1
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2024:d4py00623b. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
2
|
Parveen N, Naik SVCS, Vanapalli KR, Sharma HB. Bioplastic packaging in circular economy: A systems-based policy approach for multi-sectoral challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173893. [PMID: 38889821 DOI: 10.1016/j.scitotenv.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.
Collapse
Affiliation(s)
- Naseeba Parveen
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India
| | - S V Chinna Swami Naik
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Rangpo, Sikkim 737136, India
| |
Collapse
|
3
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
4
|
González-Rojo S, Paniagua-García AI, Díez-Antolínez R. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. Microorganisms 2024; 12:1668. [PMID: 39203509 PMCID: PMC11357511 DOI: 10.3390/microorganisms12081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties. Additionally, techniques have been implemented to expand the range of renewable substrates used in PHA production. These feedstocks are inexpensive and plentiful but require costly and energy-intensive pretreatment. By removing the need for pretreatment and enabling the direct use of these raw materials, microbial biotechnology aims to reduce production costs. Furthermore, improving downstream processes to facilitate the separation of biomass from culture broth and the recovery of PHAs is critical. Genetic modifications that alter cell morphology and allow PHA secretion directly into the culture medium simplify the extraction and purification process, significantly reducing operating costs. These advances in microbial biotechnology not only enhance the efficient and sustainable production of PHAs, but also position these biopolymers as a viable and competitive alternative to petroleum-based plastics, contributing to a circular economy and reducing the dependence on fossil resources.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Chemistry and Applied Physics, Chemical Engineering Area, Campus de Vegazana s/n, University of León, 24071 León, Spain
| | - Ana Isabel Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| |
Collapse
|
5
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
6
|
Zhang X, Chen H, Ouyang P, Liu X. Next-generation industrial biotechnology for low-cost mass production of PHA. Trends Biotechnol 2024; 42:135-136. [PMID: 37833199 DOI: 10.1016/j.tibtech.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Affiliation(s)
- Xiaohan Zhang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Huanyu Chen
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Pengfei Ouyang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China.
| |
Collapse
|
7
|
Diniz MSDF, Mourão MM, Xavier LP, Santos AV. Recent Biotechnological Applications of Polyhydroxyalkanoates (PHA) in the Biomedical Sector-A Review. Polymers (Basel) 2023; 15:4405. [PMID: 38006129 PMCID: PMC10675258 DOI: 10.3390/polym15224405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Petroleum-derived plastics are materials of great importance for the contemporary lifestyle, and are widely used commercially because they are low cost, resistant, malleable, and weightless, in addition to their hydrophobic character. However, some factors that confer the qualities of these materials also cause problems, mainly environmental, associated with their use. The COVID-19 pandemic aggravated these impacts due to the high demand for personal protective equipment and the packaging sector. In this scenario, bioplastics are environmentally positive alternatives to these plastics due to their applicability in several areas ranging from packaging, to biomedicine, to agriculture. Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers usually produced by microorganisms as an energy reserve. Their structural variability provides a wide range of applications, making them a viable option to replace polluting materials. PHAs can be applied in various biotechnology sectors, such as producing drug carriers and scaffolds for tissue engineering. This review aimed to survey works published in the last five years on the study and biotechnological application of PHAs in the biomedical sector, exploring the versatility and advantages of their use and helping to understand how to enhance their application.
Collapse
Affiliation(s)
- Matheus Silva da Fonseca Diniz
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| | | | | | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| |
Collapse
|
8
|
Rodge SP, Shende KS, Patil NP. Polyhydroxyalkanoate biosynthesis and optimisation of thermophilic Geobacillus stearothermophilus strain K4E3_SPR_NPP. Extremophiles 2023; 27:13. [PMID: 37349574 DOI: 10.1007/s00792-023-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Polyhydroxyalkanoates (PHA) can be used to combat the challenges associated with plastic because it is biodegradable and can be produced from renewable resources. Extremophiles are considered to be potential PHA producers. An initial screening for the PHA synthesizing ability of a thermophilic bacteria Geobacillus stearothermophilus strain K4E3_SPR_NPP was carried out using Sudan black B staining. Nile red viable colony staining was used to further verify that the isolates produced PHA. Crotonic acid assays were used to determine the concentrations of PHA. The bacteria showed 31% PHA accumulation per dry cell weight (PHA/DCW) when glucose was used as a carbon source for growth. The molecule was identified to be medium chain length PHA, A copolymer of PHA containing poly(3-hydroxybutyrate)-poly(3-hydroxyvalerate)-poly(3-hydroxyhexanoate) (PHB-PHV-PHHX) using 1H-NMR. Six carbon sources and four nitrogen sources were screened for the synthesis of maximum PHA content, of which lactose and ammonium nitrate showed 45% and 53% PHA/DCW respectively. The important factors in the experiment are identified using the Plackett-Burman design, and optimization is performed using the response surface method. Response surface methodology was used to optimize the three important factors, and the maximum biomass and PHA productions were discovered. Optimal concentrations yielded a maximum of 0.48 g/l biomass and 0.32 g/l PHA, measuring 66.66% PHA accumulation. Dairy industry effluent was employed for the synthesis of PHA, yielding 0.73 g/l biomass and 0.33 g/l PHA, measuring 45% PHA accumulation. These findings add credibility to the possibility of adopting thermophilic isolates for PHA production using low-cost substrates.
Collapse
|
9
|
Duangsri C, Salminen TA, Alix M, Kaewmongkol S, Akrimajirachoote N, Khetkorn W, Jittapalapong S, Mäenpää P, Incharoensakdi A, Raksajit W. Characterization and Homology Modeling of Catalytically Active Recombinant PhaC Ap Protein from Arthrospira platensis. BIOLOGY 2023; 12:biology12050751. [PMID: 37237563 DOI: 10.3390/biology12050751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Polyhydroxybutyrate (PHB) is a biocompatible and biodegradable polymer that has the potential to replace fossil-derived polymers. The enzymes involved in the biosynthesis of PHB are β-ketothiolase (PhaA), acetoacetyl-CoA reductase (PhaB), and PHA synthase (PhaC). PhaC in Arthrospira platensis is the key enzyme for PHB production. In this study, the recombinant E. cloni®10G cells harboring A. platensis phaC (rPhaCAp) was constructed. The overexpressed and purified rPhaCAp with a predicted molecular mass of 69 kDa exhibited Vmax, Km, and kcat values of 24.5 ± 2 μmol/min/mg, 31.3 ± 2 µM and 412.7 ± 2 1/s, respectively. The catalytically active rPhaCAp was a homodimer. The three-dimensional structural model for the asymmetric PhaCAp homodimer was constructed based on Chromobacterium sp. USM2 PhaC (PhaCCs). The obtained model of PhaCAp revealed that the overall fold of one monomer was in the closed, catalytically inactive conformation whereas the other monomer was in the catalytically active, open conformation. In the active conformation, the catalytic triad residues (Cys151-Asp310-His339) were involved in the binding of substrate 3HB-CoA and the CAP domain of PhaCAp involved in the dimerization.
Collapse
Affiliation(s)
- Chanchanok Duangsri
- Program of Animal Health Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Marion Alix
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Sarawan Kaewmongkol
- Program of Animal Health Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | | | - Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathumthani 12110, Thailand
| | - Sathaporn Jittapalapong
- Program of Animal Health Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Pirkko Mäenpää
- Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Wuttinun Raksajit
- Program of Animal Health Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Liang B, Zhang X, Wang F, Miao C, Ji Y, Huang Z, Gu P, Liu X, Fan X, Li Q. Production of polyhydroxyalkanoate by mixed cultivation of Brevundimonas diminuta R79 and Pseudomonas balearica R90. Int J Biol Macromol 2023; 234:123667. [PMID: 36796552 DOI: 10.1016/j.ijbiomac.2023.123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The microflora in the activated sludge of propylene oxide saponification wastewater is characterized by a clear succession after enrichment and domestication, and the specifically enriched strains can significantly increase the yield of polyhydroxyalkanoate. In this study, Pseudomonas balearica R90 and Brevundimonas diminuta R79, which are dominant strain after domestication, were selected as models to examine the interactive mechanisms associated with the synthesis of polyhydroxyalkanoate by co-cultured strains. RNA-Seq analysis revealed the up-regulated expression of the acs and phaA genes of strains R79 and R90 in the co-culture group, which enhanced their utilization of acetic acid and synthesis of poly-β-hydroxybutyrate. Cell dry weight and the yield of poly-β-hydroxybutyrate in the co-culture group were accordingly considerably higher than those in the respective pure culture groups. In addition, two-component system, quorum-sensing, flagellar synthesis-related, and chemotaxis-related genes were enriched in strain R90, thereby indicating that compared with the R79 strain, R90 can adapt more rapidly to a domesticated environment. Expression of the acs gene was higher in R79 than in R90, and consequently, strain R79 could more efficiently assimilate acetate in the domesticated environment, and thus predominated in the culture population at the end of the fermentation period.
Collapse
Affiliation(s)
- Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
11
|
Sagadevan S, Schirhagl R, Rahman MZ, Bin Ismail MF, Lett JA, Fatimah I, Mohd Kaus NH, Oh WC. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Angra V, Sehgal R, Gupta R. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities. MICROBIAL ECOLOGY 2023; 85:572-585. [PMID: 35333950 DOI: 10.1007/s00248-022-01995-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Along with the wide applications of conventional plastics, they have a large number of disadvantages like their non-biodegradable nature, dependency on fossil fuels and the release of large amounts of toxic materials in the environment. Therefore, to resolve these problems, a number of bioplastics are studied, out of which polyhydroxyalkanoates are considered as the best alternatives. Polyhydroxyalkanoates (PHAs) are produced by microorganisms as intracellular granules during stressful conditions. Though a wide range of organisms can naturally produce PHAs, only a few of them can be used for commercial production. Therefore, more diverse organisms that accumulate a considerable amount of PHAs and also reduce the production cost need to be exploited. Transgenic plants, recombinant bacteria, algae and extremophiles are some diverse organisms that produce a high amount of PHAs at a low cost. So, if potential organisms are used for PHA production, bioplastics will be able to completely replace petroleum-based polymers. Therefore, our review mainly focuses on production of PHAs using potential organisms so that amount of PHAs produced is high and cost-effective which would further help in the commercialization of PHAs.
Collapse
Affiliation(s)
- Vani Angra
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Rutika Sehgal
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India.
| |
Collapse
|
13
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
14
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
15
|
Hammami K, Souissi Y, Souii A, Ouertani A, El-Hidri D, Jabberi M, Chouchane H, Mosbah A, Masmoudi AS, Cherif A, Neifar M. Extremophilic Bacterium Halomonas desertis G11 as a Cell Factory for Poly-3-Hydroxybutyrate-co-3-Hydroxyvalerate Copolymer's Production. Front Bioeng Biotechnol 2022; 10:878843. [PMID: 35677302 PMCID: PMC9168272 DOI: 10.3389/fbioe.2022.878843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bio-based polyesters, which are used in various applications including packaging, medical and coating materials. In this study, an extremophilic hydrocarbonoclastic bacterium, previously isolated from saline sediment in the Tunisian desert, has been investigated for PHA production. The accumulation of intracellular PHA granules in Halomonas desertis G11 was detected by Nile blue A staining of the colonies. To achieve maximum PHA yield by the strain G11, the culture conditions were optimized through response surface methodology (RSM) employing a Box-Behnken Design (BBD) with three independent variables, namely, substrate concentration (1-5%), inoculum size (1-5%) and incubation time (5-15 days). Under optimized conditions, G11 strain produced 1.5 g/L (68% of DCW) of PHA using glycerol as a substrate. Application of NMR (1H and 13C) and FTIR spectroscopies showed that H. desertis accumulated PHA is a poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). The genome analysis revealed the presence of typical structural genes involved in PHBV metabolism including phaA, phaB, phaC, phaP, phaZ, and phaR, coding for acetyl-CoA acetyltransferase, acetoacetyl-CoA reductase, class I polyhydroxyalkanoates synthases, phasin, polyhydroxyalkanoates depolymerase and polyhydroxyalkanoates synthesis repressor, respectively. Glycerol can be metabolized to 1) acetyl-CoA through the glycolysis pathway and subsequently converted to the 3HB monomer, and 2) to propionyl-CoA via the threonine biosynthetic pathway and subsequently converted to the 3HV monomer. In silico analysis of PhaC1 from H. desertis G11 indicated that this enzyme belongs to Class I PHA synthase family with a "lipase box"-like sequence (SYCVG). All these characteristics make the extremophilic bacterium H. desertis G11 a promising cell factory for the conversion of bio-renewable glycerol to high-value PHBV.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Awatef Ouertani
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Darine El-Hidri
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Marwa Jabberi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
16
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
17
|
Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14084855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The accumulation of plastic wastes is one of the most widely spread problems affecting the environment. The reality that plastics can be made from renewable resources and degrade naturally has prompted academics to think outside the box to develop “better for the environment” items. In this paper, a bibliometric analysis of the scholarly publications related to bio-based plastics within the last 20 years is presented. Annual progression, geographic and research area distribution, and keyword co-occurrence were all examined. Six distinct clusters emerged from keyword analysis, which were further categorized into three directions: production to marketing; impact on the environment, economy, and society; and end-of-life (EoL) options. The major focus was on how to counter the weaknesses and challenges of bio-based plastics and take opportunities using the inherent advantages of bio-based plastics. Comprehensive studies regarding the impact of bio-based plastics on the environment, economy and social sustainability are still deficient. Although there are many promising innovations in this area, most of them are at the research stage. The benefits of bio-based plastics and better EoL options can be enjoyed only after increased production.
Collapse
|
18
|
Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol 2022; 43:503-520. [PMID: 35430940 DOI: 10.1080/07388551.2022.2039590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.
Collapse
Affiliation(s)
- Yaqun Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiuhong Liang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Manman Wei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
19
|
Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J Biotechnol 2022; 348:10-25. [PMID: 35298952 DOI: 10.1016/j.jbiotec.2022.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The first observation of a polyhydroxyalkanoate (PHA) aggregate was in 1888 by Beijenrinck. Despite polyhydroxybutyrate (PHB) being the first type of PHA discovered, it was not extracted and characterized until 1925 by Maurice Lemoigne in France, even before the concept of "macromolecules" was known. After more than 30 years, in 1958, Wilkinson and co-workers rediscovered PHB and its metabolic role in the cells as storage compound. PHB started to be appealing to the industry in the 1980s, when a few companies started to commercialize microbially produced PHAs. During the 1990 s, the focus was on reducing production costs to make PHA production economically feasible, for instance by genetically modified microorganisms and even plants. Since then, many advances have been made: diverse wastes as feedstock, different production processes, and tailored design of biopolymers. This paper summarizes the scientific and technological development of PHAs from their discovery in 1888 until their latest applications and current commercial uses. Future perspectives have been devised too based on the current bottlenecks.
Collapse
|
20
|
Mobile CRISPR-Cas9 based anti-phage system in E. coli. Front Chem Sci Eng 2022; 16:1281-1289. [PMID: 35251747 PMCID: PMC8882345 DOI: 10.1007/s11705-022-2141-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 10/26/2022]
|
21
|
|
22
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010294. [PMID: 35011525 PMCID: PMC8746831 DOI: 10.3390/molecules27010294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/05/2022]
Abstract
Poly-(3-hydroxybutyrate) (PHB) is a polyester with biodegradable and biocompatible characteristics and has many potential applications. To reduce the raw material costs and microbial energy consumption during PHB production, cheaper carbon sources such as sucrose were evaluated for the synthesis of PHB under anaerobic conditions. In this study, metabolic network analysis was conducted to construct an optimized pathway for PHB production using sucrose as the sole carbon source and to guide the gene knockout to reduce the generation of mixed acid byproducts. The plasmid pMCS-sacC was constructed to utilize sucrose as a sole carbon source, and the cascaded promoter P3nirB was used to enhance PHB synthesis under anaerobic conditions. The mixed acid fermentation pathway was knocked out in Escherichia coli S17-1 to reduce the synthesis of byproducts. As a result, PHB yield was improved to 80% in 6.21 g/L cell dry weight by the resulted recombinant Escherichia coli in a 5 L bed fermentation, using sucrose as the sole carbon source under anaerobic conditions. As a result, the production costs of PHB will be significantly reduced.
Collapse
|
24
|
Sustainability Challenges and Future Perspectives of Biopolymer. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Tamang N, Shrestha P, Khadka B, Mondal MH, Saha B, Bhattarai A. A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers (Basel) 2021; 14:127. [PMID: 35012149 PMCID: PMC8747219 DOI: 10.3390/polym14010127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides, polynucleotides, and polypeptides are basic natural polymers. They have various applications based on their properties. This review mostly discusses the application of natural polymers as emulsion stabilizers. Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1-10% concentrated), zein proteins feature 74-89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.
Collapse
Affiliation(s)
- Nirmala Tamang
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| | - Pooja Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | - Binita Khadka
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | | | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Burdwan 713104, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| |
Collapse
|
26
|
Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation. Appl Environ Microbiol 2021; 87:e0138921. [PMID: 34550763 DOI: 10.1128/aem.01389-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpression of the heterologous gene cluster phaCAB. The biosynthesis of the outer membrane (OM) consumes many nutrients and influences cell morphology. Here, we engineered the OM by disrupting all gene clusters relevant to the polysaccharide portion of lipopolysaccharide (LPS), colanic acid (CA), flagella, and/or fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components increased the PHB content to 83.0 wt% (PHB content percentage of dry cell weight), while the wild-type control produced only 1.5 wt% PHB. The increase was mainly due to the LPS truncation to Kdo2 (3-deoxy-d-manno-octulosonic acid)-lipid A, which resulted in 82.0 wt% PHB with a 25-fold larger cell volume, and disrupting CA resulted in 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features, including 69.1% less acetate, a 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm, and a higher broken cell ratio. Further detailed mechanism investigations showed that disrupting LPS caused global changes in envelope and cellular metabolism: (i) a sharp decrease in flagella, fimbria, and secretions; (ii) more elastic cells; (iii) much greater carbon flux toward acetyl coenzyme A (acetyl-CoA) and supply of cofactors, including NADP, NAD, and ATP; and (iv) a decrease in by-product acids but increase in γ-aminobutyric acid by activating σE factor. Disrupting CA, flagella, and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicate that engineering the OM is an effective strategy to enhance PHB production and highlight the applicability of OM engineering to increase microbial cell factory performance. IMPORTANCE Understanding the detailed influence of the OM on the cell envelope and cellular metabolism is important for optimizing the E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling the OM to enhance PHB accumulation as representative inclusion bodies. The results generated in this study give essential information for producing other inclusion bodies or chemicals which need more acetyl-CoA and cofactors but less by-product acids. This study is promising to provide new ideas for the improvement of microbial cell factories.
Collapse
|
27
|
|
28
|
Samrot AV, Samanvitha SK, Shobana N, Renitta ER, Senthilkumar P, Kumar SS, Abirami S, Dhiva S, Bavanilatha M, Prakash P, Saigeetha S, Shree KS, Thirumurugan R. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers (Basel) 2021; 13:3302. [PMID: 34641118 PMCID: PMC8512352 DOI: 10.3390/polym13193302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications. In this review, the optimization, extraction, and characterization of PHAs are described. Their production and application in nanotechnology are also portrayed in this review, and the precise and various production methods of PHA-based nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and dialysis are discussed. The characterization techniques such as UV-Vis, FTIR, SEM, Zeta Potential, and XRD are also elaborated.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sree K. Samanvitha
- Department of Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, Tamil Nadu, India;
| | - N. Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Emilin R. Renitta
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India;
| | - P. Senthilkumar
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Suresh S. Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India
| | - S. Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India;
| | - S. Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India;
| | - M. Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - P. Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - S. Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Krithika S. Shree
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - R. Thirumurugan
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India;
| |
Collapse
|
29
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Alsiyabi A, Brown B, Immethun C, Long D, Wilkins M, Saha R. Synergistic experimental and computational approach identifies novel strategies for polyhydroxybutyrate overproduction. Metab Eng 2021; 68:1-13. [PMID: 34464732 DOI: 10.1016/j.ymben.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
Polyhydroxybutyrate (PHB) is a sustainable bioplastic produced by bacteria that is a potential replacement for conventional plastics. This study delivers an integrated experimental and computational modeling approach to decipher metabolic factors controlling PHB production and offers engineering design strategies to boost production. In the metabolically robust Rhodopseudomonas palustris CGA009, PHB production significantly increased when grown on the carbon- and electron-rich lignin breakdown product p-coumarate (C9H8O3) compared to virtually no PHB titer from acetate (C2H3NaO2). The maximum yield did not improve further when grown on coniferyl alcohol (C10H12O3), but comparison of the PHB profiles showed that coniferyl alcohol's higher carbon content resulted in a higher rate of PHB production. Combined experimental results revealed that cytoplasmic space may be a limiting factor for maximum PHB titer. In order to obtain a systems-level understanding of factors driving PHB yield, a model-driven investigation was performed. The model yielded several engineering design strategies including utilizing reduced, high molecular weight substrates that bypass the thiolase reaction (phaA). Based on these strategies, utilization of butyrate was predicted and subsequently validated to produce PHB. Model analysis also explained why nitrogen starvation was not essential for PHB production and revealed that renewable and abundant lignin aromatics are ideal candidates for PHB production. Most importantly, the generality of the derived design rules allows them to be applied to any PHB-producing microbe with similar metabolic features.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Dianna Long
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
31
|
Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life (Basel) 2021; 11:life11080853. [PMID: 34440597 PMCID: PMC8401924 DOI: 10.3390/life11080853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The large production of non-degradable petrol-based plastics has become a major global issue due to its environmental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated with their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available concerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved. Finally, we discuss the forthcoming research on riboregulation, synthetic, and metabolic engineering which could lead to improved strategies for PHAs synthesis in industrial production, thereby reducing the costs currently associated with this procedure.
Collapse
|
32
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
33
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
34
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
35
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
36
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
37
|
Patey D, Mushnikov N, Bowman G, Liu R. Mathematical modeling of population structure in bioreactors seeded with light-controllable microbial stem cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:8182-8201. [PMID: 33378939 PMCID: PMC9714318 DOI: 10.3934/mbe.2020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Industrial bioreactors use microbial organisms as living factories to produce a wide range of commercial products. For most applications, yields eventually become limited by the proliferation of "escape mutants" that acquire a growth advantage by losing the ability to make product. The goal of this work is to use mathematical models to determine whether this problem could be addressed in continuous flow bioreactors that include a "stem cell" population that multiplies rapidly and could be used to compete against the emergence of cheater mutants. In this system, external stimuli can be used to induce stem cell multiplication through symmetric cell division, or to limit stem cell multiplication and induce higher production through an asymmetric cell division that produces one stem cell and one new product-producing "factory cell". Our results show product yields from bioreactors with microbial stem cells can be increased by 18% to 127% over conventional methods, and sensitivity analysis shows that yields could be improved over a broad range of parameter space.
Collapse
Affiliation(s)
- Dane Patey
- Department of Mathematics and Statisitics, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Nikolai Mushnikov
- Department of Molecular Biology, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Grant Bowman
- Department of Molecular Biology, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Rongsong Liu
- Department of Mathematics and Statisitics, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| |
Collapse
|
38
|
Rahman A, Susmi TF, Yasmin F, Karim ME, Hossain MU. Functional annotation of an ecologically important protein from Chloroflexus aurantiacus involved in polyhydroxyalkanoates (PHA) biosynthetic pathway. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
García JE, Labarthe MM, Pagnussat LA, Amenta M, Creus CM, Maroniche GA. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. Syst Appl Microbiol 2020; 43:126130. [PMID: 32882650 DOI: 10.1016/j.syapm.2020.126130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca. 7 Mb with a predicted coding potential of 6710 genes was obtained. Phylogenomic analyses confirmed that Az19 belongs to the brasilense clade and is closely related to strains Az39 and REC3. Functional genomics revealed that the denitrification pathway of Az19 is incomplete, which was in agreement with a reduced growth on nitrate under low O2 concentrations. Putative genes of the general stress response and oxidative stress-tolerance, as well as synthesis of exopolysaccharides, carotenoids, polyamines and several osmolytes, were detected. An additional poly-beta-hydroxybutyrate (PHB) synthase coding gene was found in Az19 genome, but the accumulation of PHB did not increase under salinity. The detection of exclusive genes related to DNA repair led to discover that strain Az19 also has improved UV-tolerance, both in vitro and in planta. Finally, the analysis revealed the presence of multiple kaiC-like genes, which could be involved in stress-tolerance and, possibly, light responsiveness. Although A. brasilense has been a model for the study of beneficial plant-associated rhizobacteria, the evidence collected in this current study suggests, for the first time in this bacterial group, an unexpected possibility of adaptation to the phyllosphere.
Collapse
Affiliation(s)
- Julia E García
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Nicolas Repetto and de los Reseros, Hurlingham B1686, Buenos Aires, Argentina
| | - Maria M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, 2290 Godoy Cruz str., CABA C1425FQB, Argentina
| | - Melina Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, 2290 Godoy Cruz str., CABA C1425FQB, Argentina.
| |
Collapse
|
40
|
Medeiros Garcia Alcântara J, Distante F, Storti G, Moscatelli D, Morbidelli M, Sponchioni M. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnol Adv 2020; 42:107582. [DOI: 10.1016/j.biotechadv.2020.107582] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
|
41
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
42
|
|
43
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
44
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
45
|
Abstract
Bacteria are prime cell factories that can efficiently convert carbon and nitrogen sources into a large diversity of intracellular and extracellular biopolymers, such as polysaccharides, polyamides, polyesters, polyphosphates, extracellular DNA and proteinaceous components. Bacterial polymers have important roles in pathogenicity, and their varied chemical and material properties make them suitable for medical and industrial applications. The same biopolymers when produced by pathogenic bacteria function as major virulence factors, whereas when they are produced by non-pathogenic bacteria, they become food ingredients or biomaterials. Interdisciplinary research has shed light on the molecular mechanisms of bacterial polymer synthesis, identified new targets for antibacterial drugs and informed synthetic biology approaches to design and manufacture innovative materials. This Review summarizes the role of bacterial polymers in pathogenesis, their synthesis and their material properties as well as approaches to design cell factories for production of tailor-made bio-based materials suitable for high-value applications.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
46
|
Lebeau J, Efromson JP, Lynch MD. A Review of the Biotechnological Production of Methacrylic Acid. Front Bioeng Biotechnol 2020; 8:207. [PMID: 32266236 PMCID: PMC7100375 DOI: 10.3389/fbioe.2020.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/22/2023] Open
Abstract
Industrial biotechnology can lead to new routes and potentially to more sustainable production of numerous chemicals. We review the potential of biobased routes from sugars to the large volume commodity, methacrylic acid, involving fermentation based bioprocesses. We cover the key progress over the past decade on direct and indirect fermentation based routes to methacrylic acid including both academic as well as patent literature. Finally, we take a critical look at the potential of biobased routes to methacrylic acid in comparison with both incumbent as well as newer greener petrochemical based processes.
Collapse
Affiliation(s)
- Juliana Lebeau
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - John P Efromson
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
47
|
Falk N, Reid T, Skoyles A, Grgicak-Mannion A, Drouillard K, Weisener CG. Microbial metatranscriptomic investigations across contaminant gradients of the Detroit River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:121-131. [PMID: 31284186 DOI: 10.1016/j.scitotenv.2019.06.451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Microbial community function in freshwater sediments is influenced by the presence and persistence of anthropogenic pollutants, yet simultaneously imposes significant control on their transformation. Thus, microbes provide valuable ecosystem services in terms of biodegradation and bioindicators of compromised habitats. From a remediation perspective it is valuable to leverage the suite of microbial genes at the transcriptional level that are active in either natural versus stressed environments to provide insight into the cycling and fate of contaminants. Metatranscriptomic analysis of total bacterial and archaeal messenger RNA (mRNA) is a useful tool in this facet and was applied to sediments sampled from the Detroit River; a binational Area of Concern (AOC) in the Great Lakes. Previously established sediment surveys and modelling delineated the river into contaminant gradients based on concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals. Differential expression analysis through DESeq2 revealed that microbial transcripts associated with nitrate reduction, methanogenesis, and beta-oxidation were significant in legacy polluted sediments and linked with energetic pathways key in the generation of cellular currencies (acetyl-CoA, succinyl-CoA). Gluconeogenesis and polyester synthesis also showed high abundance in contaminated regions, along with increased expression of stress response genes and transposons, despite decreases in community α-diversity. Aromatic cleavage genes were detected, but in low abundance across the contaminant gradient. These results suggest that microbial communities within the Detroit River exploit unique anabolic and catabolic pathways to derive and store energy from legacy organic contaminants while simultaneously recruiting stress-response and gene transfer mechanisms to cope with xenobiotic pressures. By coupling well-resolved chemical datasets with metatranscriptomics, this study adds to the spatial understanding of in-situ microbial activities in pristine and perturbed freshwater sediments.
Collapse
Affiliation(s)
- N Falk
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada.
| | - T Reid
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada
| | - A Skoyles
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada
| | - A Grgicak-Mannion
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada
| | - K Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada
| | - C G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Dr W, Windsor, ON N9C 1A2, Canada
| |
Collapse
|
48
|
Can biotechnology turn the tide on plastics? Curr Opin Biotechnol 2019; 57:160-166. [DOI: 10.1016/j.copbio.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022]
|
49
|
Aljuraifani AA, Berekaa MM, Ghazwani AA. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. Microbiologyopen 2019; 8:e00755. [PMID: 30350356 PMCID: PMC6562131 DOI: 10.1002/mbo3.755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
Twenty-six different bacterial strains were isolated from samples taken from different locations Dammam, Saudi Arabia, for screening of their polyhydroxyalkanoate (PHA) production capability. The initial screening was conducted by staining with Sudan Black B and Nile Red, followed by examination under fluorescence and electron microscopes to characterize PHA granule formation. The PHA-producing bacterial isolates were identified using 16S rRNA gene analyses; the most potent bacterial strain was identified as Pseudomonas sp. strain-P(16). The PHA production capability of this strain in the presence of different low-cost carbon sources, such as rice bran, dates, and soy molasses, was analyzed. PHA production in the presence of rice bran, dates, and soy molasses was 90.9%, 82.6%, and 91.6%, respectively.
Collapse
Affiliation(s)
- Amal A. Aljuraifani
- Biology Department, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Mahmoud M. Berekaa
- Environmental Health Department, College of Public HealthImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Azzah A. Ghazwani
- Biology Department, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| |
Collapse
|
50
|
Rigouin C, Lajus S, Ocando C, Borsenberger V, Nicaud JM, Marty A, Avérous L, Bordes F. Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell Fact 2019; 18:99. [PMID: 31151440 PMCID: PMC6545009 DOI: 10.1186/s12934-019-1140-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background The oleaginous yeast Yarrowia lipolytica is an organism of choice for the tailored production of various compounds such as biofuels or biopolymers. When properly engineered, it is capable of producing medium-chain-length polyhydroxyalkanoate (mcl-PHA), a biobased and biodegradable polymer that can be used as bioplastics or biopolymers for environmental and biomedical applications. Results This study describes the bioproduction and the main properties of two different mcl-PHA polymers. We generated by metabolic engineering, strains of Y. lipolytica capable of accumulating more than 25% (g/g) of mcl-PHA polymers. Depending of the strain genetic background and the culture conditions, we produced (i) a mcl-PHA homopolymer of 3-hydroxydodecanoic acids, with a mass-average molar mass (Mw) of 316,000 g/mol, showing soft thermoplastic properties with potential applications in packaging and (ii) a mcl-PHA copolymer made of 3-hydroxyoctanoic (3HO), decanoic (3HD), dodecanoic (3HDD) and tetradecanoic (3TD) acids with a Mw of 128,000 g/mol, behaving like a thermoplastic elastomer with potential applications in biomedical material. Conclusion The ability to engineer Y. lipolytica to produce tailored PHAs together with the range of possible applications regarding their biophysical and mechanical properties opens new perspectives in the field of PHA bioproduction. Electronic supplementary material The online version of this article (10.1186/s12934-019-1140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Coraline Rigouin
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Sophie Lajus
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Connie Ocando
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | | | - Jean Marc Nicaud
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | - Alain Marty
- Carbios - Biopôle Clermont-Limagne, 3 rue Emile Duclaux, 63360, Saint-Beauzire, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Florence Bordes
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.
| |
Collapse
|