1
|
Ma RX, Wei JR, Hu YW. Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. Mol Cancer Ther 2024; 23:939-948. [PMID: 38490257 DOI: 10.1158/1535-7163.mct-23-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.
Collapse
Affiliation(s)
- Ru-Xue Ma
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Jian-Rui Wei
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Huskey ALW, Merner ND. An investigation into the role of inherited CEACAM gene family variants and colorectal cancer risk. BMC Res Notes 2022; 15:26. [PMID: 35115044 PMCID: PMC8815132 DOI: 10.1186/s13104-022-05907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 01/03/2023] Open
Abstract
Objective This study was designed to determine if CEACAM mutations are associated with inherited risk of colorectal cancer. Recently, protein-truncating mutations in the CEACAM gene family were associated with inherited breast cancer risk. That discovery, along with aberrant expression of CEACAM genes in colorectal cancer tumors and that colorectal cancer and breast cancer share many risk factors, including genetics, inspired our team to search for inherited CEACAM mutations in colorectal cancer cases. Specifically utilizing The Cancer Genome Atlas (TCGA) blood-derived whole-exome sequencing data from the colorectal cancer cohort, rare protein-truncating variants and missense variants were investigated through single variant and aggregation analyses in European American and African American cases and compared to ethnic-matched controls. Results A total of 34 and 14 different CEACAM variants were identified in European American and African American colorectal cancer cases, respectively. Nine missense variants were individually associated with risk, two in African Americans and seven in European Americans. No identified protein-truncating variants were associated with CRC risk in either ethnicity. Gene family and gene-specific aggregation analyses did not yield any significant results. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05907-6.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 3306 Walker Building, Auburn, AL, 36849, USA
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Devall MAM, Drew DA, Dampier CH, Plummer SJ, Eaton S, Bryant J, Díez-Obrero V, Mo J, Kedrin D, Zerjav DC, Takacsi-Nagy O, Jennelle LT, Ali MW, Yilmaz ÖH, Moreno V, Powell SM, Chan AT, Peters U, Casey G. Transcriptome-wide In Vitro Effects of Aspirin on Patient-derived Normal Colon Organoids. Cancer Prev Res (Phila) 2021; 14:1089-1100. [PMID: 34389629 PMCID: PMC8639779 DOI: 10.1158/1940-6207.capr-21-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Mechanisms underlying aspirin chemoprevention of colorectal cancer remain unclear. Prior studies have been limited because of the inability of preclinical models to recapitulate human normal colon epithelium or cellular heterogeneity present in mucosal biopsies. To overcome some of these obstacles, we performed in vitro aspirin treatment of colon organoids derived from normal mucosal biopsies to reveal transcriptional networks relevant to aspirin chemoprevention. Colon organoids derived from 38 healthy individuals undergoing endoscopy were treated with 50 μmol/L aspirin or vehicle control for 72 hours and subjected to bulk RNA sequencing. Paired regression analysis using DESeq2 identified differentially expressed genes (DEG) associated with aspirin treatment. Cellular composition was determined using CIBERSORTx. Aspirin treatment was associated with 1,154 significant (q < 0.10) DEGs prior to deconvolution. We provide replication of these findings in an independent population-based RNA-sequencing dataset of mucosal biopsies (BarcUVa-Seq), where a significant enrichment for overlap of DEGs was observed (P < 2.2E-16). Single-cell deconvolution revealed changes in cell composition, including a decrease in transit-amplifying cells following aspirin treatment (P = 0.01). Following deconvolution, DEGs included novel putative targets for aspirin such as TRABD2A (q = 0.055), a negative regulator of Wnt signaling. Weighted gene co-expression network analysis identified 12 significant modules, including two that contained hubs for EGFR and PTGES2, the latter being previously implicated in aspirin chemoprevention. In summary, aspirin treatment of patient-derived colon organoids using physiologically relevant doses resulted in transcriptome-wide changes that reveal altered cell composition and improved understanding of transcriptional pathways, providing novel insight into its chemopreventive properties. PREVENTION RELEVANCE: Numerous studies have highlighted a role for aspirin in colorectal cancer chemoprevention, though the mechanisms driving this association remain unclear. We addressed this by showing that aspirin treatment of normal colon organoids diminished the transit-amplifying cell population, inhibited prostaglandin synthesis, and dysregulated expression of novel genes implicated in colon tumorigenesis.
Collapse
Affiliation(s)
- Matthew A M Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher H Dampier
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sarah J Plummer
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Stephen Eaton
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Jennifer Bryant
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Virginia Díez-Obrero
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Jiancheng Mo
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dmitriy Kedrin
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Elliot Hospital, Manchester, New Hampshire
| | - Dylan C Zerjav
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Oliver Takacsi-Nagy
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lucas T Jennelle
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Mourad W Ali
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Victor Moreno
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Steven M Powell
- Digestive Health Center, University of Virginia, Charlottesville, Virginia
| | - Andrew T Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, Washington
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
4
|
Saiz-Gonzalo G, Hanrahan N, Rossini V, Singh R, Ahern M, Kelleher M, Hill S, O'Sullivan R, Fanning A, Walsh PT, Hussey S, Shanahan F, Nally K, O'Driscoll CM, Melgar S. Regulation of CEACAM Family Members by IBD-Associated Triggers in Intestinal Epithelial Cells, Their Correlation to Inflammation and Relevance to IBD Pathogenesis. Front Immunol 2021; 12:655960. [PMID: 34394073 PMCID: PMC8358819 DOI: 10.3389/fimmu.2021.655960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Carcinoembryogenic antigen cellular adhesion molecules (CEACAMs) are intercellular adhesion molecules highly expressed in intestinal epithelial cells. CEACAM1, -3, -5, -6, -7 are altered in patients suffering from colon cancer and inflammatory bowel diseases (IBD), but their role in the onset and pathogenesis of IBD is not well known. Herein, we aim to correlate CEACAM1, -3, -5, -6, -7 expression to the degree of inflammation in pediatric and adult IBD colon biopsies and to examine the regulation of CEACAMs on human intestinal epithelial cell lines (C2BBe1/HT29) by different IBD-associated triggers (cytokines, bacteria/metabolites, emulsifiers) and IBD-drugs (6-Mercaptopurine, Prednisolone, Tofacitinib). Biopsies from patients with pediatric Crohn’s disease (CD) and adult ulcerative colitis (UC, active/inactive disease) showed a significant increase in CEACAM3, -5, -6 expression, while CEACAM5 expression was reduced in adult CD patients (active/inactive disease). Intestinal epithelial cells cultured with a pro-inflammatory cytokine cocktail and Adherent-invasive Escherichia coli (AIEC) showed a rapid induction of CEACAM1, -5, -7 followed by a reduced RNA and protein expression overtime and a constant expression of CEACAM3, correlating with IL-8 expression. Cells cultured with the emulsifier polysorbate-80 resulted in a significant induction of CEACAM3, -5, -6, -7 at a late time point, while SCFA treatment reduced CEACAM1, -5, -7 expression. No major alterations in expression of CEACAMs were noted on cells cultured with the commensal Escherichia coli K12 or the pathogen Salmonella typhimurium. IBD drugs, particularly Tofacitinib, significantly reduced cytokine-induced CEACAM1, -3, -5, -6, -7 expression associated with a reduced IL-8 secretion. In conclusion, we provide new evidence on the regulation of CEACAMs by different IBD-associated triggers, identifying a role of CEACAMs in IBD pathogenesis.
Collapse
Affiliation(s)
- Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Mary Ahern
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Maebh Kelleher
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Shane Hill
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Ruairi O'Sullivan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Seamus Hussey
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Department of Pediatric Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Caitriona M O'Driscoll
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
5
|
Bisht V, Nash K, Xu Y, Agarwal P, Bosch S, Gkoutos GV, Acharjee A. Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer. Int J Mol Sci 2021; 22:5763. [PMID: 34071236 PMCID: PMC8198673 DOI: 10.3390/ijms22115763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia; cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1 gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Vartika Bisht
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
| | - Katrina Nash
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Yuanwei Xu
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
| | - Prasoon Agarwal
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, 100 44 Stockholm, Sweden;
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
6
|
Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, Alharbi SA, Batiha GES, Hossain MU. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021; 21:577. [PMID: 34016083 PMCID: PMC8136133 DOI: 10.1186/s12885-021-08332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PDE9A (Phosphodiesterase 9A) plays an important role in proliferation of cells, their differentiation and apoptosis via intracellular cGMP (cyclic guanosine monophosphate) signaling. The expression pattern of PDE9A is associated with diverse tumors and carcinomas. Therefore, PDE9A could be a prospective candidate as a therapeutic target in different types of carcinoma. The study presented here was designed to carry out the prognostic value as a biomarker of PDE9A in Colorectal cancer (CRC). The present study integrated several cancer databases with in-silico techniques to evaluate the cancer prognosis of CRC. RESULTS The analyses suggested that the expression of PDE9A was significantly down-regulated in CRC tissues than in normal tissues. Moreover, methylation in the DNA promoter region might also manipulate PDE9A gene expression. The Kaplan-Meier curves indicated that high level of expression of PDE9A gene was associated to higher survival in OS, RFS, and DSS in CRC patients. PDE9A demonstrated the highest positive correlation for rectal cancer recurrence with a marker gene CEACAM7. Furtheremore, PDE9A shared consolidated pathways with MAPK14 to induce survival autophagy in CRC cells and showed interaction with GUCY1A2 to drive CRPC. CONCLUSIONS Overall, the prognostic value of PDE9A gene could be used as a potential tumor biomarker for CRC.
Collapse
Affiliation(s)
- Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Md. Moshiur Rahman Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Farzana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shariful Islam
- Department of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808 Japan
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506-022 USA
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511 Egypt
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349 Bangladesh
| |
Collapse
|
7
|
Bi G, Liang J, Zheng Y, Li R, Zhao M, Huang Y, Zhan C, Xu S, Fan H. Multi-omics characterization and validation of invasiveness-related molecular features across multiple cancer types. J Transl Med 2021; 19:124. [PMID: 33766047 PMCID: PMC7995758 DOI: 10.1186/s12967-021-02773-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumor invasiveness reflects many biological changes associated with tumorigenesis, progression, metastasis, and drug resistance. Therefore, we performed a systematic assessment of invasiveness-related molecular features across multiple human cancers. Materials and methods Multi-omics data, including gene expression, miRNA, DNA methylation, and somatic mutation, in approximately 10,000 patients across 30 cancer types from The Cancer Genome Atlas, Gene Expression Omnibus, PRECOG, and our institution were enrolled in this study. Results Based on a robust gene signature, we established an invasiveness score and found that the score was significantly associated with worse prognosis in almost all cancers. Then, we identified common invasiveness-associated dysregulated molecular features between high- and low-invasiveness score group across multiple cancers, as well as investigated their mutual interfering relationships thus determining whether the dysregulation of invasiveness-related genes was caused by abnormal promoter methylation or miRNA expression. We also analyzed the correlations between the drug sensitivity data from cancer cell lines and the expression level of 685 invasiveness-related genes differentially expressed in at least ten cancer types. An integrated analysis of the correlations among invasiveness-related genetic features and drug response were conducted in esophageal carcinoma patients to outline the complicated regulatory mechanism of tumor invasiveness status in multiple dimensions. Moreover, functional enrichment suggests the invasiveness score might serve as a predictive biomarker for cancer patients receiving immunotherapy. Conclusion Our pan-cancer study provides a comprehensive atlas of tumor invasiveness and may guide more precise therapeutic strategies for tumor patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02773-x
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Runmei Li
- Department of Biostatistics, Public Health, Fudan University, Shanghai, 200000, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| | - Songtao Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
8
|
Saleem S, Tariq S, Aleem I, Sadr-ul Shaheed, Tahseen M, Atiq A, Hassan S, Abu Bakar M, Khattak S, Syed AA, Ahmad AH, Hussain M, Yusuf MA, Sutton C. Proteomics analysis of colon cancer progression. Clin Proteomics 2019; 16:44. [PMID: 31889941 PMCID: PMC6935225 DOI: 10.1186/s12014-019-9264-y;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The aim of this pilot study was to identify proteins associated with advancement of colon cancer (CC). METHODS A quantitative proteomics approach was used to determine the global changes in the proteome of primary colon cancer from patients with non-cancer normal colon (NC), non-adenomatous colon polyp (NAP), non-metastatic tumor (CC NM) and metastatic tumor (CC M) tissues, to identify up- and down-regulated proteins. Total protein was extracted from each biopsy, trypsin-digested, iTRAQ-labeled and the resulting peptides separated using strong cation exchange (SCX) and reverse-phase (RP) chromatography on-line to electrospray ionization mass spectrometry (ESI-MS). RESULTS Database searching of the MS/MS data resulted in the identification of 2777 proteins which were clustered into groups associated with disease progression. Proteins which were changed in all disease stages including benign, and hence indicative of the earliest molecular perturbations, were strongly associated with spliceosomal activity, cell cycle division, and stromal and cytoskeleton disruption reflecting increased proliferation and expansion into the surrounding healthy tissue. Those proteins changed in cancer stages but not in benign, were linked to inflammation/immune response, loss of cell adhesion, mitochondrial function and autophagy, demonstrating early evidence of cells within the nutrient-poor solid mass either undergoing cell death or adjusting for survival. Caveolin-1, which decreased and Matrix metalloproteinase-9, which increased through the three disease stages compared to normal tissue, was selected to validate the proteomics results, but significant patient-to-patient variation obfuscated interpretation so corroborated the contradictory observations made by others. CONCLUSION Nevertheless, the study has provided significant insights into CC stage progression for further investigation.
Collapse
Affiliation(s)
- Saira Saleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sahrish Tariq
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Iffat Aleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadr-ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aribah Atiq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadia Hassan
- Clinical Research Office, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammad Abu Bakar
- Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Shahid Khattak
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aamir Ali Syed
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Asad Hayat Ahmad
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Mudassar Hussain
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammed Aasim Yusuf
- Department of Internal Medicine, Shaukat Khanum Mmemorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Chris Sutton
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| |
Collapse
|
9
|
Saleem S, Tariq S, Aleem I, Sadr-Ul Shaheed, Tahseen M, Atiq A, Hassan S, Abu Bakar M, Khattak S, Syed AA, Ahmad AH, Hussain M, Yusuf MA, Sutton C. Proteomics analysis of colon cancer progression. Clin Proteomics 2019; 16:44. [PMID: 31889941 PMCID: PMC6935225 DOI: 10.1186/s12014-019-9264-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background The aim of this pilot study was to identify proteins associated with advancement of colon cancer (CC). Methods A quantitative proteomics approach was used to determine the global changes in the proteome of primary colon cancer from patients with non-cancer normal colon (NC), non-adenomatous colon polyp (NAP), non-metastatic tumor (CC NM) and metastatic tumor (CC M) tissues, to identify up- and down-regulated proteins. Total protein was extracted from each biopsy, trypsin-digested, iTRAQ-labeled and the resulting peptides separated using strong cation exchange (SCX) and reverse-phase (RP) chromatography on-line to electrospray ionization mass spectrometry (ESI-MS). Results Database searching of the MS/MS data resulted in the identification of 2777 proteins which were clustered into groups associated with disease progression. Proteins which were changed in all disease stages including benign, and hence indicative of the earliest molecular perturbations, were strongly associated with spliceosomal activity, cell cycle division, and stromal and cytoskeleton disruption reflecting increased proliferation and expansion into the surrounding healthy tissue. Those proteins changed in cancer stages but not in benign, were linked to inflammation/immune response, loss of cell adhesion, mitochondrial function and autophagy, demonstrating early evidence of cells within the nutrient-poor solid mass either undergoing cell death or adjusting for survival. Caveolin-1, which decreased and Matrix metalloproteinase-9, which increased through the three disease stages compared to normal tissue, was selected to validate the proteomics results, but significant patient-to-patient variation obfuscated interpretation so corroborated the contradictory observations made by others. Conclusion Nevertheless, the study has provided significant insights into CC stage progression for further investigation.
Collapse
Affiliation(s)
- Saira Saleem
- 1Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sahrish Tariq
- 1Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Iffat Aleem
- 1Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadr-Ul Shaheed
- 2Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| | - Muhammad Tahseen
- 3Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aribah Atiq
- 3Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadia Hassan
- 4Clinical Research Office, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammad Abu Bakar
- 5Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Shahid Khattak
- 6Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aamir Ali Syed
- 6Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Asad Hayat Ahmad
- 3Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Mudassar Hussain
- 3Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammed Aasim Yusuf
- Department of Internal Medicine, Shaukat Khanum Mmemorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Chris Sutton
- 2Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| |
Collapse
|
10
|
Bian Q, Chen J, Qiu W, Peng C, Song M, Sun X, Liu Y, Ding F, Chen J, Zhang L. Four targeted genes for predicting the prognosis of colorectal cancer: A bioinformatics analysis case. Oncol Lett 2019; 18:5043-5054. [PMID: 31612015 PMCID: PMC6781647 DOI: 10.3892/ol.2019.10866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying the development and progression of colorectal cancer (CRC) have not been clarified. The purpose of the present study was to identify key genes that may serve as novel therapeutic targets or prognostic predictors in patients with CRC using bioinformatics analysis. Four gene expression datasets were downloaded from the Gene Expression Omnibus database, which revealed 19 upregulated and 34 downregulated differentially expressed genes (DEGs). The downregulated DEGs were significantly enriched in eight pathways according to Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. A protein-protein interaction network was constructed with 52 DEGs and 458 edges. Ten key genes were identified according to the degree value, betweenness centrality and closeness centrality. Survival analysis revealed that low expression of four of the ten genes, carcinoembryonic antigen related cell adhesion molecule 7 (CEACAM7), solute carrier family 4 member 4 (SLC4A4), glucagon (GCG) and chloride channel accessory 1 (CLCA1) genes, were associated with unfavorable prognosis in CRC. Furthermore, gene set enrichment analysis revealed that two pathways were significantly enriched in the CEACAM7 low-expression group. Thus, CEACAM7, SLC4A4, GCG and CLCA1 may be prognostic markers or therapeutic targets of CRC. Low CEACAM7 expression may be associated with the activation of glycosaminoglycan biosynthesis-chondroitin sulfate and extracellular matrix receptor interaction pathways and may affect the prognosis of CRC.
Collapse
Affiliation(s)
- Qinglai Bian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenqi Qiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chenxi Peng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Meifang Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xuebin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
11
|
Kelleher M, Singh R, O'Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine Growth Factor Rev 2019; 47:21-31. [PMID: 31133507 DOI: 10.1016/j.cytogfr.2019.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.
Collapse
Affiliation(s)
- Maebh Kelleher
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Department of Medicine, University College Cork, Cork, T12YT20, Ireland.
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland.
| |
Collapse
|
12
|
Abstract
Despite availability of sequence site-specific information resulting from years of sequencing and sequence feature curation, there have been few efforts to integrate and annotate this information. In this study, we update the number of human N-linked glycosylation sequons (NLGs), and we investigate cancer-relatedness of glycosylation-impacting somatic nonsynonymous single-nucleotide variation (nsSNV) by mapping human NLGs to cancer variation data and reporting the expected loss or gain of glycosylation sequon. We find 75.8% of all human proteins have at least one NLG for a total of 59,341 unique NLGs (includes predicted and experimentally validated). Only 27.4% of all NLGs are experimentally validated sites on 4,412 glycoproteins. With respect to cancer, 8,895 somatic-only nsSNVs abolish NLGs in 5,204 proteins and 12,939 somatic-only nsSNVs create NLGs in 7,356 proteins in cancer samples. nsSNVs causing loss of 24 NLGs on 23 glycoproteins and nsSNVs creating 41 NLGs on 40 glycoproteins are identified in three or more cancers. Of all identified cancer somatic variants causing potential loss or gain of glycosylation, only 36 have previously known disease associations. Although this work is computational, it builds on existing genomics and glycobiology research to promote identification and rank potential cancer nsSNV biomarkers for experimental validation.
Collapse
|
13
|
Tu C, Mojica W, Straubinger RM, Li J, Shen S, Qu M, Nie L, Roberts R, An B, Qu J. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017; 11:10.1002/prca.201600155. [PMID: 27943637 PMCID: PMC5418098 DOI: 10.1002/prca.201600155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. EXPERIMENTAL DESIGN CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. RESULTS A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. CONCLUSION AND CLINICAL RELEVANCE The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Wilfrido Mojica
- Department of Pathology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Miao Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- Beijing University of Chinese Medicine, Beijing, China, 100029
| | - Lei Nie
- School of pharmaceutical sciences, Shandong University, 44 Wenhua West Road, Jinan, China, 250012
| | - Rick Roberts
- Department of Structural Biology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Bo An
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| |
Collapse
|
14
|
Estiar MA, Esmaeili R, Zare AA, Farahmand L, Fazilaty H, Zekri A, Jafarbeik-Iravani N, Majidzadeh-A K. High expression of CEACAM19, a new member of carcinoembryonic antigen gene family, in patients with breast cancer. Clin Exp Med 2016; 17:547-553. [PMID: 27909883 DOI: 10.1007/s10238-016-0442-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022]
Abstract
Carcinoembryonic antigen (CEA) family members play important roles in malignancies and are introduced as biomarkers in different types of cancers. Among them CEACAM19 (CEAL1) gene, a new member of the CEA family, remains to be fully elucidated. The aim of this study was investigating the mRNA expression level of CEACAM19 in tumor samples of breast cancer patients compared to breast tissue of normal individuals. We evaluated the expression level of this gene in 75 breast tumors by using real-time quantitative PCR. Also, we studied the correlation between CEACAM19 expression and clinicopathological features and hormone receptors status, including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 of patients. Out of the enrolled patients, six of them (7.9%) showed low expression, ten (13.2%) showed normal expression and 59 (77.6%) showed high expression of CEACAM19. There was a significant correlation between high expression of CEACAM19 gene in tumor samples compared to normal tissues (P = 0.039). No significant correlation was seen between clinicopathological factors and disease-free survival with mRNA levels of CEACAM19 in tumor samples, while the difference between the expression of CEACAM19 in ER/PR-positive and ER/PR-negative breast cancer patients was statistically significant (P = 0.046). In conclusion, CEACAM19 showed high expression in tumor samples compared to normal mammary tissue. In addition, CEACAM19 may represent as a novel therapeutic target in certain subgroups of breast cancer patients such as ER/PR-negative. Critical roles of CEA proteins in tumor progression may nominate them as robust potential targets for therapeutic intervention in near future.
Collapse
Affiliation(s)
- Mehrdad Asghari Estiar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Esmaeili
- Cancer Genetics Department, Breast Cancer Research Center (BCRC), ACECR, No. 146, South Gandi St, Vanak Square, Tehran, 1517964311, Iran
| | - Ali-Akbar Zare
- Recombinant Proteins Department, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Leila Farahmand
- Cancer Genetics Department, Breast Cancer Research Center (BCRC), ACECR, No. 146, South Gandi St, Vanak Square, Tehran, 1517964311, Iran
| | | | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Jafarbeik-Iravani
- Cancer Genetics Department, Breast Cancer Research Center (BCRC), ACECR, No. 146, South Gandi St, Vanak Square, Tehran, 1517964311, Iran
| | - Keivan Majidzadeh-A
- Cancer Genetics Department, Breast Cancer Research Center (BCRC), ACECR, No. 146, South Gandi St, Vanak Square, Tehran, 1517964311, Iran.
| |
Collapse
|
15
|
Gemei M, Corbo C, Salvatore F, Del Vecchio L. Carcinoembryonic Antigen Family Cell Adhesion Molecules (CEACAM) as Colorectal Cancer Biomarkers. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kobayashi M, Miki Y, Ebina M, Abe K, Mori K, Narumi S, Suzuki T, Sato I, Maemondo M, Endo C, Inoue A, Kumamoto H, Kondo T, Yamada-Okabe H, Nukiwa T, Sasano H. Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma. Br J Cancer 2012; 107:1745-53. [PMID: 23099808 PMCID: PMC3493859 DOI: 10.1038/bjc.2012.422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Lung adenocarcinoma (LADCA) patients with epidermal growth factor receptor (EGFR) mutations are in general associated with relatively high clinical response rate to EGFR-tyrosine kinase inhibitors (TKIs) but not all responded to TKI. It has therefore become important to identify the additional surrogate markers regarding EGFR-TKI sensitivity. Methods: We first examined the effects of EGFR-TKIs, gefitinib and erlotinib, upon cell proliferation of lung adenocarcinoma cell lines. We then evaluated the gene profiles related to EGFR-TKI sensitivity using a microarray analysis. Results of microarray analysis led us to focus on carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, CEACAM 3, 5, 6, 7, and 19, as potential further surrogate markers of EGFR-TKI sensitivity. We then examined the correlation between the status of CEACAM 3, 5, 6, 7, and 19 immunoreactivity in LADCA and clinicopathological parameters of individual cases. Results: In the cases with EGFR mutations, the status of all CEACAMs examined was significantly higher than that in EGFR wild-type patients, but there were no significant differences in the status of CEACAMs between TKI responder and nonresponder among 22 patients who received gefitinib therapy. However, among 115 EGFR mutation-negative LADCA patients, both CEACAM6 and CEACAM3 were significantly associated with adverse clinical outcome (CEACAM6) and better clinical outcome (CEACAM3). Conclusion: CEACAMs examined in this study could be related to the presence of EGFR mutation in adenocarcinoma cells but not represent the effective surrogate marker of EGFR-TKI in LADCA patients. However, immunohistochemical evaluation of CEACAM3/6 in LADCA patients could provide important information on their clinical outcome.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hasselbalch HC, Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis. Leuk Res 2011; 35:1330-4. [DOI: 10.1016/j.leukres.2011.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
18
|
Belov L, Zhou J, Christopherson RI. Cell surface markers in colorectal cancer prognosis. Int J Mol Sci 2010; 12:78-113. [PMID: 21339979 PMCID: PMC3039945 DOI: 10.3390/ijms12010078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022] Open
Abstract
The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC.
Collapse
Affiliation(s)
- Larissa Belov
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia; E-Mails: (J.Z.); (R.I.C.)
| | | | | |
Collapse
|