1
|
Shen K, Xia L, Gao X, Li C, Sun P, Liu Y, Fan H, Li X, Han L, Lu C, Jiao K, Xia C, Wang Z, Deng B, Pan F, Sun T. Tobacco as bioenergy and medical plant for biofuels and bioproduction. Heliyon 2024; 10:e33920. [PMID: 39055830 PMCID: PMC11269859 DOI: 10.1016/j.heliyon.2024.e33920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco, a widely cultivated crop, has been extensively utilized by humans for an extended period. However, the tobacco industry generates a significant amount of organic waste, and the effective utilization of this tobacco waste has been limited. Currently, most tobacco waste is either recycled as reconstituted tobacco sheets or disposed of in landfills. However, tobacco possesses far more potential value than just these applications. This article provides an overview of the diverse uses of tobacco waste in agriculture, medicine, chemical engineering, and energy sectors. In the realm of agriculture, tobacco waste finds primary application as fertilizers and pesticides. In medical applications, the bioactive compounds present in tobacco are fully harnessed, resulting in the production of phenols, solanesol, polysaccharides, proteins, and even alkaloids. These bioactive compounds exhibit beneficial effects on human health. Additionally, the applications of tobacco waste in chemical engineering and energy sectors are centered around the utilization of lignocellulosic compounds and certain fuels. Chemical platform compounds derived from tobacco waste, as well as selected fuel sources, play a significant role in these areas. The rational utilization of tobacco waste represents a promising prospect, particularly in the present era when sustainable development is widely advocated. Moreover, this approach holds significant importance for enhancing energy utilization.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yikuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Xu Li
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Leyuan Han
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chengfei Lu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
2
|
Zheng F, Xie Q, Ren Q, Kong J. Extraction and Purification of Nicotine from Tobacco Rhizomes by Supercritical CO 2. Molecules 2024; 29:1147. [PMID: 38474659 DOI: 10.3390/molecules29051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, in the ongoing development of the tobacco industry, a large amount of tobacco rhizomes is discarded as waste. These wastes are usually disposed of through incineration or burial. However, these tobacco wastes still have some economic value. High-purity nicotine has a promising market outlook as the primary raw material for electronic cigarette liquid. Nicotine is not only found in tobacco leaves but also in the rhizomes of tobacco plants. This study presents a method for treating tobacco waste and extracting high-purity nicotine from it. After mixing the raw material powder and entrainer in specific ratios, as much of the nicotine in tobacco roots can be extracted as possible using supercritical carbon dioxide extraction. The effects of temperature, the ratio of the entrainer, and the volume fraction of ethanol in the entrainer on the nicotine yield in supercritical fluid extraction (SFE) at 25 MPa for 120 min were discussed. By using 90% ethanol (a raw material mass-to-volume ratio of 1:5) as the entrainer, we obtained the highest nicotine yield of 0.49% at 65 °C. Meanwhile, the purity of the crude extract was 61.71%, and after purification, it increased to 97.57%. In this way, we can not only obtain nicotine with market value but also further reduce the harm to the environment caused by tobacco waste disposal.
Collapse
Affiliation(s)
- Fangyuan Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qishan Xie
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qingguang Ren
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Banafi A, Wee SK, Tiong ANT, Kong ZY, Saptoro A, Sunarso J. Modeling of supercritical fluid extraction bed: A Critical Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Nicotiana tabacum Leaf Waste: Morphological Characterization and Chemical-Functional Analysis of Extracts Obtained from Powder Leaves by Using Green Solvents. Molecules 2023; 28:molecules28031396. [PMID: 36771071 PMCID: PMC9920059 DOI: 10.3390/molecules28031396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Tobacco cultivation and industrialization are characterized by the production of trillions of pre-harvest and post-harvest waste biomasses each year with the resulting negative effects on the environment. The leaves of blunt, pre-harvest waste, could be further used to obtain bioactive metabolites, i.e., polyphenols and alkaloids, for its potential cosmetic use. This study was conducted to obtain bio-compounds from pre-harvest tobacco leaf waste (var. Virginia) by applying conventional and green solvents (NaDES). Leaves and ground leaf waste were characterized based on their microscopic features. Conventional solvents, such as water, acetone, ethanol, and non-conventional solvents, such as Natural Deep Eutectic Solvents (NaDES), i.e., sucrose:lactic acid (LAS), frutose:glucose:sucrose (FGS), lactic acid:sucrose:water (SALA), choline chloride:urea (CU), and citric acid: propylene glycol (CAP) were used for bioactive extraction from tobacco waste powder. CU, FGS, and acetone/ethanol had similar behavior for the best extraction of alkaloids (6.37-11.23 mg ACE/g tobacco powder). LAS, FGS, SALA, and CU were more effective in phenolic compound extraction than conventional solvents (18.13-21.98 mg AGE/g tobacco powder). Because of this, LAS and SALA could be used to obtain phenolic-enriched extracts with lower alkaloid content rather than CU and FGS. Extracts of the powder obtained with conventional solvent or CU showed a high level of sugars (47 mg/g tobacco powder) The ABTS antioxidant capacity of tobacco leaf powder was higher in the extracts obtained with CU, FGS, and acetone (SC50 1.6-5 µg GAE/mL) while H2O2 scavenging activity was better in the extracts obtained with LAS, CAP and SALA (SC50 3.8-8.7 µg GAE/mL). Due to the biocompatibility of the NaDES with the components of tobacco leaf waste, the opportunity to apply these extracts directly in antioxidant formulations, such as cosmetics, phytotherapic, and other formulations of topic use seems promising. Furthermore, NaDES constituents, i.e., urea and organic acid can also have beneficial effects on the skin.
Collapse
|
5
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
6
|
Zou X, Bk A, Abu-Izneid T, Aziz A, Devnath P, Rauf A, Mitra S, Emran TB, Mujawah AAH, Lorenzo JM, Mubarak MS, Wilairatana P, Suleria HAR. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomed Pharmacother 2021; 143:112191. [PMID: 34562769 DOI: 10.1016/j.biopha.2021.112191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco is grown in large quantities worldwide as a widely distributed commercial crop. From the harvest of the field to the process into the final product, a series of procedures generate enormous amount of waste materials that are rarely recycled. In recent years, numerous potential bioactive compounds have been isolated from tobacco, and the molecular regulatory mechanisms related to the performance of some functionalities have been identified. This review describes the source of tobacco waste and expounds a large amount of biomass during the tobacco processing, and the necessity of exploring the reuse of tobacco waste. In addition, the review summarizes the bioactive compounds from tobacco that have been discovered so far, and links them to various functions from tobacco extracts, including anti-inflammatory, antitumor, antibacterial, and antioxidant, thus proving the potential value from tobacco waste reuse. In this regard, nornicotine in tobacco is the culprit of many health issues, while the polyphenols and polysaccharides often contribute to the health benefits of tobacco extract. In addition, it is hard to ignore that realization of these functions of tobacco extracts require the involvement of intestinal flora metabolism, which should be considered in the development of new product dosage forms.
Collapse
Affiliation(s)
- Xinda Zou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amrit Bk
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University Al Ain Campus, Unites Arab Emirates
| | - Ahsan Aziz
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Popy Devnath
- Department of Microbiology, Faculty of Sciences, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Adil A H Mujawah
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | | | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Banožić M, Banjari I, Flanjak I, Paštar M, Vladić J, Jokić S. Optimization of MAE for the Separation of Nicotine and Phenolics from Tobacco Waste by Using the Response Surface Methodology Approach. Molecules 2021; 26:4363. [PMID: 34299637 PMCID: PMC8303117 DOI: 10.3390/molecules26144363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
This study intends to valorize by-products of the industrial processing of tobacco to obtain nicotine and phenolics as value-added compounds. Three influential parameters of the microwave-assisted extraction-MAE (temperature, treatment time, and solvent/solid ratio) were studied for the optimization of the extraction protocol for tobacco leaves and three types of waste-scrap, dust, and midrib, respectively. Nicotine was the dominant bioactive compound in all extracts, ranging from 1.512 to 5.480% in leaves, 1.886 to 3.709% in scrap, 2.628 to 4.840% dust, and 0.867 to 1.783% in midrib extracts. Five phenolic compounds were identified and quantified, predominated by chlorogenic acid and rutin. Additionally, total phenol content and antioxidant activity were determined using spectrophotometric assays. Optimization was performed in two aspects: to obtain a maximum extraction yield with minimum nicotine content and to obtain a maximum extraction yield with maximum nicotine content. These findings demonstrate that tobacco waste is a valuable source of bioactive compounds and MAE can be a promising alternative technique to obtain extracts rich in targeted bioactive compounds, especially nicotine.
Collapse
Affiliation(s)
- Marija Banožić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Ines Banjari
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Mate Paštar
- Public Institution RERA S.D. for Coordination and Development of Split-Dalmatia County, Domovinskog rata 2, 21000 Split, Croatia;
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| |
Collapse
|
8
|
Lan T, Yu C, Li R, Ma Z, Xi X, Chu Q. A Simple and Standardized Method for the Determination of Total Solanesol in Potato Leaves and Its Extracts Based on HPLC-MS. J AOAC Int 2021; 104:479-484. [PMID: 33956983 DOI: 10.1093/jaoacint/qsaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Solanesol is an important pharmaceutical intermediate raw material, mainly used to synthesize coenzyme Q10, vitamin K2. It can be found prominent in potato stems and leaves. But now potato stems and leaves are always abandoned or discarded as they are not suitable for use as feed in aquaculture or other purposes. These agricultural waste resources can be reutilized as the corresponding extracts. OBJECTIVE To develop a simple and standardized method for the detection of total solanesol in potato leaves and its extracts. METHODS N-hexane was chosen as the extraction solvent for three times in the solanesol extraction from potato leaves. HPLC-MS was used for the detection. RESULTS The LOQ was 0.3 µg/g and the linear range was from 0.1 to 50 µg/mL. The precision and stability were evaluated by the relative standard deviations (RSDs) of three samples (potato leaves, Extract-1, Extract-2) for interday and intraday. The accuracy of the method was evaluated by the recoveries of three different spiked concentrations of solanesol for three samples, and results showed it ranged from 80.7% to 99.0% with RSDs less than 8.7%. CONCLUSIONS The method we established can provide a simple and standardized way for the extraction and detection of total solanesol. HIGHLIGHTS The work laid a foundation for the resource reutilization of potato stem and leaf.
Collapse
Affiliation(s)
- Tao Lan
- China National Institute of Standardization, Beijing 100191, PR China
| | - Congcong Yu
- Hebei Guanzhuo Detection Technology Stock CO., Ltd, Shijiazhuang 050000, China
- Innovation Center of Food Quality and Safety Testing Technology of Hebei Province, Hangzhou, Zhejiang Province 310018, China
| | - Ren Li
- China National Institute of Standardization, Beijing 100191, PR China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xingjun Xi
- China National Institute of Standardization, Beijing 100191, PR China
| | - Qiao Chu
- China National Institute of Standardization, Beijing 100191, PR China
| |
Collapse
|
9
|
Sequence of supercritical CO2 extraction and subcritical H2O extraction for the separation of tobacco waste into lipophilic and hydrophilic fractions. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
High Voltage Electric Discharge for Recovery of Chlorogenic Acid from Tobacco Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13084481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three fractions of tobacco waste (scrap, dust and midrib) were subjected to a high voltage electric discharge (HVED) assisted extraction procedure under different experimental conditions: solvent:solid ratio (300, 500, 700 mL/g), frequency (40, 70, 100 Hz) and treatment time (15, 30, 45 min), in order to study the influence of these conditions on the content of chlorogenic acid. The content of chlorogenic acid ranged from 1.54 to 3.66 mg/100 g for scrap, from 1.90 to 2.97 mg/100 g for dust, and from 2.30 to 3.38 mg/100 g for midrib extract, showing a strong dependence on the applied process parameters. The temperature change and the change in pH and electrical conductivity of the extracts after high voltage discharge treatment were also observed. The studied process parameters showed a statistically significant effect on the chemical and physical properties of the extracts from tobacco waste as well as on the content of chlorogenic acid, indicating the potential of HVED assisted processes in the separation of chlorogenic acid from tobacco industry waste. Multiple regression analysis was used to fit the results for the chlorogenic acid to a second order polynomial equation and the optimum conditions were determined.
Collapse
|
11
|
Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Secondary Bioactive Metabolites from Plant-Derived Food Byproducts through Ecopharmacognostic Approaches: A Bound Phenolic Case Study. PLANTS 2020; 9:plants9091060. [PMID: 32825034 PMCID: PMC7569828 DOI: 10.3390/plants9091060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
The climate emergency and the risks to biodiversity that the planet is facing nowadays, have made the management of food resources increasingly complex but potentially interesting. According to FAO, one-third of the edible parts of food produced throughout the whole food supply chain gets lost or wasted globally every year. At the same time, demographic growth makes it necessary to change course toward sustainable economic development in order to satisfy market demands. The European Union supported the idea of a Circular Economy from 2015 and arranged annual Action Plans toward a greener, climate-neutral economy. Following the biorefinery concept, food waste becomes byproducts that can be recovered and exploited as high added-value materials for industrial applications. The use of sustainable extraction processes to manage food byproducts is a task that research has to support through the development of low environmental impact strategies. This review, therefore, aims to take stock of the possibilities of extracting molecules from food waste biomass following ecopharmacognostic approaches inspired by green chemistry guidelines. In particular, the use of innovative hybrid techniques to maximize yields and minimize the environmental impact of processes is reviewed, with a focus on bound phenolic extractions.
Collapse
|
13
|
Dai JY, Yang Y, Dong YS, Xiu ZL. Solid-state Co-cultivation of Bacillus subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus Using Tobacco Waste Residue. Appl Biochem Biotechnol 2020; 190:1092-1105. [PMID: 31701376 DOI: 10.1007/s12010-019-03146-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/12/2019] [Indexed: 11/25/2022]
Abstract
Agro-industrial wastes are excellent sources for solid-state culture to produce spores of microorganisms, whereas microbial co-cultivation is not fully exploited in solid-state culture. In this work, the co-cultivation of different strains of Bacillus subtilis, and three microbes of B. subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus was studied using a solid medium only composed of water and tobacco waste residue after extraction of nicotine and solanesol. The influences of matrix thickness, moister, temperature, and ratio of three microbes in seed on the cell growth and spore formation were studied. The maximum viable cells and spores of each microbe reached 1013 cfu/g when cultured alone at 30 °C in a medium containing 58.3% moisture. Co-cultivation of microbes stimulated cell growth and maximum viable cells of each microbe reached 1014 cfu/g, while spore production was inhibited and decreased to 1011 cfu/g. With decreasing amount of P. lilacinus in seed, total amount of spores was increased. When the seed with a ratio of 6:3:1 for B. mucilaginosus, B. subtilis, and P. lilacinus was inoculated, the total amount of spores reached 4.14 × 1012 cfu/g and the ratio was 1.7:0.7:1. These results indicate the potential of solid-state cultivation in the high production of spores from tobacco waste residue at low cost.
Collapse
Affiliation(s)
- Jian-Ying Dai
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
14
|
Yan T, Zhao G, Wu F, Liu J, Zhang S. Research Progress on Solanesol Extraction from Tobacco Wastes. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723113619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solanesol has antibacterial, anticancer, anti-inflammatory and antiulcer biological activities, and is a key intermediate in the synthesis of coenzyme Q10, vitamin K2, and the anticancer synergist N-solanesyl-N,N'-bis(3,4-dimethoxy-benzyl)ethylenediamine (SDB) and other ubiquinone drugs. Due to its unique chemical structure, the chemical synthesis of solanesol is difficult, so solanesol is currently mainly isolated from solanaceous plants. Tobacco (Nicotiana tabacum) has the highest content of solanesol compared to other solanaceous plants. Currently, the research on the extraction of solanesol from tobacco focuses on its extraction and purification. This article reviews the extraction methods, saponification, separation and purification methods of solanesol, as well as the research progress on tobacco solanesol, in China and abroad in recent years. Studies show that the organic solvent extraction method is time-consuming and has a low extraction rate. Modern technology- assisted extraction methods, such as ultrasound-assisted extraction, microwave-assisted extraction, and supercritical carbon dioxide (CO2) extraction not only can improve the extraction rate but also can effectively shorten the extraction time. The separation and purification of solanesol from the extracting solution are critical steps to meet the purity requirements of synthetic drugs, and are also key in limiting the large-scale industrial production of high-purity solanesol. Molecular Imprinting Technology (MIT) has the advantages of small investment, simple operation and ease of large scale production compared to chromatographic methods. Solanesol separated by MIT can meet the requirements for synthesizing coenzyme Q10. Nowadays, the synthesis of molecularly-imprinted solanesol polymers with better adsorption efficiency is one of the important directions in the future research of solanesol purification.
Collapse
Affiliation(s)
- Tiejun Yan
- China Tobacco Hubei Industrial Limited Liability Corporation, Wuhan, Hubei 430040, China
| | - Guojie Zhao
- College of Chemical Engineering, Hebei University of Technology, Tianjin 300130, Tianjin, China
| | - Fengguang Wu
- China Tobacco Hubei Industrial Limited Liability Corporation, Wuhan, Hubei 430040, China
| | - Jialei Liu
- Beijing Key Laboratory of Thermal Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaofeng Zhang
- College of Chemical Engineering, Hebei University of Technology, Tianjin 300130, Tianjin, China
| |
Collapse
|
15
|
Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09206-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Yan N, Liu Y, Liu L, Du Y, Liu X, Zhang H, Zhang Z. Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods. Biomolecules 2019; 9:biom9080334. [PMID: 31382471 PMCID: PMC6722674 DOI: 10.3390/biom9080334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Solanesol, an aliphatic terpene alcohol composed of nine isoprene units, is mainly found in solanaceous plants. Particularly, tobacco (Nicotiana tabacum), belonging to the Solanaceae family, is the richest plant source of solanesol, and its leaves have been regarded as the ideal material for solanesol extraction. Since the discovery of solanesol in tobacco, significant progress has been achieved in research on solanesol’s bioactivities, medicinal value, accumulation, extraction technology, and determination methods. Solanesol possesses strong free radical absorption ability and antioxidant activity owing to the presence of several non-conjugated double bonds. Notably, solanesol’s anti-inflammatory, neuroprotective, and antimicrobial activities have been previously demonstrated. Solanesol is a key intermediate in the synthesis of coenzyme Q10, vitamin K2, and the anticancer agent synergiser N-solanesyl-N,N′-bis(3,4-dimethoxybenzyl) ethylenediamine. Other applications of solanesol include solanesol derivative micelles for hydrophobic drug delivery, solanesol-derived scaffolds for bioactive peptide multimerization, and solanesol-anchored DNA for mediating vesicle fusion. Solanesol accumulation in plants is influenced by genetic and environmental factors, including biotic stresses caused by pathogen infections, temperature, illumination, and agronomic measures. Seven extraction technologies and seven determination methods of solanesol are also systematically summarized in the present review. This review can serve as a reference for solanesol’s comprehensive application.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Linqing Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
17
|
Arab M, Bahramian B, Schindeler A, Fathi A, Valtchev P, McConchie R, Dehghani F. A benign process for the recovery of solanesol from tomato leaf waste. Heliyon 2019; 5:e01523. [PMID: 31049434 PMCID: PMC6479160 DOI: 10.1016/j.heliyon.2019.e01523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/26/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Solanesol, the precursor for the synthesis of coenzyme Q10, is currently recovered from tobacco leaves by conventional extraction techniques that require multiple purification steps and a large amount of organic solvents. We recently identified tomato leaves as an alternative source of solanesol and hypothesized that a high-pressure CO2 extraction could be used as a clean extraction process. The effect of CO2 pressure and temperature on the extraction of solanesol was determined to achieve high yield and purity. It was found that solanesol could be extracted efficiently by subcritical CO2 at 25 °C from tomato leaves. The extract contained 40% solanesol and other active compounds such as vitamin K1. A higher level of purity of 93% was achieved using a secondary purification step. Different conventional methods for solanesol extraction was compared to determine the most efficient technique for production of solanesol from tomato leaf. The highest yield of solanesol was achieved at nearly 1% dry weight with using subcritical CO2, which was superior to conventional methods.
Collapse
Affiliation(s)
- Marjan Arab
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Science, Sydney, 2015, NSW, Australia
| | - Bahareh Bahramian
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- The University of Sydney, Centre for Excellence in Advanced Food Enginomics, Sydney, 2006, NSW, Australia
| | - Aaron Schindeler
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, 2145, NSW, Australia
| | - Ali Fathi
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
| | - Peter Valtchev
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- The University of Sydney, Centre for Excellence in Advanced Food Enginomics, Sydney, 2006, NSW, Australia
| | - Robyn McConchie
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Science, Sydney, 2015, NSW, Australia
- The University of Sydney, Centre for Excellence in Advanced Food Enginomics, Sydney, 2006, NSW, Australia
| | - Fariba Dehghani
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, 2006, NSW, Australia
- The University of Sydney, Centre for Excellence in Advanced Food Enginomics, Sydney, 2006, NSW, Australia
| |
Collapse
|