1
|
Moradinezhad F, Dorostkar M, Niazmand R, Doraki G. Evaluation of essential elements and heavy metals in dried seedless barberry fruits from the main production regions of South Khorasan, Iran. Food Chem 2025; 475:143393. [PMID: 39970569 DOI: 10.1016/j.foodchem.2025.143393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Four major regions (Birjand, Zirkoh, Darmian, and Qaen) of barberry cultivation in South Khorasan, Iran, were selected and investigated. According to the findings, the most abundant mineral elements in the barberry fruits were on average in the order of potassium > phosphorus > calcium > iron > magnesium. The greatest amounts of potassium and calcium were detected in the samples from the Zirkoh region, and the greatest amounts of phosphorus and iron were detected in the samples from the Qaen region. The amounts of zinc and copper in the Birjand, Zirkoh, and Darmian regions were recorded within the allowed range. Heavy elements arsenic and mercury were not present in the samples from all four regions. However, among the studied areas, the Birjand area had the lowest amount of lead and cadmium. According to food standards (FAO and WHO), lead concentration was to some extent greater than maximum level.
Collapse
Affiliation(s)
- Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Maryam Dorostkar
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Gholamreza Doraki
- Department of Agronomy, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
2
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2025; 14:e2403129. [PMID: 39711273 PMCID: PMC11804846 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Victor M. Villapún
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Luke N. Carter
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht3508 GAThe Netherlands
- Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584 CTThe Netherlands
| | - Morgan Lowther
- Paihau‐Robinson Research InstituteVictoria University of WellingtonWellington5010New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of MaterialsDepartment of Materials Science and EngineeringThe Ohio State University1305 Kinnear RoadColumbusOH43212USA
| | | | - Alessandro Mottura
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Yuanbo T. Tang
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Lorenzo Luerti
- Alloyed LtdUnit 15, Oxford Industrial ParkYarntonOX5 1QUUK
| | - Roger C. Reed
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
3
|
Nuruzzaman M, Bahar MM, Naidu R. Diffuse soil pollution from agriculture: Impacts and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178398. [PMID: 39808904 DOI: 10.1016/j.scitotenv.2025.178398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Agricultural activities are essential for sustaining the global population, yet they exert considerable pressure on the environment. A major challenge we face today is agricultural pollution, much of which is diffuse in nature, lacking a clear point of origin for chemical discharge. Modern agricultural practices, which often depend on substantial applications of fertilizers, pesticides, and irrigation water, are key contributors to this form of pollution. These activities lead to downstream contamination through mechanisms such as surface runoff, leaching, soil erosion, wind dispersal, and sedimentation. The environmental and human health consequences of diffuse pollution are profound and cannot be ignored. Accurate assessment of the risks posed by agricultural pollutants is crucial for ensuring the production of safe, high-quality food while safeguarding the environment. This requires systematic monitoring and evaluation of agricultural practices, including soil testing and nutrient management. Furthermore, the development and implementation of best management practices (BMPs) are critical in reducing the levels of agricultural pollution. Such measures are essential for mitigating the negative impacts on ecosystems and public health. Therefore, the adoption of preventive strategies aimed at minimizing pollution and its associated risks is highly recommended to ensure long-term environmental sustainability and human well-being.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
4
|
Tang Y, Lyu T, Cao H, Zhang W, Zhang R, Liu S, Guo T, Zhou X, Jiang Y. Recommendations for the reference concentration of cadmium exposure based on a physiologically based toxicokinetic model integrated with a human respiratory tract model. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135323. [PMID: 39079294 DOI: 10.1016/j.jhazmat.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Cadmium (Cd) poses a significant threat to human health. However, chronic toxicity parameters for inhalation exposure are lacking, especially for noncritical systemic toxic effects. A physiologically based toxicokinetic (PBTK) model can be used to extrapolate toxicity parameters across various exposure routes. We combined a PBTK model with a human respiratory tract (HRT) model, which is applicable to the general population and capable of simulating the deposition and clearance processes of various airborne Cd compounds in the respiratory tract. Monte Carlo analysis was used to simulate the distribution of sensitive parameters to reflect individual variability. Validation based on datasets from general and occupational populations showed that the improved model had acceptable or better predictive performance, outperforming the original model with a 14.45 % decrease in the root mean square error (RMSE). Using this PBTK-HRT model, we extrapolated toxicity parameters from oral exposure to inhalation exposure for four systemic toxic effects with doseresponse relationships but no known inhalation toxicity parameters, and ultimately recommended reference concentrations (RfCs) for four diseases (chronic kidney disease: 0.01 μg/m3, osteoporosis: 0.01 μg/m3, stroke: 0.04 μg/m3, diabetes mellitus: 0.13 μg/m3), contributing to a comprehensive assessment of the health risks of Cd inhalation exposure. ENVIRONMENTAL IMPLICATION: Cadmium (Cd), a heavy metal, can cause lung cancer, chronic kidney disease, and osteoporosis and pose a significant threat to human health. We combined a physiologically based toxicokinetic (PBTK) model with a human respiratory tract (HRT) model to achieve better predictive performance and wider applicability; this model was subsequently employed for route-to-route extrapolation of toxicity parameters. Additionally, for the first time, we focused on multiple subchronic and chronic systemic toxic effects in addition to critical effects and derived their reference concentrations (RfCs), which can be used to assess the health risk of Cd inhalation exposure more comprehensively and accurately.
Collapse
Affiliation(s)
- Yilin Tang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tong Lyu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Wei Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ruidi Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Siqi Liu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tianqing Guo
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xu Zhou
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Wallin M, Andersson EM, Engström G. Blood cadmium is associated with increased fracture risk in never-smokers - results from a case-control study using data from the Malmö Diet and Cancer cohort. Bone 2024; 179:116989. [PMID: 38072370 DOI: 10.1016/j.bone.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Several studies have shown associations between cadmium (Cd) exposure and an increased risk of fractures. However, the size of the risk is still unclear and proper adjustment for smoking is a challenge. The aim of this study was to quantify the association between dietary cadmium measured in blood and fracture risk in the general Swedish population through a large population-based case-control study in never-smokers. METHODS The study included 2113 incident cases with osteoporosis-related fractures and the same number of age- and sex-matched controls in never-smokers from the Swedish population-based Malmö Diet and Cancer study cohort. Cd in blood (B-Cd) was analyzed at baseline (1991-1996). Incident osteoporosis-related fractures (of the hip, distal radius, and proximal humerus) up to the year 2014 were identified using the National Patient Register. Associations between B-Cd and fractures were analyzed using logistic regression. RESULTS Median B-Cd was 0.22 μg/L (P25 = 0.16, P75 = 0.31) among 2103 cases and 0.21 (P25 = 0.15, P75 = 0.30) among 2105 controls. The risk of fracture was significantly increased (OR 1.58; 95 % confidence interval 1.08-2.31, per μg/L of B-Cd), after adjustment for age, sex, BMI, physical activity, and fiber consumption. In analyses by cadmium quartiles, the OR increased monotonically and was significant in the highest quartile of B-Cd (for B-Cd > 0.31 versus B-Cd < 0.15 μg/L; OR 1.21; 95 % confidence interval 1.01-1.45). CONCLUSION Even modestly increased blood cadmium in never-smokers is associated with increased risk of incident osteoporosis-related fractures.
Collapse
Affiliation(s)
- Maria Wallin
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Eva M Andersson
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gunnar Engström
- Department of Clinical Science, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Bilal M, Ali H, Hassan HU, Khan SU, Ghafar R, Akram W, Ahmad H, Mushtaq S, Jafari H, Yaqoob H, Khan MM, Ullah R, Arai T. Cadmium (Cd) influences calcium (Ca) levels in the skeleton of a freshwater fish Channa gachua. BRAZ J BIOL 2024; 84:e264336. [DOI: 10.1590/1519-6984.264336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Environmental contamination with heavy metals is a threat to the organisms due to their toxicity, persistence and bioaccumulation in food chains. The study was aimed to assess cadmium (Cd) effect on calcium (Ca) level in bones of a freshwater fish Channa gachua. 42 fish individuals were kept into six (6) aquaria; labelled aq.0, 1, 2, 3,4 and 5 in the laboratory for treatment. Aq.0 was control group and aq.1, 2,3,4,5 were experimental with treatment solution of Cd 0, 0.1ppm, 0.5ppm, 1ppm, 2.5ppm and 5ppm respectively for three months. After exposure, bones tissue were examined for Cd accumulation and Ca concentration. Highest accumulation of Cd were recorded in aq.5 mean 46.86 ± 0.46 mgkg-1 .and lowest in the control group with mean 0.61 ± 0.06 mgkg-1. The order of Cd bioaccumulation in bones were aq.5 > aq.4 >aq.3 > aq.2 > aq.1 > aq.0. Highest concentration of Ca were noted in aq.0 (Control group) mean 7888.06 ± 4827.22 mgkg-1 and lowest were 1132.36 ± 203.73 mgkg-1 in aq.5 (at 5.0 ppm). Generally a pattern of decreasing Ca level were observed with each rise of Cd bioaccumulation aq.0 > aq.1 > aq.2 > aq.3 > aq.4 > aq.5. Current study indicated that Cd accumulation have substantial effect on Ca level in bones and hence on skeleton system. Strict rules must be implemented by government to control metals pollution and exploitations of biota.
Collapse
Affiliation(s)
- M. Bilal
- Government College University Lahore, Pakistan
| | - H. Ali
- University of Malakand, Pakistan
| | - H. U. Hassan
- University of Karachi, Pakistan; Ministry of National Food Security and Research, Pakistan
| | | | | | | | | | - S. Mushtaq
- Ministry of National Food Security and Research, Pakistan
| | | | | | | | - R. Ullah
- Government College University Lahore, Pakistan
| | - T. Arai
- Universiti Brunei Darussalam, Brunei
| |
Collapse
|
7
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Schaefer HR, Flannery BM, Crosby LM, Pouillot R, Farakos SMS, Van Doren JM, Dennis S, Fitzpatrick S, Middleton K. Reassessment of the cadmium toxicological reference value for use in human health assessments of foods. Regul Toxicol Pharmacol 2023; 144:105487. [PMID: 37640100 DOI: 10.1016/j.yrtph.2023.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The U.S. Food and Drug Administration (FDA) developed an oral toxicological reference value (TRV) for characterizing potential health concerns from dietary exposure to cadmium (Cd). The development of the TRV leveraged the FDA's previously published research including (1) a systematic review for adverse health effects associated with oral Cd exposure and (2) a human physiological based pharmacokinetic (PBPK) model adapted from Kjellstrom and Nordberg (1978) for use in reverse dosimetry applied to the U.S. population. Adverse effects of Cd on the bone and kidney are associated with similar points of departure (PODs) of approximately 0.50 μg Cd/g creatinine for females aged 50-60 based on available epidemiologic data. We also used the upper bound estimate of the renal cortical concentration (50 μg/g Cd) occurring in the U.S. population at 50 years of age as a POD. Based on the output from our reverse dosimetry PBPK Model, a range of 0.21-0.36 μg/kg bw/day was developed for the TRV. The animal data used for the animal TRV derivation (0.63-1.8 μg/kg bw/day) confirms biological plausibility for both the bone and kidney endpoints.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn M Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | | | | | - Jane M Van Doren
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Sherri Dennis
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Suzanne Fitzpatrick
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
9
|
Mo L, Chen L, Wan Y, Huang H, Mo L, Zhu W, Yang G, Li Z, Wei Q, Song J, Yang X. An aqueous extract of Prunella vulgaris L. ameliorates cadmium-induced bone loss by promoting osteogenic differentiation in female rats. Food Chem Toxicol 2023; 180:114005. [PMID: 37640280 DOI: 10.1016/j.fct.2023.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Cadmium (Cd) causes bone loss, concerning inhibiting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Prunella vulgaris L. (PV) has the potential for promoting osteogenic differentiation, but its influence on Cd-induced bone loss is unclear. This study investigated the effect of PV aqueous extract (PVE) on Cd-induced bone loss and its underlying mechanisms. Eight-week-old female SD rats were randomly assigned into four groups and treated for 16 weeks: Control, Cd (50 mg/L of Cd chloride), Cd + PV Low (125 mg/kg bw of PVE), and Cd + PV High (250 mg/kg bw of PVE). PV ameliorated femoral bone loss in Cd-treated rats manifested as increases in bone mineral density, bone volume, trabecular thickness, number, and area, and decreases in trabecular separation. Compared with Cd group, PV-treatment groups had higher serum levels of bone formation markers (ALP, BGP). Additionally, in PV-treatment groups, expressions of bone formation markers (Osterix, Runx2) and molecules involved in osteogenic differentiation signal pathway BMP/Smad (BMP4, Smad1/5/9) in the tibia of rats and isolated rat primary BMSCs were upregulated. These results suggest that PV alleviates Cd-induced bone loss by promoting osteogenic differentiation, which is likely associated with BMP/Smad pathway.
Collapse
Affiliation(s)
- Lijun Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Linquan Chen
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Haibin Huang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Guangyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Ziyin Li
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, PR China
| | - Qinzhi Wei
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
10
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
11
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Huang Z, Wang X, Wang H, Zhang S, Du X, Wei H. Relationship of blood heavy metals and osteoporosis among the middle-aged and elderly adults: A secondary analysis from NHANES 2013 to 2014 and 2017 to 2018. Front Public Health 2023; 11:1045020. [PMID: 36998274 PMCID: PMC10043376 DOI: 10.3389/fpubh.2023.1045020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveThis study aimed to assess the relationship between blood heavy metals and a higher prevalence of osteoporosis in middle-aged and elderly US adults using the National Health and Nutritional Examination Surveys (NHANES).MethodsThe secondary data analysis was performed using the data of NHANES 2013–2014 and 2017–2018. We used the information, including physical examination, laboratory tests, questionnaires, and interviews, provided by participants in NHANES. Logistic regression and weighted quantile sum (WQS) regression models were used to explore the relationships between levels of blood heavy metals and a higher prevalence of osteoporosis.ResultsA total of 1,777 middle-aged and elderly participants were analyzed in this study, comprising 115 participants with osteoporosis and 1,662 without osteoporosis. Adjusted model 1 showed a significant positive relationship between cadmium (Cd) levels and a higher prevalence of osteoporosis (quartile 2, OR = 7.62; 95% CI, 2.01–29.03; p = 0.003; quartile 3, OR = 12.38; 95% CI, 3.88–39.60; p < 0.001; and quartile 4, OR = 15.64; 95% CI, 3.22–76.08; p = 0.001). The fourth quartile of selenium (Se) level (OR = 0.34; 95% CI, 0.14–0.39; p < 0.001) led to a lower prevalence of osteoporosis and exerted a protective effect on model 1. Other models produced similar results to those of model 1. A subgroup analysis showed that Cd levels were positively related to a higher prevalence of osteoporosis in all three models in women, while this relationship was not found in men. The fourth quartile of the Se level was related to a lower prevalence of osteoporosis in both male and female analyses. A significant positive relationship was found between the blood Cd level and a higher prevalence of osteoporosis in the non-smoking subgroup. Blood Se level showed a protective effect on the fourth quartile in both the smoking and non-smoking subgroups.ConclusionBlood Cd level aggravated the prevalence of osteoporosis, while blood Se level could be a protective factor in osteoporosis among the US middle-aged and older populations.
Collapse
|
13
|
Tang H, Ma Y, Li J, Zhang Z, Li W, Cai C, Zhang L, Li Z, Tian Y, Zhang Y, Ji J, Han L, Kang X, Jiang R, Han R. Identification and genetic analysis of major gene ST3GAL4 related to serum alkaline phosphatase in chicken. Res Vet Sci 2023; 155:115-123. [PMID: 36680949 DOI: 10.1016/j.rvsc.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is a marker of osteoblast maturation and an important indicator of bone metabolism. The activity of ALP can reflect the bone metabolism and growth traits of animals, so the polymorphism affecting ALP expression deserves further study. In this study, we identified an SNP site in ST3GAL4 found by genome-wide association studies (GWAS) in previous studies, 8 SNPs were also identified by DNA sequencing. Interestingly, there were 4 SNPs (rs475471G > A, rs475533C > T, rs475621A > G, rs475647C > A) completely linked by haplotype analysis. Therefore, we selected a tag SNP rs475471G > A to further analyze the ALP level of different genotypes in Hubbard leg disease population and an F2 chicken resource population produced by Anka and Gushi chickens and carried out population genetic analysis in 18 chicken breeds. Association analysis showed that this QTL within ST3GAL4 was highly correlated with ALP level. The mutant individuals with genotype AA had the highest ALP level, followed by GA and GG carriers. The mutant individual carriers of AA and GA genotype had higher values for body weight (BW), chest width (CW), body slanting length (BSL), pelvis width (PW) at 4-week, the semi-evisceration weight (SEW), evisceration weight (EW) and Leg weight (LW) than GG genotypes. The amplification and typing of 4852 DNA samples from 18 different breeds showed GG genotype mainly existed in egg-type chickens and dual-type chickens, while the AA genotype was mainly distributed in commercial broilers and F2 resource population. The individual carriers of the AA genotype had the highest ALP and showed better growth performance. Besides, tissue expression analysis used Cobb broiler showed significant differences between different genotypes in the spleen and duodenum. Taken together, this was the first time to determine 9 SNPs within ST3GAL4 related to ALP in chickens, 4 of them were complete linkage with each other, which provides useful information on the mutation of ST3GAL4 and could predict the serum ALP level of chicken early and as an effective potential molecular breeding marker for chickens.
Collapse
Affiliation(s)
- Hehe Tang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yanchao Ma
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Jianzeng Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Zhenzhen Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Wenting Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Chunxia Cai
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Lujie Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Zhuanjian Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yadong Tian
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yanhua Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Jinqing Ji
- Henan Husbandry Breau, Zhengzhou 450008, China
| | - Lu Han
- Henan Husbandry Breau, Zhengzhou 450008, China
| | - Xiangtao Kang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| | - Ruirui Jiang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| | - Ruili Han
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| |
Collapse
|
14
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
15
|
Schaefer HR, Flannery BM, Crosby L, Jones-Dominic OE, Punzalan C, Middleton K. A systematic review of adverse health effects associated with oral cadmium exposure. Regul Toxicol Pharmacol 2022; 134:105243. [PMID: 35981600 DOI: 10.1016/j.yrtph.2022.105243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
Scientific data characterizing the adverse health effects associated with dietary cadmium (Cd) exposure were identified in order to make informed decisions about the most appropriate toxicological reference value (TRV) for use in assessing dietary Cd exposure. Several TRVs are available for Cd and regulatory organizations have used epidemiologic studies to derive these reference values; however, risk of bias (RoB) evaluations were not included in the assessments. We performed a systematic review by conducting a thorough literature search (through January 4, 2020). There were 1714 references identified by the search strings and 328 studies identified in regulatory assessments. After applying the specific inclusion and exclusion criteria, 208 studies (Human: 105, Animal: 103) were considered eligible for further review and data extraction. For the epidemiologic and animal studies, the critical effects identified for oral Cd exposure from the eligible studies were a decrease in bone mineral density (BMD) and renal tubular degeneration. A RoB analysis was completed for 49 studies (30 epidemiological and 19 animal) investigating these endpoints. The studies identified through the SR that were considered high quality and low RoB (2 human and 5 animal) can be used to characterize dose-response relationships and inform the derivation of a Cd TRV.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Olivia E Jones-Dominic
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Cecile Punzalan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
16
|
Guo Y, Huang H, Zhang Z, Ma Y, Li J, Tang H, Ma H, Li Z, Li W, Liu X, Kang X, Han R. Genome-wide association study identifies SNPs for growth performance and serum indicators in Valgus-varus deformity broilers (Gallus gallus) using ddGBS sequencing. BMC Genomics 2022; 23:26. [PMID: 34991478 PMCID: PMC8734266 DOI: 10.1186/s12864-021-08236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background Valgus-varus deformity (VVD) is a lateral or middle deviation of the tibiotarsus or tarsometatarsus, which is associated with compromised growth, worse bone quality and abnormal changes in serum indicators in broilers. To investigate the genetic basis of VVD, a genome wide association study (GWAS) was performed to identify candidate genes and pathways that are responsible for VVD leg disease, serum indicators and growth performance in broilers. Results In total, VVD phenotype, seven serum indicators and three growth traits were measured for 126 VVD broilers (case group) and 122 sound broilers (control group) based on a high throughput genome wide genotyping-by-sequencing (GBS) method. After quality control 233 samples (113 sound broilers and 120 VVD birds) and 256,599 single nucleotide polymorphisms (SNPs) markers were used for further analysis. As a result, a total of 5 SNPs were detected suggestively significantly associated with VVD and 70 candidate genes were identified that included or adjacent to these significant SNPs. In addition, 43 SNPs located on Chr24 (0.22 Mb - 1.79 Mb) were genome-wide significantly associated with serum alkaline phosphatase (ALP) and 38 candidate genes were identified. Functional enrichment analysis showed that these genes are involved in two Gene Ontology (GO) terms related to bone development (cartilage development and cartilage condensation) and two pathways related to skeletal development (Toll−like receptor signaling pathway and p53 signaling pathway). BARX2 (BARX homeobox 2) and Panx3 (Pannexin 3) related to skeleton diseases and bone quality were obtained according to functional analysis. According to the integration of GWAS with transcriptome analysis, HYLS1 (HYLS1 centriolar and ciliogenesis associated) was an important susceptibility gene. Conclusions The results provide some reference for understanding the relationship between metabolic mechanism of ALP and pathogenesis of VVD, which will provide a theoretical basis for disease-resistant breeding of chicken leg soundness. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08236-3.
Collapse
Affiliation(s)
- Yaping Guo
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Hetian Huang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Zhenzhen Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Yanchao Ma
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Jianzeng Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Hehe Tang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Haoxiang Ma
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Zhuanjian Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Wenting Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Xiaojun Liu
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China
| | - Xiangtao Kang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China.
| | - Ruili Han
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P.R. China.
| |
Collapse
|
17
|
Torres-Rodríguez HF, Graniel-Amador MA, Cruz-Camacho CJ, Cantú-Martínez AA, Martínez-Martínez A, Petricevich VL, Montes S, Castañeda-Corral G, Jiménez-Andrade JM. Characterization of pain-related behaviors, changes in bone microarchitecture and sensory innervation induced by chronic cadmium exposure in adult mice. Neurotoxicology 2022; 89:99-109. [PMID: 35065951 DOI: 10.1016/j.neuro.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
18
|
Fujishiro H, Sumino M, Sumi D, Umemoto H, Tsuneyama K, Matsukawa T, Yokoyama K, Himeno S. Spatial localization of cadmium and metallothionein in the kidneys of mice at the early phase of cadmium accumulation. J Toxicol Sci 2022; 47:507-517. [DOI: 10.2131/jts.47.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Miharu Sumino
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Hitomi Umemoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takehisa Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
19
|
Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, Migliaccio S. The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases. J Endocrinol Invest 2021; 44:1363-1377. [PMID: 33501614 DOI: 10.1007/s40618-021-01502-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/06/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd), a highly toxic heavy metal, is found in soil, environment and contaminated water and food. Moreover, Cd is used in various industrial activities, such as electroplating, batteries production, fertilizers, while an important non-occupational source is represented by cigarette smoking, as Cd deposits in tobacco leaves. Since many years it is clear a strong correlation between Cd body accumulation and incidence of many diseases. Indeed, acute exposure to Cd can cause inflammation and affect many organs such as kidneys and liver. Furthermore, the attention has focused on its activity as environmental pollutant and endocrine disruptor able to interfere with metabolic and energy balance of living beings. Both in vitro and in vivo experiments have demonstrated that the Cd-exposure is related to metabolic diseases such as obesity, diabetes and osteoporosis even if human studies are still controversial. Recent data show that Cd-exposure is associated with atherosclerosis, hypertension and endothelial damage that are responsible for cardiovascular diseases. Due to the large environmental diffusion of Cd, in this review, we summarize the current knowledge concerning the role of Cd in the incidence of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- V M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy
| | - Z M Besharat
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - A Antonioni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - V Cella
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - E Ferretti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy.
| |
Collapse
|
20
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Long-Term Accumulation of Metals in the Skeleton as Related to Osteoporotic Derangements. Curr Med Chem 2021; 27:6837-6848. [PMID: 31333081 DOI: 10.2174/0929867326666190722153305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
The concentrations of metals in the environment are still not within the recommended limits as set by the regulatory authorities in various countries because of human activities. They can enter the food chain and bioaccumulate in soft and hard tissues/organs, often with a long half-life of the metal in the body. Metal exposure has a negative impact on bone health and may result in osteoporosis and increased fracture risk depending on concentration and duration of metal exposure and metal species. Bones are a long-term repository for lead and some other metals, and may approximately contain 90% of the total body burden in birds and mammals. The present review focuses on the most common metals found in contaminated areas (mercury, cadmium, lead, nickel, chromium, iron, and aluminum) and their effects on bone tissue, considering the possibility of the long-term bone accumulation, and also some differences that might exist between different age groups in the whole population.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Lyudmila Pivina
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yuliya Semenova
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences,
Elverum, Norway
| |
Collapse
|
21
|
Amuno S, Shekh K, Kodzhahinchev V, Niyogi S, Al Kaissi A. Skeletal pathology and bone mineral density changes in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) inhabiting arsenic polluted areas of Yellowknife, Northwest Territories (Canada): A radiographic densitometry study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111721. [PMID: 33396052 DOI: 10.1016/j.ecoenv.2020.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The City of Yellowknife is a known hotspot of arsenic contamination and there is a growing body of evidence suggesting that local wildlife in the vicinity of the abandoned Giant Mine site may be at risk of decreased bone mineralization and various bone disorders. The purpose of this study was to preliminarily measure bone mineral density (BMD) changes and investigate the incidence, pattern, and severity of bone lesions in wild muskrats and red squirrels breeding in three (3) catchment areas at different distances from the Giant Mine Site in Yellowknife, Northwest Territories (Canada): ~2 km (location 1), ~18 km (location 2), and ~40-100 km (location 3). Full femoral bones of 15 muskrats and 15 red squirrels were collected from the three sampling locations (5 from each location) and subjected to radiographic analysis and densitometric measurements. The patterns and severities of bone lesions, including changes in bone mineral density, were evaluated and compared between groups. As levels were significantly higher in the bones of muskrats caught from location 1 and 2, relative to location 3. Further, As and Cd levels were significantly higher in the bones of squirrels caught from locations 1 and 2 relative to squirrels caught from location 3. The preliminary results from bones revealed that radiographic abnormalities such as bone rarefaction, osteopenia, and thinning of the femoral shafts with significant ossific cystic lesions and bowing were the most common skeletal pathologies found in bones of red squirrels from the three locations. Radiographic appearances of massive sclerosis and dysplasia, including severe osteocondensation and osteopathia striata-like abnormalities, were found in the bones of muskrats from all the sampling locations. Densitometric evaluation showed no significant differences between the three locations in the bone parameters measured. However, there was a statistically significant correlation between As content in the bones of muskrats and percent fat content in the femur samples, which suggests that accumulation of As could have been a causal factor for a change in percent fat in femurs of muskrats.
Collapse
Affiliation(s)
- S Amuno
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada.
| | - K Shekh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - V Kodzhahinchev
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - S Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - A Al Kaissi
- Ludwig Boltzmann Institute of Osteology, at the Hanusch Hospital of OEGK and, AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria and Orthopedic Hospital of Speising, Vienna, Austria
| |
Collapse
|
22
|
Ximenez JPB, Zamarioli A, Kacena MA, Barbosa RM, Barbosa F. Association of Urinary and Blood Concentrations of Heavy Metals with Measures of Bone Mineral Density Loss: a Data Mining Approach with the Results from the National Health and Nutrition Examination Survey. Biol Trace Elem Res 2021; 199:92-101. [PMID: 32356206 DOI: 10.1007/s12011-020-02150-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Osteoporosis and its consequence of fragility fracture represent a major public health problem. Human exposure to heavy metals has received considerable attention over the last decades. However, little is known about the influence of co-exposure to multiple heavy metals on bone density. The present study aimed to examine the association between exposure to metals and bone mineral density (BMD) loss. Blood and urine concentrations of 20 chemical elements were selected from 3 cycles (2005-2010) NHANES (National Health and Nutrition Examination Survey), in which we included white women over 50 years of age and previously selected for BMD testing (N = 1892). The bone loss group was defined as participants having T-score < - 1.0, and the normal group was defined as participants having T-score ≥ - 1.0. We developed classification models based on support vector machines capable of determining which factors could best predict BMD loss. The model which included the five-best features-selected from the random forest were age, body mass index, urinary concentration of arsenic (As), cadmium (Cd), and tungsten (W), which have achieved high scores for accuracy (92.18%), sensitivity (90.50%), and specificity (93.35%). These data demonstrate the importance of these factors and metals to the classification since they alone were capable of generating a classification model with a high prediction of accuracy without requiring the other variables. In summary, our findings provide insight into the important, yet overlooked impact that arsenic, cadmium, and tungsten have on overall bone health.
Collapse
Affiliation(s)
- João Paulo B Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Ariane Zamarioli
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
23
|
Wako Y, Hiratsuka H, Kurotaki T, Tsuchitani M, Umemura T. Relationship between osteoid formation and iron deposition induced by chronic cadmium exposure in ovariectomized rats. J Appl Toxicol 2020; 41:1304-1315. [PMID: 33283302 DOI: 10.1002/jat.4118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022]
Abstract
Itai-itai (Japanese, "It hurts! It hurts!") disease (IID), a form of osteomalacia, can be induced in ovariectomized rats by long-term administration of cadmium (Cd). This IID rat model shows severe anemia, severe nephropathy, and osteomalacia accompanied by iron (Fe) deposition at the mineralization front. We characterized the pathogenesis of Cd-induced bone lesions by investigating the relationship between Fe deposition and osteoid tissue formation in ovariectomized rats. The rats were injected with CdCl2 (0.5 mg/kg) for 70 weeks, with or without co-injection of erythropoietin (EPO) for varying lengths of time to elucidate whether EPO prevents and/or cures anemia, and, with the restoration from anemia, lessens the osteoid tissue formation. Necropsies were performed at 25, 50, or 70 weeks. Fe deposition at the mineralization front of bone was found at 50 weeks and increased thereafter. Animals injected with EPO showed decreased Fe deposition, although there was no relation between EPO administration and osteoid formation in the femur. Because the increase in bone lesion severity was independent of the amount of Fe deposition, we suggest that Fe deposition is not involved in the etiology of Cd-induced femoral bone lesions.
Collapse
Affiliation(s)
- Yumi Wako
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan.,Kumamoto Laboratory, Nonclinical Research Center, LSI Medience Corporation, Kumamoto, Japan
| | - Hideaki Hiratsuka
- Head Office for Open Innovation Strategy, Tohoku University, Sendai, Japan
| | - Tetsurou Kurotaki
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan
| | - Minoru Tsuchitani
- Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, Ibaraki, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Li H, Wallin M, Barregard L, Sallsten G, Lundh T, Ohlsson C, Mellström D, Andersson EM. Smoking-Induced Risk of Osteoporosis Is Partly Mediated by Cadmium From Tobacco Smoke: The MrOS Sweden Study. J Bone Miner Res 2020; 35:1424-1429. [PMID: 32191351 DOI: 10.1002/jbmr.4014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/16/2019] [Revised: 02/19/2020] [Accepted: 03/15/2020] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is a risk factor for osteoporosis and bone fracture. Moreover, smoking causes exposure to cadmium, which is a known risk factor for osteoporosis. It is hypothesized that part of smoking-induced osteoporosis may be mediated via cadmium from tobacco smoke. We investigated this hypothesis using mediation analysis in a Swedish cohort of elderly men. This study was performed in 886 elderly men from the Swedish cohort of the Osteoporotic Fractures in Men (MrOS) study. Urinary samples, bone mineral density (BMD), smoking data, and other background information were obtained at baseline in 2002-2004. Urinary cadmium was analyzed in baseline samples and adjusted for creatinine. The cohort was followed until August 2018 for fracture incidence, based on the X-ray register. Mediation analysis was conducted to evaluate the indirect effect (via cadmium) of smoking on both BMD and fractures. Time to first fracture was analyzed using the accelerated failure time (AFT) model and Aalen's additive hazard model. The mean level of urinary cadmium was 0.25 μg/g creatinine. There were significant inverse associations between smoking and total body, total hip, and trochanter BMD. The indirect effects via cadmium were estimated to be 43% of the total effects of smoking for whole-body BMD, and even more for total hip and trochanter BMD. Smoking was also associated with higher risk of all fractures and major osteoporosis fractures. The indirect effects via cadmium were largest in nonvertebral osteoporosis fractures and hip fractures, constituting at least one-half of the total effects, in both the AFT and Aalen's model. The findings in this study provide evidence that cadmium exposure from tobacco smoke plays an important role in smoking-induced osteoporosis © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Huiqi Li
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Wallin
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Claes Ohlsson
- Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva M Andersson
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Xu MY, Sun YJ, Wang P, Yang L, Wu YJ. Metabolomic biomarkers in urine of rats following long-term low-dose exposure of cadmium and/or chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110467. [PMID: 32182532 DOI: 10.1016/j.ecoenv.2020.110467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Heavy metals and pesticides can be easily enriched in food chains and accumulated in organisms, thus pose significant threat to human health. However, their combined effects for long-term exposure at low dose has not been thoroughly investigated; especially there was no biofluid biomarker available to noninvasively diagnose the toxicosis of the combined exposure of the two chemicals at their low levels. In this study, we investigated the change of urine metabolites of rats with 90-day exposure to heavy metal cadmium (Cd) and/or organophosphorus pesticide chlorpyrifos (CPF) using gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach. Our results showed that the interaction of Cd and CPF mainly displayed an antagonistic effect. We identified the panels of metabolite biomarkers in urine: benzoic acid and mannose were unique biomarkers for Cd exposure; creatinine and N-phenylacetyl glycine were unique biomarkers for CPF exposure; anthranilic acid, ribitol, and glucose were unique biomarkers for Cd plus CPF exposure. Our results suggest that 90-day exposure to Cd and/or CPF could cause a disturbance in energy and amino acid metabolism. And urine metabolomics analysis can help understand the toxicity of low dose exposure to mixed environmental chemicals.
Collapse
Affiliation(s)
- Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, 102206, PR China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lin Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
26
|
Xu MY, Wang P, Sun YJ, Yang L, Wu YJ. Identification of metabolite biomarkers in serum of rats exposed to chlorpyrifos and cadmium. Sci Rep 2020; 10:4999. [PMID: 32193438 PMCID: PMC7081290 DOI: 10.1038/s41598-020-61982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
Chlorpyrifos (CPF) and cadmium (Cd) are widespread environmental pollutants, which are often present in drinking water and foods. However, the combined effects of CPF and Cd were not entirely clear at present. There was also no biomarker available to diagnose the poisoning of the two chemicals at low dose for long-term exposures. In this study, we investigated the change of serum metabolites of rats with subchronic exposure to CPF, Cd, and CPF plus Cd using gas chromatography-mass spectrometer-based metabolomics approach. We performed a stepwise optimization algorithm based on receiver operating characteristic to identify serum metabolite biomarkers for toxic diagnosis of the chemicals at different doses after 90-day exposure. We found that aminomalonic acid was the biomarker for the toxicity of Cd alone administration, and serine and propanoic acid were unique biomarkers for the toxicities of CPF plus Cd administrations. Our results suggest that subchronic exposure to CPF and Cd alone, or in combination at their low doses, could cause disturbance of energy and amino acid metabolism. Overall, we have shown that analysis of serum metabolomics can make exceptional contributions to the understanding of the toxic effects following long-term low-dose exposure of the organophosphorus pesticide and heavy metal.
Collapse
Affiliation(s)
- Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Lin Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| |
Collapse
|
27
|
Guo Y, Tang H, Wang X, Li W, Wang Y, Yan F, Kang X, Li Z, Han R. Clinical assessment of growth performance, bone morphometry, bone quality, and serum indicators in broilers affected by valgus-varus deformity. Poult Sci 2019; 98:4433-4440. [PMID: 31065716 DOI: 10.3382/ps/pez269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
The large economic losses caused by leg disorders have raised concerns in the broiler industry. Several types of leg disorders in broilers have been identified, such as tibial dyschondroplasia (TD), femoral head necrosis (FHN), and valgus-varus deformity (VVD). In this study, phenotypic changes associated with VVD were examined using clinical diagnosis, anatomical examination, measured growth performance, bone traits, and serum indicators. The incidence of VVD among the chicken population at a commercial facility in Tangshan China was 1.75% (n = 52,000), distributed about 1:1 (n = 122), between females and males. A majority of chickens were characterized by a unilaterally abnormality, while appropriately 17.6% by bilateral abnormality. Approximately 97.9% of affected broilers were classified as the "valgus" type. Growth traits, including body weight, shank length, and shank girth, were significantly lower in chickens with VVD, while tibia and metatarsal bone indexes were about 1.3-fold higher in the affected birds than in the normal birds. Bone mineral density, bone breaking strength, and several serum indicators were significantly different between affected and normal broilers. Sparse and disarranged bony trabecular was observed in abnormal broilers by histological analysis. Generally, leg disorders are associated with compromised growth, bone quality, bone structure, and lipid metabolism. This study provides a reference for clinical diagnosis of VVD and lays a foundation for exploring its underlying mechanisms.
Collapse
Affiliation(s)
- Yaping Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hehe Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
28
|
Knani L, Venditti M, Kechiche S, Banni M, Messaoudi I, Minucci S. Melatonin protects bone against cadmium-induced toxicity via activation of Wnt/β-catenin signaling pathway. Toxicol Mech Methods 2019; 30:237-245. [PMID: 31809235 DOI: 10.1080/15376516.2019.1701595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Among heavy metals, cadmium (Cd) is one of the most toxic for health due to it accumulation in several tissues including bone. Since melatonin (MLT) favors new bone formation through several pathways including Wnt/β-catenin, here we assessed whether MLT has a protective role against Cd induced toxicity in the rat bone tissue. Adult male Wistar rats receiving 50 mg CdCl2/L and/or 3 mg/L MLT were used and were sacrificed 30 days after the treatment. Femurs and plasma were collected and analyzed by various biochemicals, molecular and histological investigation. The results showed that Cd exposure induced bone disorder characterized by histopathological alterations, a decreased alkaline phosphatase activity and plasmatic concentration of osteocalcin. Moreover, also the expression levels of some osteogenic-related genes (Runx2, Ocn and Alp) were down-regulated after Cd treatment. Since mechanistically Cd toxicity reduced the Kinase activity of GSK3β and protein levels of Wnt3a and β-catenin, we observed that MLT administration significantly ameliorated the toxic effects induced by the metal. Our findings provide clues about a potential protective effect of MLT against Cd-induced bone metabolism destruction and that the protection was partially mediated via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Latifa Knani
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Safa Kechiche
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Mohamed Banni
- UR13AGR08: Biochimie et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
29
|
Markiewicz-Górka I, Kuropka P, Januszewska L, Jaremków A, Pawłowski P, Pawlas N, Prokopowicz A, Gonzalez E, Nikodem A, Pawlas K. Influence of physical training on markers of bone turnover, mechanical properties, morphological alterations, density and mineral contents in the femur of rats exposed to cadmium and/or alcohol. Toxicol Ind Health 2019; 35:277-293. [PMID: 30983556 DOI: 10.1177/0748233719831534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to investigate the effect of physical training on bone parameters of rats exposed to alcohol (Al) and/or cadmium (Cd). Young female rats were divided into one control group and six groups exposed to Cd and/or Al. Al (36% calories of diet) and Cd (20 mg Cd/kg feed) were administered with liquid diet. Half of the rats from the treated groups were subjected to treadmill training (20 m/min for 0.5 h, 4 days a week). The experiment was carried out for 5 months. Al decreased the concentration of calcium (Ca) and iron (Fe) in the femur, whereas Cd and Cd + Al intake reduced the contents of Ca, Fe and zinc. Al and/or Cd caused an increase in both C-terminal telopeptide of type I collagen (CTX1; bone resorption marker) and osteocalcin (OC; formation indicator) and enhanced the degree of porosity and flexural strength of the femur. Al partially prevented the loss of Fe from the bone caused by Cd, but intensified the inhibition of growth of body weight in comparison with separate exposure to Cd. In rats co-exposed to Cd + Al, the levels of CTX1 were greater compared with those treated with Al or Cd separately, and the density was less than that in rats exposed to Al separately. The training caused increases of magnesium and Ca contents, decreases in CTX1, as well as increases in OC and bone density, decreasing their porosity. The effect of training on the bone status, however, was limited (especially in rats co-exposed to Cd and Al) because of the increase in their mineralization, stimulated by exercises, was insufficient in relation to collagen production intensity. In conclusion, training had favourable effects on some bone parameters, but did not compensate for the negative effects of Al and/or Cd exposure on the poor mineralization and histopathological and morphological changes in the femur.
Collapse
Affiliation(s)
| | - Piotr Kuropka
- 2 Department of Animal Physiology and Biostructure, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Lidia Januszewska
- 1 Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| | | | - Paweł Pawłowski
- 1 Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Pawlas
- 3 Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland.,4 Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Adam Prokopowicz
- 3 Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Ewa Gonzalez
- 5 Kantonsspital Baselland, Bruderholz, Basel, Switzerland
| | - Anna Nikodem
- 6 Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Wroclaw, Poland
| | - Krystyna Pawlas
- 1 Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
30
|
Wang X, Jin P, Zhou Q, Liu S, Wang F, Xi S. Metal Biomonitoring and Comparative Assessment in Urine of Workers in Lead-Zinc and Steel-Iron Mining and Smelting. Biol Trace Elem Res 2019; 189:1-9. [PMID: 30054879 DOI: 10.1007/s12011-018-1449-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 02/01/2023]
Abstract
The exposure of heavy metals (lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), and metalloid arsenicals) and their effects on workers' health from a lead-zinc mine (145 workers) and a steel smelting plant (162 workers) was investigated. Information on subject characteristics was obtained through a questionnaire. We determined the urinary levels of Pb, Cd, Cu, Ni, and arsenicals (including inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), as were 8-hydroxydeoxyguanosine (8-OHdG) and cystatin C. Lead-zinc mine foundry workers had significantly higher concentrations of urinary Pb, Cd, Cu, Ni, iAs, and MMA than did steel smelting plant workers. Individuals who had consumed seafood in the previous 3 days had higher concentrations of urinary Ni than did individuals who had not consumed seafood. The urinary Cd concentrations in the two groups of factory workers may have been affected by daily smoking. There was no significant difference in urinary 8-OHdG between workers from the lead-zinc mine foundry and the steel smelting plant. Urinary Pb and Cd had significant positive linear dose-dependent effects on 8-OHdG. Urinary cystatin C, a sensitive biological indicator reflecting early renal damage, was found at higher levels in lead-zinc mine workers than in steel smelting plant workers. Binary logistic regression analysis showed that age and urinary Cd were significantly associated with urinary cystatin C. These results indicated that workers from lead-zinc mines may be exposed to higher levels of heavy metals which could lead to greater risk of kidney damage.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shengnan Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Fei Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
31
|
Świetlicka I, Tomaszewska E, Muszyński S, Valverde Piedra JL, Świetlicki M, Prószyński A, Cieślak K, Wiącek D, Szymańczyk S, Kamiński D. The effect of cadmium exposition on the structure and mechanical properties of rat incisors. PLoS One 2019; 14:e0215370. [PMID: 30978248 PMCID: PMC6461291 DOI: 10.1371/journal.pone.0215370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2018] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Alterations in the structure and mechanical properties of teeth in adult Wistar rats exposed to cadmium were investigated. Analyses were conducted on two sets of incisors from female and male specimens, that were intoxicated with cadmium (n = 12) or belonged to the control (n = 12). The cadmium group was administered with CdCl2 dissolved in drinking water with a dose of 4mg/kgbw for 10 weeks. The oral intake of cadmium by adult rats led to the range of structural changes in enamel morphology and its mechanical features. A significant increase of cadmium levels in the teeth in comparison to the control, a slight shift in the colour and reduction of pigmented enamel length, higher surface irregularity, a decrease of hydroxyapatite crystals size in the c-axis and simultaneous increase in pigmented enamel hardness were observed. The extent of these changes was sex-dependent and was more pronounced in males.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Jose Luis Valverde Piedra
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Adam Prószyński
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| | - Dariusz Wiącek
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Daniel Kamiński
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
32
|
A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol 2018; 2018:4854152. [PMID: 30675155 PMCID: PMC6323513 DOI: 10.1155/2018/4854152] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of metals in the environment is a matter of concern, since human activities are the major cause of pollution and metals can enter the food chain and bioaccumulate in hard and soft tissues/organs, which results in a long half-life of the metal in the body. Metal intoxication has a negative impact on human health and can alter different systems depending on metal type and concentration and duration of metal exposure. The present review focuses on the most common metals found in contaminated areas (cadmium, zinc, copper, nickel, mercury, chromium, lead, aluminum, titanium, and iron, as well as metalloid arsenic) and their effects on bone tissue. Both the lack and excess of these metals in the body can alter bone dynamics. Long term exposure and short exposure to high concentrations induce an imbalance in the bone remodeling process, altering both formation and resorption and leading to the development of different bone pathologies.
Collapse
|
33
|
Xu MY, Wang P, Sun YJ, Wu YJ. Disruption of Kidney Metabolism in Rats after Subchronic Combined Exposure to Low-Dose Cadmium and Chlorpyrifos. Chem Res Toxicol 2018; 32:122-129. [DOI: 10.1021/acs.chemrestox.8b00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
34
|
Lv A, Ge M, Hu X, Liu W, Li G, Zhang R. Effects of Agaricus blazei Murill Polysaccharide on Cadmium Poisoning on the MDA5 Signaling Pathway and Antioxidant Function of Chicken Peripheral Blood Lymphocytes. Biol Trace Elem Res 2018; 181:122-132. [PMID: 28432527 DOI: 10.1007/s12011-017-1012-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/05/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This experimental study investigated the effect of Agaricus blazei Murill polysaccharide (ABP) on cadmium (Cd) poisoning on the melanoma differentiation-associated gene 5 (MDA5) signaling pathway and antioxidant function of peripheral blood lymphocytes (PBLs) in chickens. The experiments were divided into four groups: 7-day-old chickens with normal saline (0.2 mL single/day), Cd (140 mg/kg), ABP (30 mg/mL, 0.2 mL single/day), and Cd + ABP(140 mg/kg/day + 0.2 mL ABP). Peripheral blood was collected on the 20th, 40th, and 60th days for each group, and PBLs were separated. We attempted to detect the expression of MDA5, downstream signaling molecules, and convergence protein (interferon promoter-stimulating factor 1); transcription factors (IRF3 and NF-κB); the content of cytokines (IL-1β, IL-6, TNF-α, and IFN-β) in PBLs; and the antioxidant index of superoxide dismutase (SOD), malondialdhyde (MDA), and glutathione peroxidase (GSH-Px). The results showed that ABP can reduce the accumulation of Cd in the peripheral blood of chickens; reduce the expression of MDA5 and downstream signaling molecules; and reduce the content of IL-1β, IL-6, TNF-α, and IFN-β in PBLs of chickens. The activity of antioxidant enzymes (SOD and GSH-Px) significantly increased, and the content of MDA decreased. These results showed that they have a certain protective effect of ABP on Cd poisoning in chicken PBLs caused by injury.
Collapse
Affiliation(s)
- Ai Lv
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ming Ge
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuequan Hu
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenjing Liu
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guangxing Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruili Zhang
- Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
35
|
Faroon O, Keith S, Mumtaz M, Ruiz P. Minimal Risk Level Derivation for Cadmium: Acute and Intermediate Duration Exposures. ACTA ACUST UNITED AC 2017; 1:1-12. [PMID: 34414376 DOI: 10.14302/issn.2641-7669.ject-17-1725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
The Agency for Toxic Substances and Disease Registry (ATSDR) lists cadmium as one of its priority hazardous substances. The agency conducted a comprehensive literature review of cadmium and used the information to develop a toxicological profile that identified the full range of health effects associated with exposure to cadmium. It included an assessment that identified screening levels, termed health guidance values or minimal risk levels (MRLs), below which adverse health effects are not expected. In this paper, we describe how MRLs for cadmium are derived. For the acute inhalation MRL, the traditional no observed adverse effect level or lowest observed adverse effect level (NOAEL/LOAEL) approach is used; for the oral intermediate MRL, the benchmark dose (BMD) approach is used. MRLs were developed for the most sensitive route-specific end points, other than mortality and cancer that were sufficiently supported and justified by the data. These included an acute duration (1-14 day exposure) inhalation MRL of 0.03 µg Cd/m3 for alveolar histiocytic infiltration and focal inflammation in alveolar septa and an intermediate duration (15-365 day exposure) oral MRL of 0.5 µg Cd/kg/day for decreased bone mineral density.
Collapse
Affiliation(s)
- Obaid Faroon
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
| | - Sam Keith
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
| | - Moiz Mumtaz
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
| | - Patricia Ruiz
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
| |
Collapse
|
36
|
Iordanidou C, Tsave O, Gabriel C, Hatzidimitriou A, Yavropoulou MP, Mateescu C, Salifoglou A. Synthetic endeavors on cadmium species bearing glycolate and aromatic chelators with structure-specific biotoxic correlations in vitro. J Inorg Biochem 2017; 176:38-52. [PMID: 28846894 DOI: 10.1016/j.jinorgbio.2017.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2017] [Revised: 07/16/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Cadmium is a well-known metallotoxin widespread in the environment and easily reaching cellular targets in lower and higher organisms, including humans. The form(s) of that metal ion through which it interacts with biomolecular targets in a cellular milieu are critical in cell survival. Poised to investigate the structure-specific activity of Cd(II) in a cellular environment and delve into the associated biotoxic processes, binary and ternary systems of that metal ion in the presence of the physiological α-hydroxycarboxylic acid glycolic acid and aromatic (N,N')-binders 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) were examined synthetically in aqueous media and a pH-specific fashion. The arising new materials [Cd(C2H3O3)2]n (1), [Cd(C2H3O3)(C10H8N2)(NO3)]n·nH2O (2), and {[Cd(C2H3O3)(C10H8N2)(H2O)](NO3)}n·2nH2O (3) project coordination polymers, which were physicochemically characterized through elemental analysis, FT-IR, NMR, luminescence and X-ray crystallography. The distinct spectroscopic features of 1-3, with luminescence exemplifying distinct behavior (2,3), further corroborated by crystallographic analysis, lend credence to a structure-specific selection of species employed in ensuing in vitro biological studies. The emerging results in two different cell lines (3T3-L1, Saos-2) reveal a concentration-dependent, structure-specific and cell line-specific toxicity profile of Cd(II), reflecting its coordination composition and formulation, rendering it soluble and bioavailable (1,2). Mechanistic information riding on caspase-dependent investigation unravels that metal ion's specific behavior compromising cell survival and integrity. Employment of ethylenediamine tetraacetic acid (EDTA) a) shows efficient sequestration of Cd(II) away from its toxic reactivity denoting the strength of interactions involved, and b) lends credence to further development of appropriately configured organic binders, selectively providing molecular protection from Cd(II) toxicity.
Collapse
Affiliation(s)
- C Iordanidou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - O Tsave
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Gabriel
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M P Yavropoulou
- Division of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Mateescu
- National Institute for Research and Development in Electrochemistry and Condensed Matter (INCEMC), Strada Dr. A. Paunescu Podeanu, nr. 144, Timisoara 300569, Timis, Romania
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
37
|
Xu MY, Wang P, Sun YJ, Wu YJ. Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. Toxicology 2017; 384:50-58. [PMID: 28433638 DOI: 10.1016/j.tox.2017.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2016] [Revised: 04/08/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
Pesticides and heavy metals are widespread environmental pollutants. Although the acute toxicity of organophosphorus pesticide chlorpyrifos (CPF) and toxic heavy metal cadmium (Cd) is well characterized, the combined toxicity of CPF and Cd, especially the hepatotoxicity of the two chemicals with long-term exposure at a low dose, remained unclear. In this study, we investigated the toxicity in the liver of rats upon subchronic exposure to CPF and Cd at environmentally relevant doses. Rats were given three different doses (1/135 LD50, 1/45 LD50 and 1/15 LD50) of CPF and Cd as well as their mixtures by oral gavage for 90days. After treatment, the liver tissues were subjected to histopathological examination and biochemical analysis. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the metabolomic changes in the rat liver upon CPF, Cd and their mixtures treatment. The results showed that CPF and Cd-induced oxidative damage and disrupted energy, amino acid, and fatty acid metabolism in the liver. Eleven biomarkers in liver were identified for CPF-, Cd-, and their mixture-treated rats. Three metabolites, i.e., butanedioic acid, myo-inositol, and urea, were identified as unique biomarkers for the mixture-treated rats. Moreover, we found that Cd could accelerate the metabolism of CPF in the liver when given together to the rats, which may lead to the potential antagonistic interaction between CPF and Cd. In conclusion, our results indicated that even at environmentally relevant doses, CPF and Cd could disrupt the liver metabolism. In addition, the accelerated metabolism of CPF by Cd may lead to their potential antagonistic interaction.
Collapse
Affiliation(s)
- Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing 102206, PR China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
38
|
Xu MY, Wang P, Sun YJ, Yang L, Wu YJ. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food Chem Toxicol 2017; 103:246-252. [PMID: 28286310 DOI: 10.1016/j.fct.2017.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 12/01/2022]
Abstract
Pesticides and heavy metals can be easily biomagnified in food chains and bioaccumulated in individuals, thus pose significant threat to human health. However, their joint toxicity for long-term exposure at low dose has not been thoroughly investigated. In the present study, we investigated the oxidative damages in brain of rats exposed subchronically to organophosphorus pesticide chlorpyrifos (CPF) and heavy metal cadmium (Cd), and their mixtures at the environmentally relevant doses. Rats were given different doses of CPF and Cd by oral gavage for three months. After treatment, brain tissues were subjected for biochemical analysis. Mitochondrial damage and reactive oxidative species were also measured in neuroblastoma SH-SY5Y cells treated with CPF, Cd and their mixtures. The results showed that CPF and Cd generated protein and lipid peroxidation, disturbed the total antioxidant capability, and altered mitochondria ultrastructure in the brain. Lipids and proteins were sensitive to the oxidative damage induced by CPF and Cd. CPF and Cd decreased mitochondrial potential and induced reactive oxygen species in SH-SY5Y cells. However, the mixture did not display higher toxicity than the sum of that of the individual treatments. Thus, CPF and Cd could have a potential antagonistic interaction on the induction of oxidative stress.
Collapse
Affiliation(s)
- Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing 102206, PR China
| | - Lin Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
39
|
Liao Y, Cao H, Xia B, Xiao Q, Liu P, Hu G, Zhang C. Changes in Trace Element Contents and Morphology in Bones of Duck Exposed to Molybdenum or/and Cadmium. Biol Trace Elem Res 2017; 175:449-457. [PMID: 27392954 DOI: 10.1007/s12011-016-0778-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/16/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023]
Abstract
Cadmium (Cd) and high molybdenum (Mo) can lead to adverse reactions on animals, but the coinduced toxicity of Mo and Cd to bone in ducks was not well understood. The objective of this study was to investigate the changes in trace elements' contents and morphology in bones of duck exposed to Mo or/and Cd. One hundred twenty healthy 11-day-old male ducks were randomly divided into six groups and treated with commercial diet containing Cd or/and Mo. On the 60th and 120th days, the blood, excretion, and metatarsals were collected to determine alkaline phosphatase (ALP) activity and the contents of Mo, Cd, calcium (Ca), phosphorus (P), copper (Cu), iron (Fe), zine (Zn), and selenium (Se). In addition, metatarsals were subjected to histopathological analysis with the optical microscope and radiography. The results indicated that Mo and Cd contents significantly increased while Ca, P, Cu, and Se contents remarkably decreased in metatarsals in coexposure groups (P < 0.01). Contents of Fe and Zn in metatarsals had no significant difference among groups (P > 0.05). Ca content in serum had no significant difference among experimental groups (P > 0.05), but P content was significantly decreased in HMo and HMo + Cd groups (P < 0.05). Contents of Ca and P in excretion and ALP activity were significantly increased in coinduced groups (P < 0.05). Furthermore, osteoporotic lesions, less and thinner trabecular bone were observed in combination groups. The findings suggested that dietary of Cd or/and Mo could lead to bone damages in ducks via disturbing the balance of Ca and P in body and homeostasis of Cu, Fe, Zn, and Se in bones; moreover, the two elements showed a possible synergistic relationship.
Collapse
Affiliation(s)
- Yilin Liao
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Huabin Cao
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Bing Xia
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Qingyang Xiao
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ping Liu
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Guoliang Hu
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.
| | - Caiying Zhang
- College of Animal Husbandry and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.
| |
Collapse
|
40
|
Zhang R, Xing L, Bao J, Sun H, Bi Y, Liu H, Li J. Selenium supplementation can protect from enhanced risk of keel bone damage in laying hens exposed to cadmium. RSC Adv 2017. [DOI: 10.1039/c6ra26614b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate whether selenium (Se) supplementation can provide protection from an enhanced risk of keel bone damage (KBD) in laying hens due to the cadmium (Cd) toxicity associated with sub-chronic exposure.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Lu Xing
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Hanqing Sun
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Yanju Bi
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Huo Liu
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| | - Jianhong Li
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| |
Collapse
|
41
|
Effect of cadmium on bone tissue in growing animals. ACTA ACUST UNITED AC 2016; 68:391-7. [PMID: 27312893 DOI: 10.1016/j.etp.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2015] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022]
Abstract
Accumulation of cadmium (Cd), an extremely toxic metal, can cause renal failure, decreased vitamin D synthesis, and consequently osteoporosis. The aim of this work was to evaluate the effect of Cd on two types of bone in growing Wistar rats. Sixteen 21-day-old male Wistar rats were assigned to one of two groups. The Cd group subcutaneously received 0.5mg/kg of CdCl2 5 times weekly for 3 months. The control group similarly received bidistilled water. Following euthanasia, the mandibles and tibiae were resected, fixed, decalcified and processed histologically to obtain sections for H&E and tartrate-resistant acid phosphatase (TRAP) staining. Photomicrographs were used to determine bone volume (BV/TV%), total growth cartilage width (GPC.Wi) hypertrophic cartilage width (HpZ.Wi), percentage of yellow bone marrow (%YBM), megakaryocyte number (N.Mks/mm(2)), and TRAP+osteoclast number (N.TRAP+Ocl/mm(2)). Results were statistically analyzed using Student's t test. Cd exposed animals showed a significant decrease in subchondral bone volume and a significant increase in TRAP+ osteoclast number and percentage of yellow bone marrow in the tibia, and an increase in megakaryocyte number in mandibular interradicular bone. No significant differences were observed in the remaining parameters. The results obtained with this experimental design show that Cd would seemingly have a different effect on subchondral and interradicular bone. The decrease in bone volume and increase in tibial yellow bone marrow suggest that cadmium inhibits differentiation of mesenchymal cells to osteoblasts, favoring differentiation into adipocytes. The different effects of Cd on interradicular bone might be due to the protective effect of the mastication forces.
Collapse
|
42
|
Romano ME, Enquobahrie DA, Simpson C, Checkoway H, Williams MA. Maternal body burden of cadmium and offspring size at birth. ENVIRONMENTAL RESEARCH 2016; 147:461-8. [PMID: 26970900 PMCID: PMC4866807 DOI: 10.1016/j.envres.2016.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/05/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 05/19/2023]
Abstract
Increasing evidence suggests an inverse association between cadmium (Cd) and size at birth, potentially greatest among female neonates. We evaluated whether greater maternal body burden of Cd is associated with reduced neonatal anthropometry (birthweight, birth length, head circumference, and ponderal index) and assessed whether these associations differ by infant sex. The analytic sample for the present study (n=396) was derived from a subcohort of 750 women randomly drawn from among all participants (N=4344) in the Omega Study, a prospective pregnancy cohort. Creatinine-corrected Cd in maternal clean-catch spot urine samples (U-Cd) was quantified by inductively coupled plasma mass spectrometry. Continuous log2-transformed Cd (log2-Cd) and U-Cd tertiles (low<0.29μg/g creatinine, middle 0.29-0.42μg/g creatinine, high≥0.43μg/g creatinine) were used in multivariable linear regression models. Females had reduced birth length with greater U-Cd tertile, whereas males birth length marginally increased [β(95% CI) females: low=reference, middle=-0.59cm (-1.37, 0.19), high=-0.83cm (-1.69, 0.02), p-trend=0.08; males: low=reference, middle=0.18cm (-0.59, 0.95), high=0.78cm (-0.04, 1.60), p-trend=0.07; p for interaction=0.03]. The log2-Cd by infant sex interaction was statistically significant for ponderal index [p=0.003; β(95% CI): female=0.25kg/m(3) (-0.20, 0.70); male=-0.63kg/m(3) (-1.01, -0.24)] and birth length [p<0.001; β(95% CI): female=-0.47cm (-0.74, -0.20), male=0.32cm (0.00, 0.65)]. Our findings suggest potential sex-specific reversal of Cd's associations on birth length and contribute to the evidence suggesting Cd impairs fetal growth.
Collapse
Affiliation(s)
- Megan E Romano
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Daniel A Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA
| | - Christopher Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Harvey Checkoway
- Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Michelle A Williams
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
43
|
Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 2015; 32:86-106. [PMID: 26302917 DOI: 10.1016/j.jtemb.2015.06.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/22/2015] [Revised: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.
Collapse
Affiliation(s)
- Michael Dermience
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Georges Lognay
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Françoise Mathieu
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Philippe Goyens
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium; Department and Laboratory of Pediatric, Free Universities of Brussels, Brussels, Belgium.
| |
Collapse
|
44
|
Xu F, Liu S, Li S. Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biol Trace Elem Res 2015; 165:214-21. [PMID: 25653004 DOI: 10.1007/s12011-015-0254-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/15/2014] [Accepted: 01/25/2015] [Indexed: 12/30/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that is considered to be a potent toxin to organisms. Selenium (Se) has been known for its concomitant biological effects and characteristics with Cd. Due to the lack of the research regarding how the duality of Cd/Se affects immune cytokines in poultry, this paper aims to partly tackle this question. Chicken splenic lymphocytes with Cd (10(-6) mol/L CdCl2), Se (10(-7) mol/L Na2SeO3), Cd + Se (10(-7) mol/L Na2SeO3 and 10(-6) mol/L CdCl2), and a control group were incubated for 12, 24, 36, 48, and 60 h, respectively. At each time point, the cells were collected and the messenger RNA (mRNA) expression levels of interleukin (IL)-1β, IL-2, IL-4, IL-10, IL-17, and interferon-γ (IFN-γ) were also examined. Compared with the control group and the Se-alone-treated group, the mRNA expression levels of IL-2, IL-4, IL-10, IL-17, and IFN-γ decreased significantly in the Cd-alone-treated group. By contrast, the mRNA expression level of IL-1β markedly increased. Levels of IL-2, IL-4, IL-10, IL-17, and IFN-γ in Cd + Se-treated groups were significantly higher than those in Cd-alone-treated groups; however, the levels were not as high as the Se-alone-treated groups and the control group. The mRNA expression level of IL-1β in the Cd + Se-treated group was lower than in the Cd-alone-treated group. The relationships with IL-2, IL-4, and IL-10 were found to be closer in the PC 1 matrix and 3D plot of the principal component analysis (PCA) loadings. IL-17 and IFN-γ were closer in the matrix of PC 2. However, IL-1β gene expression appeared to be isolated in the matrix of PC 3. In addition, the results of cytokine cluster analysis showed that IL-2, IL-4, IL-10, IL-17, and IFN-γ were in the first group and that IL-1β was in the second group. Therefore, Se partly attenuate immune toxicity induced by Cd in chicken splenic lymphocytes.
Collapse
Affiliation(s)
- Fengping Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | |
Collapse
|
45
|
Xu MY, Sun YJ, Wang P, Xu HY, Chen LP, Zhu L, Wu YJ. Metabolomics analysis and biomarker identification for brains of rats exposed subchronically to the mixtures of low-dose cadmium and chlorpyrifos. Chem Res Toxicol 2015; 28:1216-23. [PMID: 25856237 DOI: 10.1021/acs.chemrestox.5b00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) and chlorpyrifos (CPF) are widespread harmful environmental pollutants with neurotoxicity to mammals. Although the exposure to Cd and CPF at the same time may pose a significant risk to human health, the subchronic combined neurotoxicity of these two chemicals at low levels in the brain is poorly understood. In this study, we treated rats with three doses (low, middle, and high) of Cd, CPF, or their mixture for 90 days. No obvious symptom was observed in the treated animals except those treated with high-dose CPF. Histological results showed that middle and high doses of the chemicals caused neuronal cell damage in brains. GC-MS-based metabonomics analysis revealed that energy and amino acid metabolism were disturbed in the brains of rats exposed to the two chemicals and their combinations even at low doses. We further identified the unique brain metabolite biomarkers for rats treated with Cd, CPF, or both. Two amino acids, tyrosine and l-leucine, were identified as the biomarkers for Cd and CPF treatment, respectively. In addition, a set of five unique biomarkers (1,2-propanediol-1-phosphate, d-gluconic acid, 9H-purine, serine, and 2-ketoisovaleric acid) was identified for the mixtures of Cd and CPF. Therefore, the metabolomics analysis is more sensitive than regular clinical observation and pathological examination for detecting the neurotoxicity of the individual and combined Cd and CPF at low levels. Overall, these results identified the unique biomarkers for Cd and CPF exposure, which provide new insights into the mechanism of their joint toxicity.
Collapse
Affiliation(s)
- Ming-Yuan Xu
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China.,§University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Jian Sun
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China.,‡Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Pan Wang
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China
| | - Hai-Yang Xu
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China
| | - Li-Ping Chen
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China
| | - Li Zhu
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China
| | - Yi-Jun Wu
- †Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, P. R. China
| |
Collapse
|
46
|
Protective effect of Aronia melanocarpa polyphenols against cadmium-induced disorders in bone metabolism: A study in a rat model of lifetime human exposure to this heavy metal. Chem Biol Interact 2015; 229:132-46. [DOI: 10.1016/j.cbi.2015.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2014] [Revised: 12/28/2014] [Accepted: 01/26/2015] [Indexed: 11/20/2022]
|
47
|
Duranova H, Martiniakova M, Omelka R, Grosskopf B, Bobonova I, Toman R. Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta Vet Scand 2014; 56:64. [PMID: 25279860 PMCID: PMC4189194 DOI: 10.1186/s13028-014-0064-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2013] [Accepted: 09/08/2014] [Indexed: 01/19/2023] Open
Abstract
Background Chronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system. Histologically, primary and secondary osteons as basic structural elements of compact bone can also be affected by several toxicants leading to changes in bone vascularization and mechanical properties of the bone. The current study was designed to investigate the effect of subchronic peroral exposure to Cd on femoral bone structure including histomorphometry of the osteons in adult male rats. In our study, 20 one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group, young males received a drinking water containing 30 mg of CdCl2/L, for 90 days. Ten one-month-old males without Cd intoxication served as a control group. After 90 days of daily peroral exposure, body weight, femoral weight, femoral length, cortical bone thickness and histological structure of the femora were analysed. Results We found that subchronic peroral application of Cd had no significant effect on body weight, femoral length and cortical bone thickness in adult rats. On the other hand, femoral weight was significantly increased (P < 0.05) in Cd-intoxicated rats. These rats also displayed different microstructure in the middle part of the compact bone where vascular canals expanded into central area of substantia compacta and supplied primary and secondary osteons. Additionally, a few resorption lacunae which are connected with an early stage of osteoporosis were identified in these individuals. Histomorphometrical evaluations showed that all variables (area, perimeter, maximum and minimum diameter) of the primary osteons’ vascular canals, Haversian canals and secondary osteons were significantly decreased (P < 0.05) in the Cd group rats. This fact points to alterations in bone vascularization. Conclusions Subchronic peroral exposure to Cd significantly influences femoral weight and histological structure of compact bone in adult male rats. It induces an early stage of osteoporosis and causes reduced bone vascularization. Histomorphometrical changes of primary and secondary osteons allow for the conclusion that the bone mechanical properties could be weakened in the Cd group rats. The current study significantly expands the knowledge on damaging action of Cd on the bone.
Collapse
|
48
|
Chovancová H, Omelka R, Boboňová I, Formicki G, Toman R, Martiniaková M. Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats. POTRAVINARSTVO 2014. [DOI: 10.5219/343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Food contamination from natural or anthropogenic sources poses severe risks to health of human and animals. Bone is a metabolically active organ, which can be affected by various toxic substances, such as cadmium (Cd) and diazinon (DZN), leading to disruption in bone metabolic processes. The present study was designed to investigate the effect of simultaneous peroral administration to Cd and DZN on femoral compact bone structure in adult male rats. A total of twenty 1-month-old male Wistar rats were randomized into two experimental groups. In the first group (EG), young males were dosed with a combination of 30 mg CdCl2/L and 40 mg DZN/L in drinking water, for 90 days. Ten 1-month-old males without Cd-DZN intoxication served as a control group (CG). After 90 days of daily peroral exposure, evaluations of femoral bonemacro- and micro-structure were performed in each group. We found no significant differences in body weight, femoral weight, femoral length and cortical bone thickness between both groups (EG and CG). However, rats from the group EG displayed different microstructure in the middle part of the substantia compacta where primary vascular radial bone tissue appeared. In some cases, vascular expansion was so enormous that canals were also present near the periost. On the other hand, they occurred only near endosteal surfaces in rats from the control group. Moreover, a smaller number of primary and secondary osteons was identified in Cd-DZN-exposed rats. This fact signalizes reduced mechanical properties of their bones. Anyway, our results suggest an adaptive response of compact bone tissue to Cd-DZN-induced toxicity in adult male rats in order to prevent osteonecrosis.
Collapse
|
49
|
Ibrahim TA, Tarboush HA, Aljada A, Mohanna MA. The Effect of Selenium and Lycopene on Oxidative Stress in Bone Tissue in Rats Exposed to Cadmium. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.514155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
50
|
Environmental cadmium exposure and osteoporosis: a review. Int J Public Health 2013; 58:737-45. [DOI: 10.1007/s00038-013-0488-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
|