1
|
Ge S, Khachemoune A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. INT J LOW EXTR WOUND 2024; 23:191-204. [PMID: 34779294 DOI: 10.1177/15347346211054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wound healing is an important topic in modern medicine across many disciplines. Healing of all cutaneous wounds, whether accidentally sustained or intentionally created, requires the common yet complex set of interactions between the immune, circulatory, nervous, endocrine, and integumentary systems. Deficits in any of these systems or the molecular factors that mediate their communications can contribute to impaired healing of cutaneous wounds. While the stages of wound repair, angiogenesis, growth factors, and cytokines involved have been extensively studied, the role of the cutaneous nervous system in wound healing has not been well outlined. We have provided a basic overview of cutaneous innervation and wound repair for the dermatologic surgeon by outlining the normal cutaneous nervous anatomy and function and discussing the most important neuropeptides that mediate the wound healing process.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA
- SUNY Downstate, Brooklyn, NY USA
| |
Collapse
|
2
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
3
|
Jiang B, Ren P, He C, Wang M, Murtada SI, Chen Y, Ramachandra AB, Li G, Qin L, Assi R, Schwartz MA, Humphrey JD, Tellides G. Short-Term Disruption of TGFβ Signaling in Adult Mice Renders the Aorta Vulnerable to Hypertension-Induced Dissection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590484. [PMID: 38712205 PMCID: PMC11071440 DOI: 10.1101/2024.04.22.590484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, the common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice 1 week after disruption of TGFβ signaling in smooth muscle cells. Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes that was rescued by hydralazine; results were similar with angiotensin II. Changes in regulatory contractile molecule expression were not of pathological significance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically type XVIII, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure cause dissection in aortas rendered vulnerable by inhibition of TGFβ-driven extracellular matrix production by smooth muscle cells. A corollary is that medial fibrosis, a frequent feature of medial degeneration, may afford some protection against aortic dissection.
Collapse
|
4
|
Ikegami K. Circadian rhythm of intraocular pressure. J Physiol Sci 2024; 74:14. [PMID: 38431563 PMCID: PMC10908160 DOI: 10.1186/s12576-024-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the β1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Liao Q, Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. The immunotoxicity mechanism of hemocytes in Chlamys farreri incubated with noradrenaline and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide alone or in combination. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109278. [PMID: 38072136 DOI: 10.1016/j.fsi.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.
Collapse
Affiliation(s)
- Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
6
|
Baumer Y, Pita MA, Turner BS, Baez AS, Ortiz-Whittingham LR, Gutierrez-Huerta CA, Neally SJ, Farmer N, Mitchell VM, Collins BS, Powell-Wiley TM. Neighborhood socioeconomic deprivation and individual-level socioeconomic status are associated with dopamine-mediated changes to monocyte subset CCR2 expression via a cAMP-dependent pathway. Brain Behav Immun Health 2023; 30:100640. [PMID: 37251548 PMCID: PMC10220312 DOI: 10.1016/j.bbih.2023.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Social determinants of health (SDoH) include socioeconomic, environmental, and psychological factors that impact health. Neighborhood socioeconomic deprivation (NSD) and low individual-level socioeconomic status (SES) are SDoH that associate with incident heart failure, stroke, and cardiovascular mortality, but the underlying biological mechanisms are not well understood. Previous research has demonstrated an association between NSD, in particular, and key components of the neural-hematopoietic-axis including amygdala activity as a marker of chronic stress, bone marrow activity, and arterial inflammation. Our study further characterizes the role of NSD and SES as potential sources of chronic stress related to downstream immunological factors in this stress-associated biologic pathway. We investigated how NSD, SES, and catecholamine levels (as proxy for sympathetic nervous system activation) may influence monocytes which are known to play a significant role in atherogenesis. First, in an ex vivo approach, we treated healthy donor monocytes with biobanked serum from a community cohort of African Americans at risk for CVD. Subsequently, the treated monocytes were subjected to flow cytometry for characterization of monocyte subsets and receptor expression. We determined that NSD and serum catecholamines (namely dopamine [DA] and norepinephrine [NE]) associated with monocyte C-C chemokine receptor type 2 (CCR2) expression (p < 0.05), a receptor known to facilitate recruitment of monocytes towards arterial plaques. Additionally, NSD associated with catecholamine levels, especially DA in individuals of low SES. To further explore the potential role of NSD and the effects of catecholamines on monocytes, monocytes were treated in vitro with epinephrine [EPI], NE, or DA. Only DA increased CCR2 expression in a dose-dependent manner (p < 0.01), especially on non-classical monocytes (NCM). Furthermore, linear regression analysis between D2-like receptor surface expression and surface CCR2 expression suggested D2-like receptor signaling in NCM. Indicative of D2-signaling, cAMP levels were found to be lower in DA-treated monocytes compared to untreated controls (control 29.78 pmol/ml vs DA 22.97 pmol/ml; p = 0.038) and the impact of DA on NCM CCR2 expression was abrogated by co-treatment with 8-CPT, a cAMP analog. Furthermore, Filamin A (FLNA), a prominent actin-crosslinking protein, that is known to regulate CCR2 recycling, significantly decreased in DA-treated NCM (p < 0.05), indicating a reduction of CCR2 recycling. Overall, we provide a novel immunological mechanism, driven by DA signaling and CCR2, for how NSD may contribute to atherogenesis. Future studies should investigate the importance of DA in CVD development and progression in populations disproportionately experiencing chronic stress due to SDoH.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam J. Neally
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Romana-Souza B, Chen L, DiPietro LA. Repeated stress-induced crosstalk between the sympathetic nervous system and mast cells contributes to delayed cutaneous wound healing in mice. J Neuroimmunol 2023; 379:578104. [PMID: 37196594 DOI: 10.1016/j.jneuroim.2023.578104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
The study identifies a link between the neuroimmune interaction and the impairment of wound healing induced by repeated stress. Stress increased mast cell mobilization and degranulation, levels of IL-10, and sympathetic reinnervation in mouse wounds. In contrast to mast cells, macrophage infiltration into wounds was significantly delayed in stressed mice. Chemical sympathectomy and the blockade of mast cell degranulation reversed the effect of stress on skin wound healing in vivo. In vitro, high epinephrine levels stimulated mast cell degranulation and IL-10 release. In conclusion, catecholamines released by the sympathetic nervous system stimulate mast cells to secrete anti-inflammatory cytokines that impair inflammatory cell mobilization, leading to a delay in the resolution of wound healing under stress conditions.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
9
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
10
|
Ikegami K, Masubuchi S. Suppression of trabecular meshwork phagocytosis by norepinephrine is associated with nocturnal increase in intraocular pressure in mice. Commun Biol 2022; 5:339. [PMID: 35396348 PMCID: PMC8993819 DOI: 10.1038/s42003-022-03295-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Intraocular pressure (IOP) is an important factor in glaucoma development, which involves aqueous humor (AH) dynamics, with inflow from the ciliary body and outflow through the trabecular meshwork (TM). IOP has a circadian rhythm entrained by sympathetic noradrenaline (NE) or adrenal glucocorticoids (GCs). Herein, we investigated the involvement of GC/NE in AH outflow. Pharmacological prevention of inflow/outflow in mice indicated a diurnal outflow increase, which was related to TM phagocytosis. NE showed a non-self-sustained inhibition in phagocytosis of immortalized human TM cells, but not GC. The pharmacological and reverse genetic approaches identified β1-adrenergic receptor (AR)-mediated exchange proteins directly activated by cyclic adenosine monophosphate (EPAC)-SHIP1 signal activation by ablation of phosphatidylinositol triphosphate, regulating phagocytic cup formation. Furthermore, we revealed the phagocytosis involvement in the β1-AR-EPAC-SHIP1-mediated nocturnal IOP rise in mice. These suggest that TM phagocytosis suppression by NE can regulate IOP rhythm through AH outflow. This discovery may aid glaucoma management.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
11
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
12
|
Peterson AL, Siddiqui G, Sloan EK, Creek DJ. β-Adrenoceptor regulation of metabolism in U937 derived macrophages. Mol Omics 2021; 17:583-595. [PMID: 34105576 DOI: 10.1039/d1mo00057h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrophages have important roles in the immune system including clearing pathogens and wound healing. Metabolic phenotypes in macrophages have been associated with functional phenotypes, where pro-inflammatory macrophages have an increased rate of glycolysis and anti-inflammatory macrophages primarily use oxidative phosphorylation. β-adrenoceptor (βAR) signalling in macrophages has been implicated in disease states such as cancer, atherosclerosis and rheumatoid arthritis. The impact of βAR signalling on macrophage metabolism has not been defined. Using metabolomics and proteomics, we describe the impact of βAR signalling on macrophages treated with isoprenaline. We found that βAR signalling alters proteins involved in cytoskeletal rearrangement and redox homeostasis of the cell. We showed that βAR signalling in macrophages shifts glucose metabolism from glycolysis towards the tricarboxylic acid cycle and pentose phosphate pathways. We also show that βAR signalling perturbs purine metabolism by accumulating adenylate and guanylate pools. Taken together, these results indicate that βAR signalling shifts metabolism to support redox processes and upregulates proteins involved in cytoskeletal changes, which may contribute to βAR effects on macrophage function.
Collapse
Affiliation(s)
- Amanda L Peterson
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
13
|
Tong R, Pan S, Pan L, Zhang L. Effects of biogenic amines on the immune response and immunoregulation mechanism in hemocytes of Litopenaeus vannamei in vitro. Mol Immunol 2020; 128:1-9. [DOI: 10.1016/j.molimm.2020.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
|
14
|
Chakroborty D, Goswami S, Basu S, Sarkar C. Catecholamines in the regulation of angiogenesis in cutaneous wound healing. FASEB J 2020; 34:14093-14102. [PMID: 32949437 DOI: 10.1096/fj.202001701r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Angiogenesis involves the formation of new blood vessels from preexisting ones, and it is an essential step during cutaneous wound healing, which supports cells at the wound site with nutrition and oxygen. Impaired angiogenesis in the wound tissues results in delayed wound closure and healing. Among the regulators of angiogenesis, the role of catecholamines (epinephrine, norepinephrine, and dopamine) is of interest due to their diverse roles in the process of wound healing. While both norepinephrine and epinephrine mostly inhibit the angiogenic process in cutaneous wounds, dopamine, the other member of the catecholamine family, has interesting and contradictory roles in the regulation of angiogenesis in the wound beds, depending on the type of dopamine receptor involved. The stimulation of dopamine D2 receptors negatively regulates the angiogenic process in normal dermal wounds and thereby delays healing, whereas the stimulation of dopamine D1 receptors promotes angiogenesis and expedites healing in diabetic wounds. Importantly, catecholamines also play important roles in other pathological conditions, and specific agonists and antagonists of catecholamines are available for the treatment of some disorders. Therefore, such drugs may be utilized for the management of angiogenesis to promote the healing of dermal wounds. This review provides a broad overview of the angiogenic process during cutaneous wound healing and the regulatory roles played by catecholamines during the process.
Collapse
Affiliation(s)
| | - Sandeep Goswami
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, Huang K, Wu J, Wei X, Lei Q. Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol 2020; 115:56. [DOI: 10.1007/s00395-020-0813-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
|
16
|
Steinberger KJ, Bailey MT, Gross AC, Sumner LA, Voorhees JL, Crouser N, Curry JM, Wang Y, DeVries AC, Marsh CB, Glaser R, Yang EV, Eubank TD. Stress-induced Norepinephrine Downregulates CCL2 in Macrophages to Suppress Tumor Growth in a Model of Malignant Melanoma. Cancer Prev Res (Phila) 2020; 13:747-760. [PMID: 32518084 DOI: 10.1158/1940-6207.capr-19-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022]
Abstract
Psychological stressors have been implicated in the progression of various tumor types. We investigated a role for stress in tumor immune cell chemotaxis in the B16F10 mouse model of malignant melanoma. We exposed female mice to 6-hour periods of restraint stress (RST) for 7 days, then implanted B16F10 malignant melanoma tumor cells and continued the RST paradigm for 14 additional days. We determined serum corticosterone and liver catecholamine concentrations in these mice. To evaluate the tumor microenvironment, we performed IHC and examined cytokine expression profiles using ELISA-based analysis of tumor homogenates. We found that tumors in mice subjected to RST grew significantly slower, had reduced tumor C-C motif ligand 2 (CCL2), and contained fewer F4/80-positive macrophages than tumors from unstressed mice. We observed a concomitant increase in norepinephrine among the RST mice. An in vitro assay confirmed that norepinephrine downregulates CCL2 production in both mouse and human macrophages, and that pretreatment with the pan-β-adrenergic receptor inhibitor nadolol rescues this activity. Furthermore, RST had no effect on tumor growth in transgenic CCL2-deficient mice. This study suggests that stress reduces malignant melanoma by reducing recruitment of tumor-promoting macrophages by CCL2.
Collapse
Affiliation(s)
- Kayla J Steinberger
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Michael T Bailey
- Section of Oral Biology, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Amy C Gross
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Laura A Sumner
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Jeffrey L Voorhees
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Nisha Crouser
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer M Curry
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Yijie Wang
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - A Courtney DeVries
- West Virginia University Cancer Institute, Morgantown, West Virginia.,Departments of Medicine & Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Clay B Marsh
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | | | - Eric V Yang
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio. .,Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio
| | - Timothy D Eubank
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia. .,West Virginia University Cancer Institute, Morgantown, West Virginia
| |
Collapse
|
17
|
Mondelli V, Vernon AC. From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin Exp Immunol 2020; 197:319-328. [PMID: 31319436 DOI: 10.1111/cei.13351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Increased peripheral levels of cytokines and central microglial activation have been reported in patients with psychiatric disorders. The degree of both innate and adaptive immune activation is also associated with worse clinical outcomes and poor treatment response in these patients. Understanding the possible causes and mechanisms leading to this immune activation is therefore an important and necessary step for the development of novel and more effective treatment strategies for these patients. In this work, we review the evidence of literature pointing to childhood trauma as one of the main causes behind the increased immune activation in patients with psychiatric disorders. We then discuss the potential mechanisms linking the experience of early life adversity (ELA) to innate immune activation. Specifically, we focus on the innervation of the bone marrow from sympathetic nervous system (SNS) as a new and emerging mechanism that has the potential to bridge the observed increases in both central and peripheral inflammatory markers in patients exposed to ELA. Experimental studies in laboratory rodents suggest that SNS activation following early life stress exposure causes a shift in the profile of innate immune cells, with an increase in proinflammatory monocytes. In turn, these cells traffic to the brain and influence neural circuitry, which manifests as increased anxiety and other relevant behavioural phenotypes. To date, however, very few studies have been conducted to explore this candidate mechanism in humans. Future research is also needed to clarify whether these pathways could be partially reversible to improve prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- V Mondelli
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,NIHR Biomedical Research Centre South London and Maudsley NHS Trust, London, UK
| | - A C Vernon
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
18
|
Noble BT, Brennan FH, Popovich PG. The spleen as a neuroimmune interface after spinal cord injury. J Neuroimmunol 2018; 321:1-11. [PMID: 29957379 DOI: 10.1016/j.jneuroim.2018.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023]
Abstract
Traumatic spinal cord injury (SCI) causes widespread damage to neurons, glia and endothelia located throughout the spinal parenchyma. In response to the injury, resident and blood-derived leukocytes orchestrate an intraspinal inflammatory response that propagates secondary neuropathology and also promotes tissue repair. SCI also negatively affects autonomic control over peripheral immune organs, notably the spleen. The spleen is the largest secondary lymphoid organ in mammals, with major roles in blood filtration and host defense. Splenic function is carefully regulated by neuroendocrine mechanisms that ensure that the immune responses to infection or injury are proportionate to the initiating stimulus, and can be terminated when the stimulus is cleared. After SCI, control over the viscera, including endocrine and lymphoid tissues is lost due to damage to spinal autonomic (sympathetic) circuitry. This review begins by examining the normal structure and function of the spleen including patterns of innervation and the role played by the nervous system in regulating spleen function. We then describe how after SCI, loss of proper neural control over splenic function leads to systems-wide neuropathology, immune suppression and autoimmunity. We conclude by discussing opportunities for targeting the spleen to restore immune homeostasis, reduce morbidity and mortality, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Neuroscience Graduate Studies Program, Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus 43210, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA.
| |
Collapse
|
19
|
Roewe J, Higer M, Riehl DR, Gericke A, Radsak MP, Bosmann M. Neuroendocrine Modulation of IL-27 in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:2503-2514. [PMID: 28835457 DOI: 10.4049/jimmunol.1700687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Heterodimeric IL-27 (p28/EBV-induced gene 3) is an important member of the IL-6/IL-12 cytokine family. IL-27 is predominantly synthesized by mononuclear phagocytes and exerts immunoregulatory functional activities on lymphocytic and nonlymphocytic cells during infection, autoimmunity or neoplasms. There is a great body of evidence on the bidirectional interplay between the autonomic nervous system and immune responses during inflammatory disorders, but so far IL-27 has not been defined as a part of these multifaceted neuroendocrine networks. In this study, we describe the role of catecholamines (as mediators of the sympathetic nervous system) related to IL-27 production in primary mouse macrophages. Noradrenaline and adrenaline dose-dependently suppressed the release of IL-27p28 in LPS/TLR4-activated macrophages, which was independent of α1 adrenoceptors. Instead, β2 adrenoceptor activation was responsible for mediating gene silencing of IL-27p28 and EBV-induced gene 3. The β2 adrenoceptor agonists formoterol and salbutamol mediated suppression of IL-27p28 production, when triggered by zymosan/TLR2, LPS/TLR4, or R848/TLR7/8 activation, but selectively spared the polyinosinic-polycytidylic acid/TLR3 pathway. Mechanistically, β2 adrenergic signaling reinforced an autocrine feedback loop of macrophage-derived IL-10 and this synergized with inhibition of the JNK pathway for limiting IL-27p28. The JNK inhibitors SP600125 and AEG3482 strongly decreased intracellular IL-27p28 in F4/80+CD11b+ macrophages. In endotoxic shock of C57BL/6J mice, pharmacologic activation of β2 adrenoceptors improved the severity of shock, including hypothermia and decreased circulating IL-27p28. Conversely, IL-27p28 was 2.7-fold increased by removal of the catecholamine-producing adrenal glands prior to endotoxic shock. These data suggest a novel role of the sympathetic neuroendocrine system for the modulation of IL-27-dependent acute inflammation.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Higer
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dennis R Riehl
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; and
| | - Markus P Radsak
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
20
|
Gozal D, Farré R, Nieto FJ. Obstructive sleep apnea and cancer: Epidemiologic links and theoretical biological constructs. Sleep Med Rev 2015; 27:43-55. [PMID: 26447849 DOI: 10.1016/j.smrv.2015.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
Sleep disorders have emerged as highly prevalent conditions in the last 50-75 y. Along with improved understanding of such disorders, the realization that perturbations in sleep architecture and continuity may initiate, exacerbate or modulate the phenotypic expression of multiple diseases including cancer has gained increased attention. Furthermore, the intermittent hypoxia that is attendant to sleep disordered breathing, has recently been implicated in increased incidence and more adverse prognosis of cancer. The unifying conceptual framework linking these associations proposes that increased sympathetic activity and/or alterations in immune function, particularly affecting innate immune cellular populations, underlie the deleterious effects of sleep disorders on tumor biology. In this review, the epidemiological evidence linking disrupted sleep and intermittent hypoxia to oncological outcomes, and the potential biological underpinnings of such associations as illustrated by experimental murine models will be critically appraised. The overarching conclusion appears supportive in the formulation of an hypothetical framework, in which fragmented sleep and intermittent hypoxia may promote changes in multiple signalosomes and transcription factors that can not only initiate malignant transformation, but will also alter the tumor microenvironment, disrupt immunosurveillance, and thus hasten tumor proliferation and increase local and metastatic invasion. Future bench-based experimental studies as well as carefully conducted and controlled clinical epidemiological studies appear justified for further exploration of these hypotheses.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - F Javier Nieto
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
21
|
Li M, Yao W, Li S, Xi J. Norepinephrine induces the expression of interleukin-6 via β-adrenoreceptor-NAD(P)H oxidase system -NF-κB dependent signal pathway in U937 macrophages. Biochem Biophys Res Commun 2015; 460:1029-34. [DOI: 10.1016/j.bbrc.2015.02.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
22
|
Li M, Yang X, Zhuang C, Cao Z, Ren L, Xiu C, Li Y, Zhu Y. NE strengthens the immunosuppression induced by AlCl₃ through β₂-AR/cAMP pathway in cultured rat peritoneal macrophages. Biol Trace Elem Res 2015; 164:234-41. [PMID: 25556934 DOI: 10.1007/s12011-014-0217-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023]
Abstract
To investigate the effect of noradrenaline (NE) on the immunosuppression induced by aluminum trichloride (AlCl3), the peritoneal macrophages were cultured with RPMI-1640 medium containing 0.97 mM AlCl3 (1/10 IC50). NE was added to the medium at the final concentrations of 0 (control group, N-C), 0.1 (low-dose group, N-L), 1 (mid-dose group, N-M), and 10 (high-dose group, N-H) nM, respectively. No addition of both AlCl3 and NE serviced as blank group (D-C). Chemotaxis, adhesion, phagocytosis, tumor necrosis factor α (TNF-α) secretion, cyclic adenosine monophosphate (cAMP) content, β2 adrenergic receptors (β2-AR) density, and messenger RNA (mRNA) expression of macrophages were detected. The results showed that AlCl3 reduced the chemotaxis, adhesion, phagocytosis, and TNF-α secretion and increased the cAMP content, β2-AR density, and mRNA expression of peritoneal macrophages. Meanwhile, the chemotaxis, adhesion, phagocytosis, TNF-α secretion, β2-AR density, and mRNA expression were reduced while the cAMP content was increased in NE-treated groups than those in N-C group. The results indicated that NE strengthens the immunosuppression induced by AlCl3 in cultured rat peritoneal macrophages through the β2-AR/cAMP pathway.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Aluminum Chloride
- Aluminum Compounds/pharmacology
- Animals
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/immunology
- Chlorides/pharmacology
- Cyclic AMP/immunology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/immunology
- Immune Tolerance/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Norepinephrine/pharmacology
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Miao Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Romana-Souza B, Nascimento AP, Brum PC, Monte-Alto-Costa A. Deletion of the α2A/α2C-adrenoceptors accelerates cutaneous wound healing in mice. Int J Exp Pathol 2014; 95:330-41. [PMID: 25186490 DOI: 10.1111/iep.12093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/02/2014] [Indexed: 12/27/2022] Open
Abstract
The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A/α2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A/α2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A/α2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A/α2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A/α2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A/α2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A/α2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A/α2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A/α2C-adrenoceptor deletion accelerates cutaneous wound healing in mice.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
24
|
Rafatian N, Westcott KV, White RA, Leenen FHH. Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. Am J Physiol Regul Integr Comp Physiol 2014; 307:R879-87. [PMID: 25100076 DOI: 10.1152/ajpregu.00075.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After myocardial infarction (post-MI), inflammation and apoptosis contribute to progressive cardiac remodeling and dysfunction. Cardiac mineralocorticoid receptor (MR) and β-adrenergic signaling promote apoptosis and inflammation. Post-MI, MR activation in the brain contributes to sympathetic hyperactivity and an increase in cardiac aldosterone. In the present study, we assessed the time course of macrophage infiltration and apoptosis in the heart as detected by both terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and active caspase-3 immunostaining in both myocytes and nonmyocytes, as well as the effects of central MR blockade by intracerebroventricular infusion of eplerenone at 5 μg/day on peak changes in macrophage infiltration and apoptosis post-MI. Macrophage numbers were markedly increased in the infarct and peri-infarct zones and to a minor extent in the noninfarct part of the left ventricle at 10 days post-MI and decreased over the 3-mo study period. Apoptosis of both myocytes and nonmyocytes was clearly apparent in the infarct and peri-infarct areas at 10 days post-MI. For TUNEL, the increases persisted at 4 and 12 wk, but the number of active caspase-3-positive cells markedly decreased. Central MR blockade significantly decreased CD80-positive proinflammatory M1 macrophages and increased CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade also reduced apoptosis of myocytes by 40-50% in the peri-infarct and to a lesser extent of nonmyocytes in the peri-infarct and infarct zones. These findings indicate that MR activation in the brain enhances apoptosis both in myocytes and nonmyocytes in the peri-infarct and infarct area post-MI and contributes to the inflammatory response.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine V Westcott
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roselyn A White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Romana-Souza B, Assis de Brito TL, Pereira GR, Monte-Alto-Costa A. Gonadal hormones differently modulate cutaneous wound healing of chronically stressed mice. Brain Behav Immun 2014; 36:101-10. [PMID: 24157428 DOI: 10.1016/j.bbi.2013.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022] Open
Abstract
Gonadal hormones influence physiological responses to stress and cutaneous wound healing. The aim of this study was to investigate the role of gonadal hormones on cutaneous wound healing in chronically stressed mice. Male and female mice were gonadectomized, and after 25 days, they were spun daily at 115 rpm for 15 min every hour until euthanasia. Twenty-eight days after the gonadectomy, an excisional lesion was created. The animals were killed 7 or 14 days after wounding, and the lesions were collected. Myofibroblast density, macrophage number, catecholamine level, collagen deposition, and blood vessel number were evaluated. In the intact and gonadectomized groups, stress increased the plasma catecholamine levels in both genders. In intact groups, stress impaired wound contraction and re-epithelialization and increased the macrophage number in males but not in females. In addition, stress compromised myofibroblastic differentiation and blood vessel formation and decreased collagen deposition in males but not in females. In contrast to intact mice, wound healing in ovariectomized female mice was affected by stress, while wound healing in castrated male mice was not. In conclusion, gender differences contribute to the cutaneous wound healing of chronically stressed mice. In addition, androgens contribute to the stress-induced impairment of the healing of cutaneous wounds but estrogens inhibit it.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Animal Biology, Rural Federal University of Rio de Janeiro, Seropédica, Brazil; Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Gabriela R Pereira
- Department of Animal Biology, Rural Federal University of Rio de Janeiro, Seropédica, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
da Silva Rossato J, Krause M, Fernandes AJM, Fernandes JR, Seibt IL, Rech A, Homem de Bittencourt PI. Role of alpha- and beta-adrenoreceptors in rat monocyte/macrophage function at rest and acute exercise. J Physiol Biochem 2014; 70:363-74. [DOI: 10.1007/s13105-013-0310-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/22/2013] [Indexed: 01/11/2023]
|
27
|
Raut SB, Nerlekar SR, Pawar S, Patil AN. An evaluation of the effects of nonselective and cardioselective β-blockers on wound healing in Sprague Dawley rats. Indian J Pharmacol 2013; 44:629-33. [PMID: 23112427 PMCID: PMC3480798 DOI: 10.4103/0253-7613.100399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/31/2012] [Accepted: 07/01/2012] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the effect of a nonselective β-blocker (propranolol) and cardioselective β-blocker (metoprolol) on wound healing in rats using incision and excision wound models and to compare the effect of these drugs on wound healing. MATERIALS AND METHODS Propranolol and metoprolol were given orally. Sprague Dawley rats of either sex were used. Incision and excision wound models were used to evaluate the wound-healing activity. Effects of metoprolol and propranolol on tensile strength, period of epithelialization, and hydroxyproline content were observed. Histological analysis was done to see collagen deposition and inflammatory infiltrate. STATISTICAL ANALYSIS USED The data was subjected to analysis of variance (ANOVA) followed by Scheffe's test. P < 0.05 was considered to be statistically significant. Statistical analysis was done using SPSS software version 15.0. RESULTS Administration of propranolol or metoprolol was shown to decrease tensile strength, delay wound contraction and re-epithelialization, increase inflammatory infiltrate, and reduce collagen density and hydroxyproline levels. CONCLUSIONS The results suggest that nonselective and cardioselective β-blockers delay wound healing and these effects are mediated by β1-receptors.
Collapse
Affiliation(s)
- Sanket B Raut
- Department of Pharmacology, L.T.M. Medical College and General Hospital, Sion, Mumbai, India
| | | | | | | |
Collapse
|
28
|
Ueshima H, Inada T, Shingu K. Suppression of phagosome proteolysis and Matrigel migration with the α2-adrenergic receptor agonist dexmedetomidine in murine dendritic cells. Immunopharmacol Immunotoxicol 2013; 35:558-66. [PMID: 23927488 DOI: 10.3109/08923973.2013.822509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dexmedetomidine is a highly-selective α2-adrenergic receptor agonist used for sedation of critically ill patients in an intensive care setting. Dendritic cells (DCs) in peripheral tissues sense certain foreign antigens and ingest and process them, while migrating to the regional lymph node. Then, DCs present the processed antigen on their surface to stimulate the clonal proliferation of cognitive lymphocytes, leading to the establishment of adaptive immunity. In murine bone marrow-derived DCs, dexmedetomidine significantly delayed the intracellular proteolytic degradation of ovalbumin, while it did not affect phagocytosis, decreased the expression of the surface molecules I-A(b) and CD86, and suppressed cognitive helper T-cell proliferation. Furthermore, dexmedetomidine significantly suppressed DC migration both in vitro, using a Matrigel migration assay, and in vivo, using a foot pad-popliteal lymph node migration assay, which may be ascribed to the inhibition of type IV collagenase/gelatinase activity. Finally, vaccination with dexmedetomidine-treated DCs significantly suppressed the contact hypersensitivity reaction in vivo. These results indicate that dexmedetomidine may suppress immunity by inhibiting DC antigen processing/presentation and migration.
Collapse
Affiliation(s)
- Hironobu Ueshima
- Department of Anesthesiology, Kansai Medical University , Osaka , Japan
| | | | | |
Collapse
|
29
|
Xiu F, Stanojcic M, Jeschke MG. Norepinephrine inhibits macrophage migration by decreasing CCR2 expression. PLoS One 2013; 8:e69167. [PMID: 23844252 PMCID: PMC3699643 DOI: 10.1371/journal.pone.0069167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Increased incidences of infectious and septic complications during post-burn courses represent the main contributor to burn injury mortality. Sustained increases in catecholamine levels, especially norepinephrine (NE), contribute to immune disturbances in severely burned patients. The precise mechanisms underlying NE-mediated immunoregulation are not fully understood. Here we hypothesize that persistently elevated NE levels are associated with immunodysfunctions. We examined the effects of NE on the phenotype and functions of bone marrow-derived macrophages (BMMs). Whole mouse bone marrow cells were treated in vitro with 40 ng/mL of M-CSF and with 1 x 10-6 M or 1 x 10-8 M of NE or without NE for 7 days; cells were collected and stained with antibodies for CD11b, F4/80, MHC II and the inflammatory CC chemokine receptor 2 (CCR2). We found 1 x 10-6 M of NE inhibited MHC II and CCR2 expression on CD11b+/F4/80+ BMM cells. It also inhibited BMM proliferation by inhibiting CSF-1R expression. On the contrary, 1 x 10-8 M of NE slightly increased both MHC II and CCR2 expression on CD11b+/F4/80+ BMM cells but inhibited CD11b+/F4/80+ BMM proliferation. MCP-1 based migration assay showed that the migration of 1 x 10-6 M of NE-treated BMM toward MCP-1 was significantly decreased compared to BMM without NE treatment. Both 1 x 10-8 M and 1 x 10-6 M of NE enhanced TNF-α production and phagocytosis of FITC-Dextran. Intracellular staining of transcriptional factor MafB showed that 1 x 10-6 M of NE treatment enhanced its expression, whereas 1 x 10-8 M of NE decreased expression. Stimulation with LPS in the last 24-hours of BMM culture further decreased CCR2 and MHC II expression of these BMM, suggesting the synergistic effect of LPS and NE on macrophage. Our results demonstrate that NE regulates macrophage differentiation, proliferation and function, and may play a critical role in the dysfunctional immune response post-burn.
Collapse
Affiliation(s)
- Fangming Xiu
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mile Stanojcic
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Shirato K, Sato S, Sato M, Hashizume Y, Tachiyashiki K, Imaizumi K. β 2-Agonist Clenbuterol Suppresses Bacterial Phagocytosis of Splenic Macrophages Expressing High Levels of Macrophage Receptor with Collagenous Structure. Biol Pharm Bull 2013; 36:475-80. [DOI: 10.1248/bpb.b12-00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ken Shirato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Madoka Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Yoko Hashizume
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Kaoru Tachiyashiki
- Department of Natural and Living Sciences, Graduate School of Education, Joetsu University of Education
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Global COE Doctoral Program, Graduate School of Sport Sciences, Waseda University
| |
Collapse
|
31
|
Schmidt C, Schneble N, Müller JP, Bauer R, Perino A, Marone R, Rybalkin SD, Wymann MP, Hirsch E, Wetzker R. Phosphoinositide 3-kinase γ mediates microglial phagocytosis via lipid kinase-independent control of cAMP. Neuroscience 2012; 233:44-53. [PMID: 23276671 DOI: 10.1016/j.neuroscience.2012.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 02/08/2023]
Abstract
Microglial phagocytosis plays a key role in neuroprotective and neurodegenerative responses of the innate immune system in the brain. Here we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) in phagocytosis of bacteria and Zymosan particles by mouse brain microglia in vitro and in vivo. Using genetic and pharmacological approaches our data revealed PI3Kγ as an essential mediator of microglial phagocytosis. Unexpectedly, microglia expressing lipid kinase deficient mutant PI3Kγ exhibited similar phagocytosis as wild-type cells. These data suggest kinase-independent stimulation of cAMP phosphodiesterase activity by PI3Kγ as a crucial mediator of phagocytosis. In sum our findings indicate PI3Kγ-dependent suppression of cAMP signaling as a critical regulatory element of microglial phagocytosis.
Collapse
Affiliation(s)
- C Schmidt
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsuda Y, Fukui H, Asai A, Fukunishi S, Miyaji K, Fujiwara S, Teramura K, Fukuda A, Higuchi K. An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma. J Clin Biochem Nutr 2012; 51:204-12. [PMID: 23170048 PMCID: PMC3491245 DOI: 10.3164/jcbn.12-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/30/2012] [Indexed: 12/11/2022] Open
Abstract
Functional disorders of various immune cells have been reported in hepatocellular carcinoma (HCC) patients. Recently, distinct subsets of neutrophils (polymorphonuclear leukocytes, PMN) have been identified in hosts with enhanced or impaired cell-mediated immunity. In this study, therefore, plasma factors and PMN from HCC patients were immunobiologically investigated. Plasma neopterin and CCL17 levels were measured by ELISA in 95 HCC patients. Peripheral PMN were isolated from each HCC patient and tested for CCL2 or CCL3 production by ELISA and flow cytometry. The results showed elevated plasma neopterin levels in HCC patients, while CCL17 levels decreased in correlation with tumor size. PMN from HCC patients produced CCL2, while PMN from healthy subjects did not. Moreover, CCL2 production by PMN was significantly increased in proportion to tumor load. When HCC patients were divided into two groups based on CCL2 produced by PMN, the survival rate of the CCL2 high group was significantly lower than that for other patients. While CCL3 production by PMN was also significantly increased in HCC patients, their CCL3 production did not correlate with tumor load and survival. The CCL2/CCL3 ratio in culture fluids of each PMN was also increased in proportion to tumor size. These results suggest that cell-mediated immunity may be impaired in advanced HCC patients. Moreover, distinct PMN subsets may exist in the peripheral blood of HCC patients. These PMN subsets, especially CCL2-producing PMN, may be involved in tumor extension and the survival outcomes for HCC patients.
Collapse
Affiliation(s)
- Yasuhiro Tsuda
- Department of Gastroenteroloy and Hepatology, Osaka Medical College, Osaka 569-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang JL, Zhang YL, Wang CC, Zhou JR, Ma Q, Wang X, Shen XH, Jiang CL. Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation 2012; 35:527-34. [PMID: 21590324 DOI: 10.1007/s10753-011-9342-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate whether norepinephrine (NE) could regulate macrophage production of tumor necrosis factor alpha (TNF-α) by influencing the phosphorylation of mitogen-activated protein kinases (MAPKs). Primary macrophages from male BALB/c mice were applied to explore the mechanism by which NE influences the the secretion of TNF-α when macrophages were activated by lipopolysaccharides (LPS). We found that NE could increase crophage production of TNF-α when macrophages were activated by LPS, and this effect could be inhibited by α adrenergic antagonist phentolamine. Also, NE could increase the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), and p38, through α receptor. Furthermore, JNK inhibitor SP600125, ERK inhibitor U0126, and p38 inhibitor SB203580 could all partially counteract NE's effect on the phosphorylation of MAPKs, as well as TNF-α production by macrophages. This study revealed that as macrophages were activated by LPS, NE promoted the secretion of inflammatory factors by increasing the phosphorylation of MAPKs through an α receptor-dependent pathway. Our results provide the evidence of a relationship between stress and diseases, as well as the mechanism by which stress induces or affects the inflammation-related diseases.
Collapse
Affiliation(s)
- Jun-Long Huang
- Department of Military Nautical Medicine, Laboratory of Stress Medicine, Faculty of Naval Medicine, Second Military Medical University, Xiangyin Road 800, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P, Fagon JY, Faisy C. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 2012; 303:E389-96. [PMID: 22649067 DOI: 10.1152/ajpendo.00502.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM - (ECW/0.98) - (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight - 0.406 × trunk length - 13.52. The fraction of variance explained by this model (adjusted r(2)) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.
Collapse
|
35
|
Babcock GF, Hernandez L, Yadav E, Schwemberger S, Dugan A. The burn wound inflammatory response is influenced by midazolam. Inflammation 2012; 35:259-70. [PMID: 21400122 DOI: 10.1007/s10753-011-9313-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Burn patients requiring hospitalization are often treated for anxiety with benzodiazepines (BDZs). Benzodiazepines are reported to influence immune system function. Immune system alterations are a major cause of burn-induced mortality. We wanted to determine whether the BDZ, midazolam given daily at an anxiolytic dose, had any influence on the burn injury-induced inflammatory response in the blood and wound. Mice received a 15% total body surface area flame burn and received either midazolam 1 mg/kg i.p. or saline 0.1 ml daily. Blood and skin wounds were harvested 24 h after injection on post-burn day 2, 3, 7, or 8. Mice treated with midazolam had significantly lower serum IL-1β (p=0.002), TNF-α (p=0.002), IL-6 (p=0.016), IL-10 (p=0.009), and TGF-β (p=0.004) than saline-treated mice, with little impact on serum chemokine levels. In the wound, TNF-α and IL-10 were the only cytokines significantly influenced by the drug, being lower (p=0.018) and higher (p=0.006), respectively. The chemokines in the wound influenced significantly by midazolam were MIP-1α, MIP-1β, and MIP-2 while MCP-1 and KC were not. There were more inflammatory cells at the burn wound margin in midazolam-treated mice on post-burn day 3. Although serum nitrate/nitrite was significantly increased by midazolam (p=0.03), both eNOS and iNOS mRNA expression in the wound were similar to the saline group. We found that midazolam given daily after burn injury significantly influenced the inflammatory response. The clinical implications of these findings on wound healing and shock following burn injury, especially larger burns, deserve further investigation.
Collapse
Affiliation(s)
- George F Babcock
- Department of Research, Shriners Hospital Cincinnati, University of Cincinnati, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
36
|
Bangash MN, Kong ML, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol 2012; 165:2015-33. [PMID: 21740415 DOI: 10.1111/j.1476-5381.2011.01588.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inotropes and vasopressors are biologically and clinically important compounds that originate from different pharmacological groups and act at some of the most fundamental receptor and signal transduction systems in the body. More than 20 such agents are in common clinical use, yet few reviews of their pharmacology exist outside of physiology and pharmacology textbooks. Despite widespread use in critically ill patients, understanding of the clinical effects of these drugs in pathological states is poor. The purpose of this article is to describe the pharmacology and clinical applications of inotropic and vasopressor agents in critically ill patients.
Collapse
Affiliation(s)
- Mansoor N Bangash
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
37
|
Abstract
Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Elmezzi Graduate School of Molecular Medicine, Hofstra North Shore-LIJ Medical School, Manhasset, New York, USA
| | | | | |
Collapse
|
38
|
Spoon TR, Romano TA. Neuroimmunological response of beluga whales (Delphinapterus leucas) to translocation and a novel social environment. Brain Behav Immun 2012; 26:122-31. [PMID: 21888964 DOI: 10.1016/j.bbi.2011.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/22/2022] Open
Abstract
This study assessed changes in phagocyte function and activation of the sympatho-adrenal medullary and hypothalamo-pituitary adrenal axes of beluga whales (Delphinapterus leucas) in response to translocation and introduction to a novel social environment. Transported belugas exhibited increases in epinephrine (E), norepinephrine (NE), and cortisol levels in response to the translocation process. In response to the introduction of the transported belugas, resident belugas exhibited an increase in E and NE but not cortisol. Moreover, the increase in E and NE shown by the transported belugas was significantly greater than the increase exhibited by the resident belugas. Resident belugas exhibited a concomitant decrease in neutrophil and monocyte phagocytosis associated with the introduction of the transported belugas. In contrast, transported belugas exhibited an attendant increase in phagocytosis and respiratory burst activity immediately following transport. Differences in phagocyte response may derive from differences in hormonal milieu, stressor modality and/or intensity, or phagocyte priming. Investigating the complex interactions between types of stressors, neuroendocrine response, and immunocompetence will lead to a better understanding of the impacts of environmental challenges, including anthropogenic perturbations, on the health of cetacean populations.
Collapse
Affiliation(s)
- Tracey R Spoon
- Mystic Aquarium, A Division of Sea Research Foundation Inc., 55 Coogan Blvd., Mystic, CT 06355, USA
| | | |
Collapse
|
39
|
Yang C, Zhou JY, Zhong HJ, Wang HY, Yan J, Liu Q, Huang SN, Jiang JX. Exogenous Norepinephrine Correlates with Macrophage Endoplasmic Reticulum Stress Response in Association with XBP-1. J Surg Res 2011; 168:262-71. [DOI: 10.1016/j.jss.2009.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/10/2009] [Accepted: 10/01/2009] [Indexed: 01/29/2023]
|
40
|
Romana-Souza B, Otranto M, Almeida TF, Porto LC, Monte-Alto-Costa A. Stress-induced epinephrine levels compromise murine dermal fibroblast activity through β-adrenoceptors. Exp Dermatol 2011; 20:413-9. [PMID: 21366703 DOI: 10.1111/j.1600-0625.2010.01239.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stress-induced catecholamine impairs the formation of granulation tissue acting directly in fibroblast activity; however, the mechanism by which high levels of catecholamines alter the granulation tissue formation is still unclear. Thus, the aim of this study was to investigate how high levels of epinephrine compromise the activity of murine dermal fibroblasts. Dermal fibroblasts isolated from the skin of neonatal Swiss mice were preincubated with α- or β-adrenoceptor antagonists. Thereafter, cells were exposed to physiologically elevated levels of epinephrine or epinephrine plus α- or β-adrenoceptor antagonists, and fibroblast activity was evaluated. The blockade of β1- and β2-adrenoceptors reversed the increase in fibroblast proliferation, ERK 1/2 phosphorylation, myofibroblastic differentiation and the reduction of collagen deposition induced by epinephrine. In addition, the blockade of β3-adrenoceptors reversed the increase in fibroblast proliferation and nitric oxide synthesis as well as the reduction of fibroblast migration, AKT phosphorylation and active matrix metalloproteinase-2 expression induced by epinephrine. However, the blockade of α1- and α2-adrenoceptors did not alter the effects of epinephrine on the activity of murine dermal fibroblasts. In conclusion, high levels of epinephrine directly compromise the activity of neonatal mouse skin fibroblasts through the activation of β1-, β2- and β3-adrenoceptors, but not through α1- and α2-adrenoceptors.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
41
|
Leposavić G, Pilipović I, Perišić M. Age-associated remodeling of neural and nonneural thymic catecholaminergic network affects thymopoietic productivity. Neuroimmunomodulation 2011; 18:290-308. [PMID: 21952681 DOI: 10.1159/000329499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β(2)- and α(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β(2)- and α(1)-AR-expressing thymic nonlymphoid cells and the α(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia. Gordana.Leposavic @ pharmacy.bg.ac.rs
| | | | | |
Collapse
|
42
|
Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. THE JOURNAL OF IMMUNOLOGY 2010; 185:5762-8. [PMID: 20935206 DOI: 10.4049/jimmunol.1001899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.
Collapse
Affiliation(s)
- Yoshiki Yanagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
43
|
Ley S, Weigert A, Brüne B. Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 2010; 215:674-84. [DOI: 10.1016/j.imbio.2010.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
|
44
|
De Berardis D, Conti CMV, Serroni N, Moschetta FS, Olivieri L, Carano A, Salerno RM, Cavuto M, Farina B, Alessandrini M, Janiri L, Pozzi G, Di Giannantonio M. The effect of newer serotonin-noradrenalin antidepressants on cytokine production: a review of the current literature. Int J Immunopathol Pharmacol 2010; 23:417-22. [PMID: 20646337 DOI: 10.1177/039463201002300204] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytokines may influence brain activities especially during stressful conditions, and elevated levels of IL-6 and C-reactive protein have been pointed out in subjects with Major Depression. If pro-inflammatory cytokines play a causative role in major depressive disorders, one would expect that antidepressants may down-regulate these cytokines or interfere with their actions, leading to improvement of depressive symptoms. Accumulating evidence has been published that antidepressants modulate cytokine production and this is particularly true for Tricyclics and Selective serotonin reuptake inhibitors (SSRIs), but the influence of newer antidepressants acting on both serotonin (5-HT) and norepinephrine (NE) such as venlafaxine, duloxetine and mirtazapine on cytokine levels has not been extensively studied. However, both pre-clinical and clinical studies examined in this review have demonstrated that newer serotonin-noradrenalin antidepressants can inhibit the production and/or release of pro-inflammatory cytokines and stimulate the production of anti-inflammatory cytokines, suggesting that reductions in inflammation might contribute to treatment response. Moreover, the results of the present review support the notion that the serotonin-noradrenalin antidepressants venlafaxine and mirtazapine may influence cytokine secretion in patients affected by MD, restoring the equilibrium between their physiological and pathological levels and leading to recovery. To date, no studies have evaluated the effect of duloxetine, the newest serotonin-noradrenalin antidepressant, on cytokine levels and therefore this should be evaluated in future studies.
Collapse
|
45
|
Muthu K, He LK, Szilagyi A, Strotmon P, Gamelli RL, Shankar R. ß-adrenergic stimulation increases macrophage CD14 expression and E. coli phagocytosis through PKA signaling mechanisms. J Leukoc Biol 2010; 88:715-24. [PMID: 20643814 DOI: 10.1189/jlb.0410186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD14 is a glycoprotein that binds bacterial LPS in MØ. It is an essential component of the phagocytic system and is increased in septic shock. Critical injury and sepsis result in elevated endogenous CA levels. CAs have a significant impact on MØ inflammatory functions. We tested the hypothesis that β-adrenergic stimulation regulates CD14 expression and bacterial phagocytosis in BMØ. Murine BMØ stimulated with isoproterenol (>8 h) induced a dose-dependent increase in cell surface CD14 expression. Specific PKA inhibitor (H-89) and gene-silencing (siRNA) studies demonstrated the role of cAMP-dependent PKA in mediating this response. In addition, we observed a correlation between an isoproterenol-mediated increase in CD14 expression and live Escherichia coli uptake in BMØ. Further, the essential role of CD14 in an isoproterenol-mediated increase in E. coli uptake was highlighted from experiments using CD14(-/-) mice. Moreover, the dose response of isoproterenol stimulation to CD14 expression and E. coli phagocytosis overlapped with similar EC50. Additionally, isoproterenol-mediated E. coli phagocytosis was prevented by H-89, suggesting that β-adrenergic stimulus in BMØ increases CD14 expression and live E. coli phagocytosis through a common signaling pathway. Our studies indicate the potential impact of β-adrenergic agents on important innate immune functions.
Collapse
Affiliation(s)
- Kuzhali Muthu
- Department of Surgery, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Romana-Souza B, Porto LC, Monte-Alto-Costa A. Cutaneous wound healing of chronically stressed mice is improved through catecholamines blockade. Exp Dermatol 2010; 19:821-9. [PMID: 20629735 DOI: 10.1111/j.1600-0625.2010.01113.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress impairs cutaneous wound healing; however, it is unclear how beta-adrenoceptors participates in alterations induced by stress on skin wound repair. Therefore, the aim of this study was to investigate the effects of propranolol, a non-selective beta-blocker, administration on cutaneous wound healing of chronically stressed mice. Male mice were spun at 115 rpm for 15 min every hour from three days before wounding until euthanasia. Control animals were not submitted to stress. Stressed and control animals were treated with propranolol dissolved in water; controls received only water. Propranolol administration began one day before wounding and was continued daily until euthanasia. A full-thickness excisional lesion was performed. Seven and fourteen days later, animals were killed, and lesions were formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin-eosin and immunostained against F4/80 to quantify macrophages, alpha-smooth muscle actin to quantify the myofibroblast density and proliferating cell nuclear antigen to quantify the cell proliferation. Furthermore, matrix metalloproteinases (MMP)-2 and MMP-9 activity, nitrite and hydroxyproline levels and tumor necrosis factor-alpha (TNF-alpha) expression were measured in wound. Stress and control + propranolol groups presented a delay in wound contraction, re-epithelialization, F4/80-positive macrophages, neutrophils and mast cells infiltration, cellular proliferation, angiogenesis, myofibroblastic differentiation, MMP-2 and MMP-9 activation and TNF-alpha expression, whereas an increase in the nitrite levels. Stress + propranolol group presented results similar to control group. In conclusion, stress impairs cutaneous wound healing in mice through beta1- adrenoceptors and beta2-adrenoceptors activation.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
47
|
Dose-response relationship between norepinephrine and erythropoiesis: evidence for a critical threshold. J Surg Res 2010; 163:e85-90. [PMID: 20605580 DOI: 10.1016/j.jss.2010.03.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Severe traumatic injury elicits a neuroendocrine response that activates the sympathetic nervous system. Our previous work suggests that norepinephrine (NE) influences the bone marrow (BM) erythropoietic response. However, the dose-response relationship between NE and erythropoiesis remains unclear. MATERIALS AND METHODS Two days following chemical sympathectomy with 6-hydroxydopamine (6-OHDA) or injection with saline vehicle (SHAM), male Sprague-Dawley rats were infused continuously with either saline (NS) or increasing doses of NE for 5 d via osmotic pumps. Erythropoiesis was assessed by growth of erythroid progenitor colonies (BFU-E and CFU-E for early and late progenitors, respectively). RESULTS Following chemical sympathectomy with 6-OHDA, both BFU-E and CFU-E growth is inhibited (42%∗ and 43%∗ versus 100% SHAM, ∗P < 0.05). SHAM rats with continuous infusion of exogenous NE show a clear dose-response inhibition of both BFU-E and CFU-E colony growth. In the 6-OHDA rats, continuous infusion of NE restored BFU-E and CFU-E growth at 10(-8) g/h and 10(-9) g/h, respectively. CONCLUSIONS Erythroid precursor colony growth is inhibited in sympathectomized rats. In addition, supraphysiologic doses of exogenous NE inhibit normal erythropoiesis in a dose-dependent fashion. Following chemical sympathectomy with 6-OHDA, exogenous NE restores erythropoiesis in a narrow window. Therefore, NE has a complex interaction within the BM and the elevation of NE following traumatic injury impacts BM erythropoietic function.
Collapse
|
48
|
Romana-Souza B, Otranto M, Vieira AM, Filgueiras CC, Fierro IM, Monte-Alto-Costa A. Rotational stress-induced increase in epinephrine levels delays cutaneous wound healing in mice. Brain Behav Immun 2010; 24:427-37. [PMID: 19944145 DOI: 10.1016/j.bbi.2009.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/09/2009] [Accepted: 11/19/2009] [Indexed: 01/23/2023] Open
Abstract
Stress impairs wound healing of cutaneous lesions; however, the mechanism is still unclear. The aim of this study was to evaluate the effects of rotational stress on cutaneous wound healing in mice and propose a mechanism. Male mice were spun at 45 rpm for 15 min every hour beginning 3 days before wounding until euthanasia. Control animals were not subjected to stress. To confirm that catecholamines participate in stress-induced delay of wound healing, mice were treated daily with propranolol. An excisional lesion was created and measured. Seven and 14 days later, animals were killed and lesions collected. Sections were stained with hematoxylin-eosin and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Matrix metalloproteinase (MMP)-2 and -9 activity, nitrite levels, and tumor necrosis factor-alpha (TNF-alpha) expression were measured in the wounds. In addition, murine skin fibroblast cultures were treated with high levels of epinephrine and fibroblast activity was evaluated. Stressed mice exhibited reduced locomotor activity and increased normetanephrine plasma levels. Rotational stress was associated with decreased wound contraction, reduced re-epithelialization, reduced MMP-2 and MMP-9 activation, but with strongly increased nitrite levels. Furthermore, inflammatory cell infiltration, TNF-alpha expression, myofibroblastic differentiation, and angiogenesis were all delayed in the stress group. Propranolol administration reversed the deleterious effects of stress on wound contraction and re-epithelialization. High epinephrine concentrations increased murine skin fibroblast proliferation and nitric oxide synthesis, and strongly inhibited skin fibroblast migration and both pro- and active MMP-2. In conclusion, rotational stress impairs cutaneous wound healing due to epinephrine increased levels.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Romana-Souza B, Santos JS, Monte-Alto-Costa A. beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays rat cutaneous wound healing. Wound Repair Regen 2009; 17:230-9. [PMID: 19320892 DOI: 10.1111/j.1524-475x.2008.00453.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sympathetic nervous system plays an important role in wound healing, but its mechanism of action is poorly understood. The aim of this study was to investigate the effects of beta- and alpha-adrenoceptor blockade on cutaneous wound healing. Male rats were treated with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist), or phentolamine (alpha1- and alpha2-antagonist) dissolved in drinking water. A full-thickness excisional lesion was created and the wound area was measured. Fourteen days after wounding, lesions and adjacent skin were removed, formalin-fixed, and paraffin-embedded. Sections were stained with hematoxylin-eosin and toluidine blue, and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Wound contraction was delayed in propranolol- and atenolol-treated animals but not in phentolamine-treated animals. Reepithelialization was decreased only in propranolol-treated animals. beta1- and beta2-adrenoceptor blockade delayed leukocyte migration, epidermal and connective tissue cell proliferation, myofibroblastic differentiation, and mast cell migration. The volume density of blood vessels was increased in the propranolol- and atenolol-treated animals compared with controls. The levels of matrix metalloproteases (MMP-2 and MMP-9) decreased in the propranolol- and atenolol-treated animals. alpha1- and alpha2-adrenoceptor blockade only affected leukocyte migration, epithelial and connective tissue cell proliferation, and pro-MMP-9 levels. In conclusion, beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays cutaneous wound healing.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|
50
|
Dimitrijević M, Pilipović I, Stanojević S, Mitić K, Radojević K, Pesić V, Leposavić G. Chronic propranolol treatment affects expression of adrenoceptors on peritoneal macrophages and their ability to produce hydrogen peroxide and nitric oxide. J Neuroimmunol 2009; 211:56-65. [PMID: 19398131 DOI: 10.1016/j.jneuroim.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/11/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
Abstract
Using both immunocytochemical and flow cytometric analyses of rat peritoneal exudate cells constitutive expression of tyrosine hydroxylase and both beta(2)- and alpha(1)- adrenoceptors on macrophages was revealed. Furthermore, according to the characteristic assemblage of tyrosine hydroxylase and adrenoceptor subtype expression different macrophage subsets were identified. In vitro treatment of macrophages with the non-selective alpha,beta-adrenoceptor agonist arterenol and/or the beta-adrenoceptor antagonist propranolol indicated that beta-adrenoceptors potentiated nitric oxide (NO) production and suggested alpha-adrenoceptor-mediated suppression of hydrogen peroxide (H(2)O(2)) production. An increase in H(2)O(2) production in the presence of the alpha(1)-adrenoceptor antagonist ebrantil provided support for this. Chronic propranolol treatment in vivo led to increased NO and H(2)O(2) production by peritoneal macrophages. Furthermore, this treatment resulted in opposing effects on the expression of beta(2)- and alpha(1)-adrenoceptors on peritoneal macrophages (a stimulatory effect on beta(2)-adrenoceptors and a suppressive effect on alpha(1)-adrenoceptors). In conclusion, a subset of resident peritoneal macrophages synthesizes catecholamines, which may exert differential effects on H(2)O(2) and NO production via distinct adrenoceptors. Finally, chronic propranolol treatment affected adrenoceptor expression on peritoneal macrophages and altered their capacity to generate NO and H(2)O(2).
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|