1
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600373. [PMID: 38979340 PMCID: PMC11230297 DOI: 10.1101/2024.06.24.600373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed 100% mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-/- AMs exhibited an inflammatory/M1 phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon partially rescued deficient killing in APN-/- AMs that was dependent on both receptors. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A. fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Duan Y, Zhang S, Li Y, Zhao W, Xie P, Zhang X, Du Y. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia. Front Genet 2022; 13:963184. [PMID: 36147493 PMCID: PMC9485438 DOI: 10.3389/fgene.2022.963184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
Aim: Intermittent hypoxia (IH) is the prominent feature of obstructive sleep apnea (OSA) pathophysiology, which is an in dependent risk factor of cardiovascular complications. The effects of IH on adipocyte metabolism were explored by high-throughput sequencing technology. Methods: Plasma was collected from OSA patients and control group to perform mRNA sequencing. 3T3-L1 cells were differentiated into adipocytes then subjected to a 5%–21% O2 hypoxic environment (IH) for 24 h. High-throughput sequencing method was used to determine differential mRNA and miRNA patterns in fat cells exposed to IH. We then performed Gene Ontology (GO) analysis, identified relevant KEGG pathways and miRNA-target-pathways. Results: Sequencing data showed that OSA affected the expression of 343 mRNAs in the plasma. At the same time, we found that IH affected the expression of 3034 mRNAs in the adipocytes. In addition, 68 differentially expressed mRNAs were overlapped in plasma from OSA patient and IH-induced adipocyte model. We observe that 68 differential genes could be connected to 49 reciprocally expressed miRNAs. We showed that IH significantly reduced the expression of miR-182-5p and miR-30c-2-3p. KEGG predicted that the function of expressed miR-182-5p and miR-30c-2-3p was enriched to AKT signaling pathway. Notably, IH activated PI3K/AKT pathway in fat cells. Conclusion: Our results demonstrated that IH might induce adipocyte metabolism by regulating miR-182-5p and miR-30c-2-3p.
Collapse
Affiliation(s)
- Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shihan Zhang
- Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Pediatric Oncology Center, National Center for Children’s Health, Ministry of Education, Medical Oncology Department, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pinxue Xie
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yunhui Du
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yunhui Du,
| |
Collapse
|
3
|
Yi M, Zhao W, Fei Q, Tan Y, Liu K, Chen Z, Zhang Y. Causal analysis between altered levels of interleukins and obstructive sleep apnea. Front Immunol 2022; 13:888644. [PMID: 35967324 PMCID: PMC9363575 DOI: 10.3389/fimmu.2022.888644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inflammation proteins including interleukins (ILs) have been reported to be related to obstructive sleep apnea (OSA). The aims of this study were to estimate the levels for several key interleukins in OSA and the causal effects between them. Method Weighted mean difference (WMD) was used to compare the expression differences of interleukins between OSA and control, and the changed levels during OSA treatments in the meta-analysis section. A two-sample Mendelian randomization (MR) was used to estimate the causal directions and effect sizes between OSA risks and interleukins. The inverse-variance weighting (IVW) was used as the primary method followed by several other MR methods including MR Egger, Weighted median, and MR-Robust Adjusted Profile Score as sensitivity analysis. Results Nine different interleukins—IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12, IL-17, IL-18, and IL-23—were elevated in OSA compared with control to varying degrees, ranging from 0.82 to 100.14 pg/ml, and one interleukin, IL-10, was decreased by 0.77 pg/ml. Increased IL-1β, IL-6, and IL-8 rather than IL-10 can be reduced in OSA by effective treatments. Further, the MR analysis of the IVW method showed that there was no significant evidence to support the causal relationships between OSA and the nine interleukins—IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, and IL-18. Among them, the causal effect of OSA on IL-5 was almost significant [estimate: 0.267 (−0.030, 0.564), p = 0.078]. These results were consistent in the sensitivity analysis. Conclusions Although IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12, IL-17, IL-18, and IL-23 were increasing and IL-10 was reducing in OSA, no significant causal relationships were observed between them by MR analysis. Further research is needed to test the causality of OSA risk on elevated IL-5 level.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wangcheng Zhao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanming Fei
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yun Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Ziliang Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuan Zhang,
| |
Collapse
|
4
|
Song JQ, Jiang LY, Fu CP, Wu X, Liu ZL, Xie L, Wu XD, Hao SY, Li SQ. Heterozygous SOD2 deletion deteriorated chronic intermittent hypoxia-induced lung inflammation and vascular remodeling through mtROS-NLRP3 signaling pathway. Acta Pharmacol Sin 2020; 41:1197-1207. [PMID: 32066884 PMCID: PMC7608479 DOI: 10.1038/s41401-019-0349-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress caused by chronic intermittent hypoxia (CIH) is the hallmark of obstructive sleep apnea (OSA). Among the first line of defense against oxidative stress is the dismutation of superoxide radicals, which in the mitochondria is carried out by manganese superoxide dismutase (SOD2). In this study, wild-type (WT) and SOD2-heterozygous knockout (SOD2+/−) mice were exposed to CIH or normoxic (Nor) conditions. After 4 weeks, pulmonary artery pressure was measured, and the mice were processed to harvest either serum for cytokine assays or lungs for flow cytometry and histopathological studies. Herein, we showed that heterozygous deletion of SOD2 markedly deteriorated pulmonary remodeling and increased the oxidative stress, especially promoted the infiltration of macrophages in the lungs of CIH mouse. Moreover, in the intermittent hypoxia (IH)-treated RAW264.7 cells, SOD2 knockdown increased the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation accompanied with the IL-1β elevation and caspase-1 activity. Additionally, mitochondrial ROS (mtROS) scavenger mito-TEMPO abolished NLRP3 inflammasome activation in IH-treated RAW264.7 cells. Collectively, our results supported that SOD2 contributed to the pathogenesis of CIH-induced lung remodeling. Meanwhile, SOD2 knockdown exacerbates oxidative damage through assembly and activation of NLRP3 inflammasome in macrophages. SOD2 may be a novel therapeutic target for CIH-induced pulmonary inflammation and arteriole remodeling.
Collapse
|
5
|
Honce R, Schultz-Cherry S. Influenza in obese travellers: increased risk and complications, decreased vaccine effectiveness. J Travel Med 2019; 26:taz020. [PMID: 30924873 PMCID: PMC6509472 DOI: 10.1093/jtm/taz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Obesity is a worldwide epidemic and was empirically shown to increase the risk of developing severe influenza virus infection. As international travel becomes more common and obesity is now prevalent even in low- and middle-income countries, travellers may have an increased risk of contracting influenza virus especially during peak influenza season. METHODS An analysis of the literature, centred on publications from 2014-19, was performed, with an emphasis on human epidemiological data, human studies ex vivo and studies in mouse models of obesity. Our search efforts focused on influenza disease severity, pathogenesis, evolutionary dynamics and measures of infection control in the obese and overweight host. RESULTS Obesity is associated with an increased risk of infection, as well as a greater chance for hospitalization and severe complications. Studies in mouse models of obesity have uncovered that obese hosts suffer increased viral spread, delayed viral clearance and heightened damage to the respiratory epithelium. Innate and adaptive immune responses are delayed, thus increasing morbidity and mortality. Further, infection control measures, including vaccination and antivirals, prove less effective in obese hosts. Finally, the obese microenvironment allows for increased duration and amount of viral shedding and potentially increases the chance for emergence of virulent minor variants in the viral population. Together, obese hosts are at high risk of influenza infection, as well as severe sequelae following infection. CONCLUSION Obese travellers should be aware of influenza activity in the regions visited, as well as take protective measures prior to travel. Vaccination is highly recommended for all travellers, but especially highly susceptible obese travellers.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
Ather JL, Dienz O, Boyson JE, Anathy V, Amiel E, Poynter ME. Serum Amyloid A3 is required for normal lung development and survival following influenza infection. Sci Rep 2018; 8:16571. [PMID: 30410021 PMCID: PMC6224415 DOI: 10.1038/s41598-018-34901-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Serum amyloid A (SAA) proteins are a family of acute phase apolipoproteins implicated to directly modulate innate and adaptive immune responses. However, new studies comparing endogenous SAAs and recombinant forms of these proteins have questioned the function of SAA in inflammation and immunity. We generated SAA3 knockout mice to evaluate the contribution of SAA3 to lung development and immune-mediated lung disease. While SAA3 deficiency does not affect the generation of house dust mite-induced allergic asthma, mice lacking SAA3 develop adult-onset obesity, intrinsic airway hyperresponsiveness, increased inflammatory and fibrotic gene expression in the lung, and elevated levels of lung citrullinated proteins. Polyclonally stimulated CD4+ T cells from SAA3-/- mice exhibit impaired glycolytic activity, decreased TH2 and TH1 cytokine secretion, and elevated IL-17A production compared to wild type cells. Polyclonally stimulated CD8+ T cells from SAA3-/- mice also exhibit impaired glycolytic activity as well as a diminished capacity to produce IL-2 and IFNγ. Finally, SAA3-/- mice demonstrate increased mortality in response to H1N1 influenza infection, along with higher copy number of viral RNAs in the lung, a lack of CD8+ T cell IFNγ secretion, and decreased flu-specific antibodies. Our findings indicate that endogenous SAA3 regulates lung development and homeostasis, and is required for protection against H1N1 influenza infection.
Collapse
Affiliation(s)
- Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Oliver Dienz
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathan E Boyson
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
7
|
Zhu Z, Yin S, Wu K, Lee A, Liu Y, Li H, Song S. Downregulation of Sfrp5 in insulin resistant rats promotes macrophage-mediated pulmonary inflammation through activation of Wnt5a/JNK1 signaling. Biochem Biophys Res Commun 2018; 505:498-504. [DOI: 10.1016/j.bbrc.2018.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
|
8
|
Trzepizur W, Cortese R, Gozal D. Murine models of sleep apnea: functional implications of altered macrophage polarity and epigenetic modifications in adipose and vascular tissues. Metabolism 2018; 84:44-55. [PMID: 29154950 PMCID: PMC5955762 DOI: 10.1016/j.metabol.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disease across the lifespan, is characterized by chronic intermittent hypoxia and sleep fragmentation, and has been independently associated with substantial cardiometabolic morbidity. However, the reversibility of end-organ morbidity with treatment is not always apparent, suggesting that both tissue remodeling and epigenetic mechanisms may be operationally involved. Here, we review the cumulative evidence focused around murine models of OSA to illustrate the temporal dependencies of cardiometabolic dysfunction and its reversibility, and more particularly to discuss the critical contributions of tissue macrophages to adipose tissue insulin resistance and vascular atherogenesis. In addition, we describe initial findings potentially implicating epigenetic alterations in both the emergence of the cardiometabolic morbidity of OSA, and in its reversibility with treatment. We anticipate that improved understanding of macrophage biology and epigenetics in the context of intermittent hypoxia and sleep fragmentation will lead to discovery of novel therapeutic targets and improved cardiovascular and metabolic outcomes in OSA.
Collapse
Affiliation(s)
- Wojciech Trzepizur
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States; Département de Pneumologie, Centre de Recherche Clinique, CHU d'Angers, Université Bretagne Loire, UNIV Angers, INSERM UMR 1063, Angers, France
| | - Rene Cortese
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Koren D, Taveras EM. Association of sleep disturbances with obesity, insulin resistance and the metabolic syndrome. Metabolism 2018; 84:67-75. [PMID: 29630921 DOI: 10.1016/j.metabol.2018.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Abstract
Insufficient sleep, which has become endemic in recent years, has been variably associated with increased risk of obesity, disorders of glucose and insulin homeostasis, and the metabolic syndrome; to a lesser degree, so has excessive sleep. This review summarizes recent epidemiological and pathophysiological evidence linking sleep disturbances (primarily abnormalities of sleep duration) with obesity, insulin resistance, type 2 diabetes and the metabolic syndrome in children and adults.
Collapse
Affiliation(s)
- Dorit Koren
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA.
| | - Elsie M Taveras
- Division of General Academic Pediatrics, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Li M, Sirko S. Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies. J Clin Med 2018. [PMID: 29538298 PMCID: PMC5867585 DOI: 10.3390/jcm7030059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology field, having undergone spectacular growth, has endeavored to understand the mechanisms of hormonal connectivity between the brain and the rest of the body. Given the fundamental role of the brain in the orchestration of endocrine processes through interactions among neurohormones, it is thus not surprising that the structural and/or functional alterations following traumatic brain injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely and chronically affect several neurophysiological endpoints, the question is to what extent preexisting endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus, obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss how the complex endocrine networks are woven into the responses to sudden changes after TBI, as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes after TBI.
Collapse
Affiliation(s)
- Melanie Li
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany.
| |
Collapse
|
11
|
Abstract
Emerging evidence has assigned an important role to sleep as a modulator of metabolic homeostasis. The impact of variations in sleep duration, sleep-disordered breathing, and chronotype to cardiometabolic function encompasses a wide array of perturbations spanning from obesity, insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular disease risk and mortality in both adults and children. Here, we critically and extensively review the published literature on such important issues and provide a comprehensive overview of the most salient pathophysiologic pathways underlying the links between sleep, sleep disorders, and cardiometabolic functioning.
Collapse
Affiliation(s)
- Dorit Koren
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Section of Pediatric Sleep Medicine
| | - Magdalena Dumin
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - David Gozal
- Section of Pediatric Sleep Medicine
- Section of Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Konikkara J, Tavella R, Willes L, Kavuru M, Sharma S. Early recognition of obstructive sleep apnea in patients hospitalized with COPD exacerbation is associated with reduced readmission. Hosp Pract (1995) 2016; 44:41-47. [PMID: 26691510 DOI: 10.1080/21548331.2016.1134268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The combination of obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease is known as the "overlap syndrome", and results in frequent hospitalizations and worse prognosis. We hypothesized that early detection and treatment of this condition in hospitalized patients may reduce clinical events (hospital admissions and emergency room visits) Methods: Between April 2013 and January 2014 all patients consulted for COPD exacerbation and having a BMI of > 30 kg/m(2) were screened for OSA. If high risk, patients underwent a polysomnography on discharge. Readmission rate in patients compliant with positive airway pressure was compared to patients who were deemed non-compliant based on objective data from the device. RESULTS Full polysomnogram data and compliance was available on 24 patients. The baseline characteristics were comparable between the compliant and non-compliant groups. The mean change in the total clinical events 6 months prior to intervention compared to 6 months following intervention was -2.1 ± 0.3 in the compliant group, compared to -0.8 ± 0.5 in the non-compliant group (p = 0.01). The mean change in the total clinical events 12 months prior to intervention compared to 12 months following intervention was -2.7 ± 0.5 in the compliant group, compared to -0.8 ± 0.6 in the non-compliant group (p = 0.03) CONCLUSION: In conclusion, our data suggest that early recognition and treatment of OSA in patients admitted with COPD exacerbation and compliant with PAP therapy is associated with reduced 6-month hospital readmission rates and emergency room visits. Screening for OSA in patients admitted with COPD exacerbation is a simple and early intervention that should be encouraged to help reduce hospital readmissions in this patient population.
Collapse
Affiliation(s)
- John Konikkara
- a Jefferson Sleep Disorders Center, Thomas Jefferson University Hospital , Philadelphia , PA , USA
| | - Robert Tavella
- a Jefferson Sleep Disorders Center, Thomas Jefferson University Hospital , Philadelphia , PA , USA
| | | | - Mani Kavuru
- a Jefferson Sleep Disorders Center, Thomas Jefferson University Hospital , Philadelphia , PA , USA
| | - Sunil Sharma
- a Jefferson Sleep Disorders Center, Thomas Jefferson University Hospital , Philadelphia , PA , USA
| |
Collapse
|
13
|
Winfield RD. Caring for the critically ill obese patient: challenges and opportunities. Nutr Clin Pract 2014; 29:747-50. [PMID: 25319015 DOI: 10.1177/0884533614553234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity remains a challenging public health problem. The anatomic and physiologic complexities of obese patients make their healthcare challenging under routine circumstances, but in the setting of critical illness, these challenges are magnified. This review explores some of the unique difficulties that critical care providers face when caring for the obese patient and highlights areas in which future research is needed to provide optimal care.
Collapse
Affiliation(s)
- Robert D Winfield
- Department of Surgery, Section of Acute and Critical Care Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
14
|
Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev 2014; 18:35-48. [PMID: 23541562 PMCID: PMC3758447 DOI: 10.1016/j.smrv.2012.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/14/2022]
Abstract
Increasing data support a connection between obstructive sleep apnea (OSA) and cognitive impairment but a causal link has yet to be established. Although neuronal loss has been linked to cognitive impairment, emerging theories propose that changes in synaptic plasticity can cause cognitive impairment. Studies demonstrate that disruption to the blood-brain barrier (BBB), which is uniquely structured to tightly maintain homeostasis inside the brain, leads to changes in the brain's microenvironment and affects synaptic plasticity. Cyclical intermittent hypoxia is a stressor that could disrupt the BBB via molecular responses already known to occur in either OSA patients or animal models of intermittent hypoxia. However, we do not yet know if or how intermittent hypoxia can cause cognitive impairment by mechanisms operating at the BBB. Therefore, we propose that initially, adaptive homeostatic responses at the BBB occur in response to increased oxygen and nutrient demand, specifically through regulation of influx and efflux BBB transporters that alter microvessel permeability. We further hypothesize that although these responses are initially adaptive, these changes in BBB transporters can have long-term consequences that disrupt the brain's microenvironment and alter synaptic plasticity leading to cognitive impairment.
Collapse
Affiliation(s)
- Diane C Lim
- Department of Medicine, Division of Sleep Medicine, and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104, USA.
| | - Allan I Pack
- Department of Medicine, Division of Sleep Medicine, and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
The critically injured obese patient: a review and a look ahead. J Am Coll Surg 2013; 216:1193-206. [PMID: 23522437 DOI: 10.1016/j.jamcollsurg.2013.01.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 02/06/2023]
|
16
|
Conwell W, Lee-Chiong T. Sleep Apnea, Chronic Sleep Restriction, and Inflammation. Sleep Med Clin 2013. [DOI: 10.1016/j.jsmc.2012.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Ye Z, Huang Y, Liu D, Chen X, Wang D, Huang D, Zhao L, Xiao X. Obesity induced by neonatal overfeeding worsens airway hyperresponsiveness and inflammation. PLoS One 2012; 7:e47013. [PMID: 23056561 PMCID: PMC3466258 DOI: 10.1371/journal.pone.0047013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Obesity is a risk factor for the development of certain respiratory diseases, and neonatal overfeeding results in an early onset of obesity in adulthood. However, the influence of neonatal overfeeding on respiratory diseases has rarely been studied. Therefore, this paper is aimed at investigating the effect of neonatal overfeeding on airway responsiveness and inflammation. METHODOLOGY/PRINCIPAL FINDINGS The neonatal overfeeding was induced by reducing litter size to three pups per litter (small litter, SL) in contrast to the normal litter size with ten pups per litter (NL) on postnatal day 3 (P3) in male ICR mice. On P21, mice were weaned to standard chow diet. Airway responsiveness to methacholine was measured either on P21 or P150. Total and classified inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted, lung inflammatory cells were evaluated through staining with hematoxylin & eosin and F4/80 immunohistochemistry; lung fibrosis was evaluated through staining with Masson and α-SAM immunohistochemistry. Leptin levels in serum were measured by RIA; TNF-α levels in serum and BALF were quantified by ELISA; mRNA levels of TNF-α, CTGF and TGF-β1 in lung tissues were measured using real-time PCR. Mice from SL exhibited accelerated body weight gain, impaired glucose tolerance and hyperleptinemia. Enhanced airway responsiveness to methacholine was observed in SL mice on P150, but not on P21. Pulmonary inflammation was evident in SL mice on P150, as reflected by inflammatory cells especially macrophages around bronchi and interstitium. BALF and serum TNF-α levels and lung TNF-α mRNA expression were significantly increased in SL mice on P150. More collagen accumulated surrounding the bronchi on P150; lung mRNA levels of TGF-β1 and CTGF were also increased on P150. CONCLUSION In addition to inducing a variety of metabolic defects, neonatal overfeeding enhanced lung inflammation, which may lead to airway remodeling and airway hyperresponsiveness in adulthood.
Collapse
Affiliation(s)
- Zehui Ye
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Department of Respiratory Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children’s Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Department of Respiratory Medicine, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
| | - Dan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children’s Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyi Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children’s Hospital, Chongqing Medical University, Chongqing, China
| | - Dongjuan Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Department of Respiratory Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children’s Hospital, Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Li Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children’s Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Buyukaydin B, Akkoyunlu ME, Kazancioglu R, Karakose F, Ozcelik HK, Erkoc R, Kart L. The effect of sleep apnea syndrome on the development of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract 2012; 98:140-3. [PMID: 22906637 DOI: 10.1016/j.diabres.2012.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/23/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
Abstract
AIMS Type 2 diabetes mellitus and obstructive sleep apnea syndrome (OSAS) are serious comorbidities. Effects of OSAS on diabetic microvascular complications are ongoing research subjects. We evaluated the incidence of OSAS in Type 2 diabetes mellitus patients with nephropathy and with no renal involvement. METHODS A total of 52 people with diabetes were enrolled in this study. Patients body mass indices were calculated and fasting glucose, glycosylated hemoglobin, urea, creatinine, total lipid profile, and urinary albumin excretion were evaluated. Full polysomnography was used to detect sleep disorders. RESULTS Baseline characteristics and laboratory results of the patients were similar. Meeting criteria for OSAS was detected in 35 of the 54 patients (67.3%). 25 patients (48%) had mild, six patients (11.5%) had moderate, and four patients (7.7%) had severe sleep disorders. There was no significant relationship between respiratory obstructive parameters and microalbuminuria (R=0.91, p=0.362). Substantial correlation was detected between lower values of serum triglyceride levels and lower respiratory indices (R=0.299, p=0.031). CONCLUSIONS In type 2 diabetes accompanying OSAS affects glucose regulation but its effect on nephropathy development is currently a subject of research.
Collapse
Affiliation(s)
- Banu Buyukaydin
- Bezmialem Vakif University Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
19
|
|