protection, we concluded that PGT121-mediated protection is not augmented by FcγR interaction. Thus, for HIV-passive antibody prophylaxis, these results, together with existing literature, emphasize the importance of neutralization potency for clinical antibodies, with effector function requiring evaluation for individual antibodies.
Collapse
Affiliation(s)
- Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nathanaël Hozé
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH Zentrum, CHN H76.2, Universitätstrasse 16, 8092 Zurich, Switzerland.,Theoretical Biology, ETH Zurich, ETH Zentrum, CHN K12.2, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mauricio A Martins
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - Roland R Regoes
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH Zentrum, CHN H76.2, Universitätstrasse 16, 8092 Zurich, Switzerland.,Theoretical Biology, ETH Zurich, ETH Zentrum, CHN K12.2, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Kumar S, Lin X, Ngo T, Shapero B, Sou C, Allen JD, Copps J, Zhang L, Ozorowski G, He L, Crispin M, Ward AB, Wilson IA, Zhu J. Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. mBio 2021; 12:e0042921. [PMID: 34156262 PMCID: PMC8262854 DOI: 10.1128/mbio.00429-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers. Three mouse NAbs potently neutralized BG505.T332N by recognizing a glycan epitope centered in the C3/V4 region on BG505 Env, as revealed by electron microscopy (EM), X-ray crystallography, and epitope mapping. A set of rabbit NAbs was isolated from rabbits immunized with a soluble trimer and a 24-meric ferritin NP presenting 8 trimers. Neutralization assays against BG505.T332N variants confirmed that potent rabbit NAbs targeted previously described glycan holes on BG505 Env and accounted for a significant portion of the autologous NAb response in both the trimer and ferritin NP groups. Last, we examined NAb responses that were induced by non-BG505 Env immunogens. We determined a 3.4-Å-resolution crystal structure for the clade C transmitted/founder (T/F) Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend in gp41. This clade C Env, in a soluble trimer form and in a multivalent form with 8 trimers attached to ferritin NP, and the gp41-stabilized clade A Q482-d12 Env trimer elicited distinct NAb responses in rabbits, with notable differences in neutralization breadth. Although eliciting a broad NAb response remains a major challenge, our study provides valuable information on an HIV-1 vaccine design strategy that combines gp41 stabilization and NP display. IMPORTANCE Self-assembling protein nanoparticles (NPs) presenting BG505 envelope (Env) trimers can elicit tier 2 HIV-1-neutralizing antibody (NAb) responses more effectively than soluble trimers. In the present study, monoclonal NAbs were isolated from previously immunized mice and rabbits for structural and functional analyses, which revealed that potent mouse NAbs recognize the C3/V4 region and small NP-elicited rabbit NAbs primarily target known glycan holes on BG505 Env. This study validates the gp41 stabilization strategy for HIV-1 Env vaccine design and highlights the challenge in eliciting a broad NAb response.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
34
|
Redman RL, Krauss IJ. Directed Evolution of 2'-Fluoro-Modified, RNA-Supported Carbohydrate Clusters That Bind Tightly to HIV Antibody 2G12. J Am Chem Soc 2021; 143:8565-8571. [PMID: 34096703 DOI: 10.1021/jacs.1c03194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrate binding proteins (CBPs) are attractive targets in medicine and biology. Multivalency, with several glycans binding to several binding pockets in the CBP, is important for high-affinity interactions. Herein, we describe a novel platform for design of multivalent carbohydrate cluster ligands by directed evolution, in which serum-stable 2'-fluoro modified RNA (F-RNA) backbones evolve to present the glycan in optimal clusters. We have validated this method by the selection of oligomannose (Man9) glycan clusters from a sequence pool of ∼1013 that bind to broadly neutralizing HIV antibody 2G12 with 13 to 36 nM affinities.
Collapse
Affiliation(s)
- Richard L Redman
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham, Massachusetts 02454, United States
| |
Collapse
|
35
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
36
|
Williams WB, Meyerhoff RR, Edwards RJ, Li H, Manne K, Nicely NI, Henderson R, Zhou Y, Janowska K, Mansouri K, Gobeil S, Evangelous T, Hora B, Berry M, Abuahmad AY, Sprenz J, Deyton M, Stalls V, Kopp M, Hsu AL, Borgnia MJ, Stewart-Jones GBE, Lee MS, Bronkema N, Moody MA, Wiehe K, Bradley T, Alam SM, Parks RJ, Foulger A, Oguin T, Sempowski GD, Bonsignori M, LaBranche CC, Montefiori DC, Seaman M, Santra S, Perfect J, Francica JR, Lynn GM, Aussedat B, Walkowicz WE, Laga R, Kelsoe G, Saunders KO, Fera D, Kwong PD, Seder RA, Bartesaghi A, Shaw GM, Acharya P, Haynes BF. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell 2021; 184:2955-2972.e25. [PMID: 34019795 PMCID: PMC8135257 DOI: 10.1016/j.cell.2021.04.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023]
Abstract
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| | - R Ryan Meyerhoff
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - R J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | | | | | | | | | - Bhavna Hora
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | - Matthew S Lee
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Thomas Oguin
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - John Perfect
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Geoffrey M Lynn
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Avidea Technologies, Inc., Baltimore, MD, USA
| | | | | | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University, Durham, NC 27705, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Zhao X, Chen H, Wang H. Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Front Mol Biosci 2021; 8:629873. [PMID: 33928117 PMCID: PMC8076860 DOI: 10.3389/fmolb.2021.629873] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Viral protein glycosylation represents a successful strategy employed by the parasite to take advantage of host-cell machinery for modification of its own proteins. The resulting glycans have unneglectable roles in viral infection and immune response. The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which presents on the surface of matured virion and mediates viral entry into the host, also undergoes extensive glycosylation to shield it from the human defense system. It is believed that the ongoing COVID-19 pandemic with more than 90,000,000 infections and 1,900,000 deaths is partly due to its successful glycosylation strategy. On the other hand, while glycan patches on S protein have been reported to shield the host immune response by masking "nonself" viral peptides with "self-glycans," the epitopes are also important in eliciting neutralizing antibodies. In this review, we will summarize the roles of S protein glycans in mediating virus-receptor interactions, and in antibody production, as well as indications for vaccine development.
Collapse
Affiliation(s)
| | | | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
38
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
39
|
Allen JD, Watanabe Y, Chawla H, Newby ML, Crispin M. Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. J Mol Biol 2021; 433:166762. [PMID: 33340519 PMCID: PMC7744274 DOI: 10.1016/j.jmb.2020.166762] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
40
|
Re S, Mizuguchi K. Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein. J Phys Chem B 2021; 125:2089-2097. [PMID: 33606939 DOI: 10.1021/acs.jpcb.0c11516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.
Collapse
Affiliation(s)
- Suyong Re
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Mizuguchi
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
42
|
Wei Q, Hargett AA, Knoppova B, Duverger A, Rawi R, Shen CH, Farney SK, Hall S, Brown R, Keele BF, Heath SL, Saag MS, Kutsch O, Chuang GY, Kwong PD, Moldoveanu Z, Raska M, Renfrow MB, Novak J. Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. iScience 2020; 23:101711. [PMID: 33205023 PMCID: PMC7649354 DOI: 10.1016/j.isci.2020.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
HIV-1 envelope (Env) N-glycosylation impact virus-cell entry and immune evasion. How each glycan interacts to shape the Env-protein-sugar complex and affects Env function is not well understood. Here, analysis of two Env variants from the same donor, with differing functional characteristics and N-glycosylation-site composition, revealed that changes to key N-glycosylation sites affected the Env structure at distant locations and had a ripple effect on Env-wide glycan processing, virus infectivity, antibody recognition, and virus neutralization. Specifically, the N262 glycan, although not in the CD4-binding site, modulated Env binding to the CD4 receptor, affected Env recognition by several glycan-dependent neutralizing antibodies, and altered site-specific glycosylation heterogeneity, with, for example, N448 displaying limited glycan processing. Molecular-dynamic simulations visualized differences in glycan density and how specific oligosaccharide positions can move to compensate for a glycan loss. This study demonstrates how changes in individual glycans can alter molecular dynamics, processing, and function of the Env-glycan shield.
Collapse
Affiliation(s)
- Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S. Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael S. Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
- Department of Immunology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| |
Collapse
|
43
|
Papageorgiou AC, Mohsin I. The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells 2020; 9:E2343. [PMID: 33105869 PMCID: PMC7690584 DOI: 10.3390/cells9112343] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease (COVID-19) pandemic, has so far resulted in more than 1.1 M deaths and 40 M cases worldwide with no confirmed remedy yet available. Since the first outbreak in Wuhan, China in December 2019, researchers across the globe have been in a race to develop therapies and vaccines against the disease. SARS-CoV-2, similar to other previously identified Coronaviridae family members, encodes several structural proteins, such as spike, envelope, membrane, and nucleocapsid, that are responsible for host penetration, binding, recycling, and pathogenesis. Structural biology has been a key player in understanding the viral infection mechanism and in developing intervention strategies against the new coronavirus. The spike glycoprotein has drawn considerable attention as a means to block viral entry owing to its interactions with the human angiotensin-converting enzyme 2 (ACE2), which acts as a receptor. Here, we review the current knowledge of SARS-CoV-2 and its interactions with ACE2 and antibodies. Structural information of SARS-CoV-2 spike glycoprotein and its complexes with ACE2 and antibodies can provide key input for the development of therapies and vaccines against the new coronavirus.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Betacoronavirus/chemistry
- Binding Sites
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Humans
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Protein Domains/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Vaccines/immunology
Collapse
|
44
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020; 28:586-601.e6. [PMID: 32841605 PMCID: PMC7443692 DOI: 10.1016/j.chom.2020.08.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn E Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Benjamin P Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, CA 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
45
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.172403. [PMID: 32743578 PMCID: PMC7386495 DOI: 10.1101/2020.06.25.172403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Jeremy L. Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Oliver C. Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katelyn E. Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin P. Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, California, 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|