1
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
2
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic Trioxide (ATO III) Induces NAD(P)H Quinone Oxidoreductase 1 (NQO1) Expression in Hepatic and Extrahepatic Tissues of C57BL/6 Mice. Chem Res Toxicol 2024; 37:2040-2051. [PMID: 39630573 DOI: 10.1021/acs.chemrestox.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arsenic trioxide (ATOIII) has emerged as a potent therapeutic agent for acute promyelocytic leukemia (APL), yet its clinical application is often limited by significant adverse effects. This study investigates the molecular mechanisms underlying ATOIII's impact on cellular detoxification pathways, focusing on the regulation of NAD(P)H/quinone oxidoreductase (NQO1), a crucial enzyme in maintaining cellular homeostasis and cancer prevention. We explored ATOIII's effects on NQO1 expression in C57BL/6 mice and Hepa-1c1c7 cells, both independently and in combination with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a known NQO1 inducer. Our findings revealed that ATOIII significantly increased NQO1 expression in hepatic and extrahepatic tissues, as well as in Hepa-1c1c7 cells, at mRNA, protein, and activity levels. This upregulation occurred both in the presence and absence of TCDD. Mechanistically, we demonstrated that ATOIII promotes the nuclear translocation of both nuclear factor erythroid 2-related factor-2 (NRF2) and aryl hydrocarbon receptor (AHR) transcription factors. Furthermore, ATOIII exposure increased antioxidant response element (ARE)-driven reporter gene activity, indicating a transcriptional mechanism of NQO1 induction. Notably, gene silencing experiments confirmed the critical roles of both NRF2 and AHR in mediating ATOIII-induced NQO1 expression. In conclusion, ATOIII exposure is found to upregulate the NQO1 enzyme through a transcriptional mechanism via AHR- and NRF2- dependent mechanisms, offering valuable insights into its therapeutic mechanisms.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Faculty of Pharmacy, Tanta University, Gharbia, Tanta 31111, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| |
Collapse
|
3
|
Neves SP, Bomfim LM, Kataura T, Carvalho SG, Nogueira ML, Dias RB, Valverde LDF, Gurgel Rocha CA, Soares MBP, Silva MMD, Batista AA, Korolchuk VI, Bezerra DP. Ruthenium complex containing 1,3-thiazolidine-2-thione inhibits hepatic cancer stem cells by suppressing Akt/mTOR signalling and leading to apoptotic and autophagic cell death. Biomed Pharmacother 2024; 177:117059. [PMID: 38955086 DOI: 10.1016/j.biopha.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.
Collapse
Affiliation(s)
- Sara P Neves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Larissa M Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sabrine G Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, 49400-000, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, 41253-190, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Monize M da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
4
|
So KY, Oh SH. Arsenite-induced cytotoxicity is regulated by poly-ADP ribose polymerase 1 activation and parthanatos in p53-deficient H1299 cells: The roles of autophagy and p53. Biochem Biophys Res Commun 2023; 656:78-85. [PMID: 36958258 DOI: 10.1016/j.bbrc.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Arsenic is a double-edged sword metalloid since it is both an environmental carcinogen and a chemopreventive agent. Arsenic cytotoxicity can be dependent or independent of the tumor suppressor p53. However, the effects and the underlying molecular mechanisms of arsenic cytotoxicity in p53-deficient cells are still unclear. Here, we report a distinctive cell death mode via PARP-1 activation by arsenic in p53-deficient H1299 cells. H1299 (p53-/-) cells showed higher sensitivity to sodium arsenite (NaAR) than H460 (p53+/+) cells. H460 cells induced canonical apoptosis through caspase-dependent poly-ADP ribose polymerase 1 (PARP-1) cleavage and induced the expression of phospho-p53 and p21. However, H1299 cells induced poly-ADP-ribose (PAR) polymer accumulation and caspase-independent parthanatos, which was inhibited by 3-aminobenzamide (AB) and nicotinamide (NAM). Fractionation studies revealed the mitochondrial translocation of PAR polymers and nuclear translocation of the apoptosis-inducing factor (AIF). Although the exposure of NaAR to p53-overexpressing H1299 cells increased the PAR polymer levels, it inhibited parthanatos by inducing p21 and phospho-p53 expression. LC3-II and p62 accumulated in a NaAR dose- and exposure time-dependent manner, and this accumulation was further enhanced by autophagy inhibition, indicating that arsenic inhibits autophagic flux. p53 overexpression led to a decrease in the p62 levels, an increase in the LC3-II levels, and reduced parthanatos, indicating that arsenic induces p53-dependent functional autophagy. These results show that the NaAR-induced cytotoxicity in p53-deficient H1299 cells is regulated by PARP-1 activation-mediated parthanatos, which is promoted by autophagy inhibition. This suggests that PARP-1 activation could be used as an effective therapeutic approach for arsenic toxicity in p53-deficient cells.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, 309 Pilmundaero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Banerjee M, Yaddanapudi K, States JC. Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure. Toxicol Appl Pharmacol 2022; 454:116255. [PMID: 36162444 PMCID: PMC9683715 DOI: 10.1016/j.taap.2022.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
6
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Inesta-Vaquera F, Navasumrit P, Henderson CJ, Frangova TG, Honda T, Dinkova-Kostova AT, Ruchirawat M, Wolf CR. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116053. [PMID: 33213951 DOI: 10.1016/j.envpol.2020.116053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/26/2023]
Abstract
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Colin J Henderson
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tanya G Frangova
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Albena T Dinkova-Kostova
- Department of Molecular Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - C Roland Wolf
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
8
|
Yang Y, Liu C, Xie T, Wang D, Chen X, Ma L, Zhang A. Role of inhibiting Chk1-p53 pathway in hepatotoxicity caused by chronic arsenic exposure from coal-burning. Hum Exp Toxicol 2021; 40:1141-1152. [PMID: 33501840 DOI: 10.1177/0960327120988880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is a naturally occurring environmental toxicant, chronic exposure to arsenic can cause multiorgan damage, except for typical skin lesions, liver damage is the main problem for health concern in population with arsenic poisoning. Abnormal apoptosis is closely related to liver-related diseases, and p53 is one of the important hallmark proteins in apoptosis progression. This study was to investigate whether arsenic poisoning-induced hepatocyte apoptosis and the underlying role of p53 signaling pathway. A rat model of arsenic poisoning was established by feeding corn powder for 90 days, which was baked with high arsenic coal, then were treated with Ginkgo biloba extract (GBE) for 45 days by gavage. The results showed that arsenic induced liver damage, increased hepatocyte apoptosis and elevated the expression level of Chk1 and the ratios of p-p53/p53 and Bax/Bcl-2 in liver tissues, which were significantly attenuated by GBE. Additionally, to further demonstrate the potential apoptosis-associated mechanism, L-02 cells were pre-incubated with p53 inhibitor pifithrin-α (PFTα), ataxia telangiectasia-mutated (ATM)/ataxia telangiectasia-mutated and Rad3-related (ATR) inhibitor (CGK733) or GBE, then treated with sodium arsenite (NaAsO2) for 24 h. The results showed that GBE, PFTα or CGK733 significantly reduced arsenic-induced Chk1 expression and the ratios of p-p53/p53 and Bax/Bcl-2. In conclusion, Chk1-p53 pathway was involved in arsenic poisoning-induced hepatotoxicity, and inhibiting of Chk1-p53 pathway ameliorated hepatocyte apoptosis caused by coal-burning arsenic poisoning. The study provides a pivotal clue for understanding of the mechanism of arsenic poisoning-induced liver damage, and possible intervention strategies.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chunyan Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Tingting Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
9
|
Dong Z, Gao M, Li C, Xu M, Liu S. LncRNA UCA1 Antagonizes Arsenic-Induced Cell Cycle Arrest through Destabilizing EZH2 and Facilitating NFATc2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903630. [PMID: 32537408 PMCID: PMC7284218 DOI: 10.1002/advs.201903630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/17/2023]
Abstract
Arsenic (As) is a widespread metalloid contaminant, and its internal exposure is demonstrated to cause serious detrimental health problems. Albeit considerable studies are performed to interrogate the molecular mechanisms responsible for As-induced toxicities, the exact mechanisms are not fully understood yet, especially at the epigenetic regulation level. In the present study, it is identified that long non-coding RNA (lncRNA) urothelial cancer associated 1 (UCA1) alleviates As-induced G2/M phase arrest in human liver cells. Intensive mechanistic investigations illustrate that UCA1 interacts with enhancer of zeste homolog 2 (EZH2) and accelerates the latter's protein turnover rate under normal and As-exposure conditions. The phosphorylation of EZH2 at the Thr-487 site by cyclin dependent kinase 1 (CDK1) is responsible for As-induced EZH2 protein degradation, and UCA1 enhances this process through increasing the interaction between CDK1 and EZH2. As a consequence, the cell cycle regulator nuclear factor of activated T cells 2 (NFATc2), a downstream target of EZH2, is upregulated to resist As-blocked cell cycle progress and cytotoxicity. In conclusion, the findings decipher a novel prosurvival signaling pathway underlying As toxicity from the perspective of epigenetic regulation: UCA1 facilitates the ubiquitination of EZH2 to upregulate NFATc2 and further antagonizes As-induced cell cycle arrest.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Changying Li
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
10
|
Arsenic-induced apoptosis in the p53-proficient and p53-deficient cells through differential modulation of NFkB pathway. Food Chem Toxicol 2018; 118:849-860. [PMID: 29944914 DOI: 10.1016/j.fct.2018.06.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Arsenic is a well-known environmental carcinogen and an effective chemotherapeutic agent. The underlying mechanism of this dual-effect, however, is not fully understood. In this study, we applied mouse p53+/+ and p53-/- cells to examine the NFκB pathway and proinflammatory cytokines after arsenic treatment. Arsenic reduced cell viability and increased more apoptosis in the p53-/- cells as compared to p53+/+ cells, which was correlated with activation of SAPK/JNK, p38 MAPK, and AKT pathways. A transcriptional regulatory network analysis revealed that arsenic activated transcription regulatory elements E2F, Egr1, Trp53, Stat6, Bcl6, Creb2 and ATF4 in the p53+/+ cells, while in the p53-/- cells, arsenic treatment altered transcription factors NFκB, Pparg, Creb2, ATF4, and Egr1. We observed dynamic changes in phosphorylated NFκB p65 (p-NFκB p65) and phosphorylated IKKαβ (p-IKKαβ) in both genotypes from 4 h to 24 h after treatment, significant decreases of p-NFκB p65 and p-IKKαβ in the p53-/- cells, whereas increases of p-NFκB p65 and p-IKKαβ were observed in the p53+/+ cells. Our study confirmed the differential modulation of NFκB pathway by arsenic in the p53+/+ or p53-/- cells and this observation of the differential mechanism of cell death between the p53+/+ and p53-/- cells might be linked to the unique ability of arsenic to act as both a carcinogen and a chemotherapeutic agent.
Collapse
|
11
|
Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol 2015; 37:4203-12. [PMID: 26490992 DOI: 10.1007/s13277-015-4029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/27/2014] [Indexed: 12/11/2022] Open
Abstract
Curcumin has anticancer functions in various tumors. It has been shown to induce apoptosis through p53-dependent pathways. p73 gene is a member of the p53 family which encodes both a tumor suppressor (transactivation-competent p73 (TAp73)) and a putative oncogene (dominant-negative p73 (DNp73)); the former shares similarity with the tumor suppressor p53, and the latter behaves as dominant-negative proteins that interfere with the activity of TAp73. To understand the p73-dependent mechanisms that are engaged during curcumin-induced apoptosis, we established a p73 overexpression cell models using p53-deficient Hep3B cells (Hep3B(TAp73/DNp73)). Our results demonstrated that curcumin at concentrations of 40 and 80 μM induced DNA damage, increased TAp73/DNp73 ratio, and also led to apoptosis in the Hep3B(TAp73/DNp73) cells. The apoptotic cell death was concurrent with the loss of mitochondrial membrane potential; release of cytochrome c from mitochondria; and the cleavage of caspase 9, caspase 3, and poly(ADP-ribose) polymerase (PARP). These results demonstrated a p73-dependent mechanism for curcumin-induced apoptosis that involves the mitochondria-mediated pathway.
Collapse
|
12
|
Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. Global analysis of posttranscriptional gene expression in response to sodium arsenite. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:324-30. [PMID: 25493608 PMCID: PMC4383576 DOI: 10.1289/ehp.1408626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/19/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. OBJECTIVES We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. METHODS We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic concentrations of sodium arsenite, and we confirmed some of these changes using real-time reverse-transcription polymerase chain reaction (RT-PCR). RESULTS In arsenite-exposed cells, 186 probe set-identified transcripts were significantly increased and 167 were significantly decreased. When decay rates were analyzed after actinomycin D treatment, only 4,992 (9.1%) of probe set-identified transcripts decayed by > 25% after 4 hr. Of these, 70 were among the 353 whose steady-state levels were altered by arsenite, and of these, only 4 exhibited significantly different decay rates between arsenite and control treatment. Real-time RT-PCR confirmed a major, significant arsenite-induced stabilization of the mRNA encoding δ aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. This change presumably accounted for at least part of the 2.7-fold increase in steady-state ALAS1 mRNA levels seen after arsenite treatment. This could reflect decreases in cellular heme caused by the massive induction by arsenite of heme oxygenase mRNA (HMOX1; 68-fold increase), the rate-limiting enzyme in heme catabolism. CONCLUSIONS We conclude that arsenite modification of mRNA stability is relatively uncommon, but in some instances can result in significant changes in gene expression.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
13
|
Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol 2014; 35:4567-80. [PMID: 24399651 DOI: 10.1007/s13277-013-1601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and demonstrates a 1-year median survival time. Codon-specific hotspot mutations of p53 result in constitutively active mutant p53, which promotes aberrant proliferation, anti-apoptosis, and cell cycle checkpoint failure in GBM. Recently identified CD133(+) cancer stem cell populations (CSC) within GBM also confer therapeutic resistance. We studied targeted therapy in a codon-specific p53 mutant (R273H) created by site-directed mutagenesis in U87MG. The effects of arsenic trioxide (ATO, 1 μM) and all-trans retinoic acid (ATRA, 10 μM), possible targeted treatments of CSCs, were investigated in U87MG neurospheres. The results showed that U87-p53(R273H) cells generated more rapid neurosphere growth than U87-p53(wt) but inhibition of neurosphere proliferation was seen with both ATO and ATRA. U87-p53(R273H) neurospheres showed resistance to differentiation into glial cells and neuronal cells with ATO and ATRA exposure. ATO was able to generate apoptosis at high doses and proliferation of U87-p53(wt) and U87-p53(R273H) cells was reduced with ATO and ATRA in a dose-dependent manner. Elevated pERK1/2 and p53 expression was seen in U87-p53(R273H) neurospheres, which could be reduced with ATO and ATRA treatment. Additionally, differential responses in pERK1/2 were seen with ATO treatment in neurospheres and non-neurosphere cells. In conclusion, codon-specific mutant p53 conferred a more aggressive phenotype to our CSC model. However, ATO and ATRA could potently suppress CSC properties in vitro and may support further clinical investigation of these agents.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA,
| | | | | | | |
Collapse
|
14
|
Fei DL, Koestler DC, Li Z, Giambelli C, Sanchez-Mejias A, Gosse JA, Marsit CJ, Karagas MR, Robbins DJ. Association between In Utero arsenic exposure, placental gene expression, and infant birth weight: a US birth cohort study. Environ Health 2013; 12:58. [PMID: 23866971 PMCID: PMC3733767 DOI: 10.1186/1476-069x-12-58] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epidemiologic studies and animal models suggest that in utero arsenic exposure affects fetal health, with a negative association between maternal arsenic ingestion and infant birth weight often observed. However, the molecular mechanisms for this association remain elusive. In the present study, we aimed to increase our understanding of the impact of low-dose arsenic exposure on fetal health by identifying possible arsenic-associated fetal tissue biomarkers in a cohort of pregnant women exposed to arsenic at low levels. METHODS Arsenic concentrations were determined from the urine samples of a cohort of 133 pregnant women from New Hampshire. Placental tissue samples collected from enrollees were homogenized and profiled for gene expression across a panel of candidate genes, including known arsenic regulated targets and genes involved in arsenic transport, metabolism, or disease susceptibility. Multivariable adjusted linear regression models were used to examine the relationship of candidate gene expression with arsenic exposure or with birth weight of the baby. RESULTS Placental expression of the arsenic transporter AQP9 was positively associated with maternal urinary arsenic levels during pregnancy (coefficient estimate: 0.25; 95% confidence interval: 0.05 - 0.45). Placental expression of AQP9 related to expression of the phospholipase ENPP2 which was positively associated with infant birth weight (coefficient estimate: 0.28; 95% CI: 0.09 - 0.47). A structural equation model indicated that these genes may mediate arsenic's effect on infant birth weight (coefficient estimate: -0.009; 95% confidence interval: -0.032 - -0.001; 10,000 replications for bootstrapping). CONCLUSIONS We identified the expression of AQP9 as a potential fetal biomarker for arsenic exposure. Further, we identified a positive association between the placental expression of phospholipase ENPP2 and infant birth weight. These findings suggest a path by which arsenic may affect birth outcomes.
Collapse
Affiliation(s)
- Dennis Liang Fei
- Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Pharmacology and Toxicology, Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Current address: National Institutes of Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Devin C Koestler
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Zhigang Li
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Camilla Giambelli
- Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Avencia Sanchez-Mejias
- Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Carmen J Marsit
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Margaret R Karagas
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - David J Robbins
- Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Surgery, Molecular Oncology Program, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
15
|
Hu YC, Hsieh BS, Cheng HL, Huang LW, Huang TC, Huang IY, Chang KL. Osteoblasts survive the arsenic trioxide treatment by activation of ATM-mediated pathway. Biochem Pharmacol 2013; 85:1018-26. [PMID: 23337567 DOI: 10.1016/j.bcp.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse effects. We recently found that, in primary osteoblasts, ATO produces oxidative stress and causes DNA tailing, but does not induce apoptosis. We further examined the signaling pathway by which osteoblasts survive ATO treatment, and found that they were arrested at G2/M phase of the cell cycle at 30h and overrode the G2/M boundary at 48h. After treatment for 30h, there was increased Cdc2 phosphorylation and expression of Wee1, a Cdc2 kinase, and expression of the cell cycle inhibitor, p21(waf1/cip1), which interacts with Cdc2. Furthermore, levels of the phosphatase Cdc25C, which activates Cdc2, were decreased, while the ratio of its phosphorylated/inactivated form to the total amount was increased. Moreover, phosphorylation/activation of the checkpoint kinases Chk1, Chk2 and p53 levels were increased, as were levels of activated ATM and γ-H2AX. The cell viability was decreased as an ATM inhibitor was added. Additionally, these effects of ATO on γ-H2AX, Chk1, Chk2, p53, and p21(waf1/cip1) were reduced by an ATM inhibitor. These findings suggest that G2/M phase arrest of osteoblasts is mediated by Chk1/Chk2 activation via an ATM-dependent pathway by which osteoblasts survive.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yu X, Sidhu JS, Hong S, Robinson JF, Ponce RA, Faustman EM. Cadmium induced p53-dependent activation of stress signaling, accumulation of ubiquitinated proteins, and apoptosis in mouse embryonic fibroblast cells. Toxicol Sci 2011; 120:403-12. [PMID: 21252392 DOI: 10.1093/toxsci/kfr010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The tumor suppressor oncoprotein, p53, is a critical regulator of stress-induced growth arrest and apoptosis. p53 activity is regulated through the ubiquitin proteasome system (UPS) with stress-induced disruption leading to increased accumulation of p53, resulting in growth arrest. In the present study, we investigate the role of p53 to determine sensitivity to cadmium (Cd) and whether induction of stress signaling responses and perturbation of the UPS are involved in Cd-induced cytotoxicity and apoptosis. We treated synchronously cultured p53 transgenic mouse embryonic fibroblasts, both wild-type p53+/+ and knockout p53-/- cells, with cadmium chloride (Cd, 0.5-20μM) for 24 h. Cd-induced cytotoxicity was assessed by cellular morphology disruption and neutral red dye uptake assay. Proteins in the stress signaling pathway, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK); ubiquitination, such as high-molecular weight of polyubiquitinated proteins (HMW-polyUb); and apoptotic pathways, were all measured. We found that Cd induced p53-dependent cytotoxicity in the p53+/+ cells, which exhibited a twofold greater sensitivity. We observed a dose-dependent stimulation of p38 MAPK and SAPK/JNK phosphorylation that corresponded to accumulation of HMW-polyUb conjugates and lead to the induction of apoptosis, as evidenced by the elevation of cleaved caspase-3. Our study suggests that Cd-mediated cytotoxicity and induction of stress signaling responses, elevated accumulation of HMW-polyUb conjugates, and resulting apoptosis are all dependent on p53 status.
Collapse
Affiliation(s)
- Xiaozhong Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | | | |
Collapse
|
17
|
Robinson JF, Yu X, Moreira EG, Hong S, Faustman EM. Arsenic- and cadmium-induced toxicogenomic response in mouse embryos undergoing neurulation. Toxicol Appl Pharmacol 2010; 250:117-29. [PMID: 20883709 DOI: 10.1016/j.taap.2010.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/19/2023]
Abstract
Arsenic (As) and cadmium (Cd) are well-characterized teratogens in animal models inducing embryotoxicity and neural tube defects (NTDs) when exposed during neurulation. Toxicological research is needed to resolve the specific biological processes and associated molecular pathways underlying metal-induced toxicity during this timeframe in gestational development. In this study, we investigated the dose-dependent effects of As and Cd on gene expression in C57BL/6J mouse embryos exposed in utero during neurulation (GD8) to identify significantly altered genes and corresponding biological processes associated with embryotoxicity. We quantitatively examined the toxicogenomic dose-response relationship at the gene level. Our results suggest that As and Cd induce dose-dependent gene expression alterations representing shared (cell cycle, response to UV, glutathione metabolism, RNA processing) and unique (alcohol/sugar metabolism) biological processes, which serve as robust indicators of metal-induced developmental toxicity and indicate underlying embryotoxic effects. Our observations also correlate well with previously identified impacts of As and Cd on specific genes associated with metal-induced toxicity (Cdkn1a, Mt1). In summary, we have identified in a quantitative manner As and Cd induced dose-dependent effects on gene expression in mouse embryos during a peak window of sensitivity to embryotoxicity and NTDs in the sensitive C57BL/6J strain.
Collapse
Affiliation(s)
- Joshua F Robinson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
18
|
p53-Dependent anticancer effects of leptomycin B on lung adenocarcinoma. Cancer Chemother Pharmacol 2010; 67:1369-80. [PMID: 20803015 DOI: 10.1007/s00280-010-1434-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/13/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE Leptomycin B (LMB) and/or its derivatives are considered a novel class of cancer therapeutics through blocking chromosome maintenance region 1, which mediates p53 nuclear export. The objectives of the present study were to first evaluate the cytotoxic effects of LMB on a normal human lung epithelial cell line (BEAS-2B) and three human lung adenocarcinoma cell lines with various p53 status (wild type: A549, mutant: NCI-H522, and null: NCI-H358) and then to identify LMB-induced gene expression alterations in human p53 signaling pathway. METHODS Cells were treated with 0.01-100 nM LMB or 0.1% ethanol (vehicle control) for 4-72 h. Gene expression analyses using gene array for 84 genes involved in p53-mediated signaling pathways were performed in A549 and NCI-H358 after treatment with 20 nM LMB or vehicle control for 24 h. RESULTS Cytotoxic results from MTS assays revealed a significant dose- and time-dependent effect of LMB on all cell lines. However, this effect was more pronounced in cancer cells than in normal cells, and cancer cells with p53 wild type tended to be less sensitive than those with p53 mutant or null. A total of 23 genes, predominantly involved in apoptosis and cell cycle/proliferation, were significantly altered in A549 after LMB treatment, while no strong modulating effects were observed in NCI-H358. The protein expression of two selected genes, p21 and survivin, was further confirmed by Western blots. CONCLUSION Our results suggest that LMB has anti-cancer potential and provides a new regimen of individualized therapy for lung cancer treatment.
Collapse
|
19
|
Li Y, Xu Y, Ling M, Yang Y, Wang S, Li Z, Zhou J, Wang X, Liu Q. mot-2-Mediated cross talk between nuclear factor-B and p53 is involved in arsenite-induced tumorigenesis of human embryo lung fibroblast cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:936-942. [PMID: 20199942 PMCID: PMC2920912 DOI: 10.1289/ehp.0901677] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/03/2010] [Indexed: 05/28/2023]
Abstract
BACKGROUND Inactivation of p53 is involved in arsenite-induced tumorigenesis; however, the molecular mechanisms remain poorly understood. OBJECTIVE We investigated the molecular mechanisms underlying the inactivation of p53 and neoplastic transformation induced by arsenite in human embryo lung fibroblast (HELF) cells. METHODS Anchorage-independent growth assays were performed, and tumorigenicity in intact animals was assessed to confirm arsenite-induced neoplastic transformation. We determined the levels and functions of p53, nuclear factor-kappa B (NF-B; a key transcriptional regulator), and mot-2 (a p53 inhibitor) and their relationships in arsenite-induced transformed HELF cells by two-dimensional electrophoresis, reverse-transcriptase polymerase chain reaction, Western blot, immunofluorescence, and co-immunoprecipitation assays. RESULTS Exposure of HELF cells to low levels of arsenite increased their proliferation rate and anchorage-independent growth and disrupted normal contact inhibition. When introduced into nude mice, transformed cells were tumorigenic. We used proteomic analysis to identify proteins with altered expression between untreated and arsenite-exposed cells. We found decreased expression of NF-B repressing factor (NKRF; an inhibitor of NF-B-mediated gene transcription), increased expression of mot-2, and increased activation of NF-B. Changes in cells exposed to 1.0 microM arsenite were more marked than changes in cells exposed to 0.5 or 2.0 microM arsenite. Inactivation of NF-B prevented malignant transformation induced by 1.0 microM arsenite. Moreover, we also identified a mechanism whereby NF-B regulated p53. Specifically, activation of NF-B up-regulated mot-2 expression, which prevented nuclear translocation of p53 and switched the binding preference of the p53 and NF-B coactivator CBP [cyclic AMP-responsive element binding protein (CREB) binding protein] from p53 to NF-B. CONCLUSIONS mot-2-mediated cross talk between NF-B and p53 appears to be involved in arsenite-induced tumorigenesis of HELF cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qizhan Liu
- Address correspondence to Q.Z. Liu, Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P.R. China. Telephone: 86-25-8686-2834. Fax: 86-25-8652-7613. E-mail:
| |
Collapse
|
20
|
Salazar AM, Miller HL, McNeely SC, Sordo M, Ostrosky-Wegman P, States JC. Suppression of p53 and p21CIP1/WAF1 reduces arsenite-induced aneuploidy. Chem Res Toxicol 2010; 23:357-64. [PMID: 20000476 DOI: 10.1021/tx900353v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aneuploidy and extensive chromosomal rearrangements are common in human tumors. The role of DNA damage response proteins p53 and p21(CIP1/WAF1) in aneugenesis and clastogenesis was investigated in telomerase immortalized diploid human fibroblasts using siRNA suppression of p53 and p21(CIP1/WAF1). Cells were exposed to the environmental carcinogen sodium arsenite (15 and 20 microM), and the induction of micronuclei (MN) was evaluated in binucleated cells using the cytokinesis-block assay. To determine whether MN resulted from missegregation of chromosomes or from chromosomal fragments, we used a fluorescent in situ hybridization with a centromeric DNA probe. Micronuclei were predominantly of clastogenic origin in control cells regardless of p53 or p21(CIP1/WAF1) expression. MN with centromere signals in cells transfected with NSC siRNA or Mock increased 30% after arsenite exposure, indicating that arsenite induced aneuploidy in the tGM24 cells. Although suppression of p53 increased the fraction of arsenite-treated cells with MN, it caused a decrease in the fraction with centromeric DNA. Suppression of p21(CIP1/WAF1) like p53 suppression decreased the fraction of MN with centromeric DNA. Our results suggest that cells lacking normal p53 function cannot become aneuploid because they die by mitotic arrest-associated apoptosis, whereas cells with normal p53 function that are able to exit from mitotic arrest can become aneuploid. Furthermore, our current results support this role for p21(CIP1/WAF1) since suppression of p21(CIP1/WAF1) caused a decrease in aneuploidy induced by arsenite, suggesting that p21(CIP1/WAF1) plays a role in mitotic exit.
Collapse
Affiliation(s)
- Ana María Salazar
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
21
|
Van Hummelen P, Sasaki J. State-of-the-art genomics approaches in toxicology. Mutat Res 2010; 705:165-71. [PMID: 20466069 DOI: 10.1016/j.mrrev.2010.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/30/2010] [Indexed: 12/14/2022]
Abstract
Genomics may be an effective tool in decreasing the lengthy drug development process and reducing compound attrition. It can generate specific gene expression profiles induced by chemicals that can be linked to dose and response. Toxicogenomics can identify sensitive biomarkers of early deleterious effects, distinguish genotoxic from non-genotoxic carcinogens and can provide information on the mechanism of action. It can help bridge in vitro to in vivo findings and provide context for preclinical data and thus address human health risks. Issues and shortcomings that still need to be resolved or improved for efficient incorporation of genomics in drug development and environmental toxicology research include data analysis, data interpretation tools and accessible data repositories. In addition, implementation of toxicogenomics in early screening or drug discovery phases and effective use of this information by project teams remains a challenge.
Collapse
|
22
|
Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast. Toxicol Sci 2010; 114:356-77. [PMID: 20061341 PMCID: PMC2840217 DOI: 10.1093/toxsci/kfq003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/28/2009] [Indexed: 01/28/2023] Open
Abstract
Environmental and occupational exposures to heavy metals such as methylmercury (MeHg) and cadmium (Cd) pose significant health risks to humans, including neurotoxicity. The underlying mechanisms of their toxicity, however, remain to be fully characterized. Our previous studies with Cd and MeHg have demonstrated that the perturbation of the ubiquitin-proteasome system (UPS) was associated with metal-induced cytotoxicity and apoptosis. We conducted a microarray-based gene expression analysis to compare metal-altered gene expression patterns with a classical proteasome inhibitor, MG132 (0.5 microM), to determine whether the disruption of the UPS is a critical mechanism of metal-induced toxicity. We treated mouse embryonic fibroblast cells at doses of MeHg (2.5 microM) and Cd (5.0 microM) for 24 h. The doses selected were based on the neutral red-based cell viability assay where initial statistically significant decreases in variability were detected. Following normalization of the array data, we employed multilevel analysis tools to explore the data, including group comparisons, cluster analysis, gene annotations analysis (gene ontology analysis), and pathway analysis using GenMAPP and Ingenuity Pathway Analysis (IPA). Using these integrated approaches, we identified significant gene expression changes across treatments within the UPS (Uchl1 and Ube2c), antioxidant and phase II enzymes (Gsta2, Gsta4, and Noq1), and genes involved in cell cycle regulation pathways (ccnb1, cdc2a, and cdc25c). Furthermore, pathway analysis revealed significant alterations in genes implicated in Parkinson's disease pathogenesis following metal exposure. This study suggests that these pathways play a critical role in the development of adverse effects associated with metal exposures.
Collapse
Affiliation(s)
| | | | | | | | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 98105
| |
Collapse
|
23
|
Yu X, Hong S, Moreira EG, Faustman EM. Improving in vitro Sertoli cell/gonocyte co-culture model for assessing male reproductive toxicity: Lessons learned from comparisons of cytotoxicity versus genomic responses to phthalates. Toxicol Appl Pharmacol 2009; 239:325-36. [PMID: 19560483 DOI: 10.1016/j.taap.2009.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/25/2022]
Abstract
Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE) on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.
Collapse
Affiliation(s)
- Xiaozhong Yu
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite #100, Seattle, WA 98105-6099, USA
| | | | | | | |
Collapse
|
24
|
Mattingly CJ, Hampton TH, Brothers KM, Griffin NE, Planchart A. Perturbation of defense pathways by low-dose arsenic exposure in zebrafish embryos. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:981-7. [PMID: 19590694 PMCID: PMC2702417 DOI: 10.1289/ehp.0900555] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/22/2009] [Indexed: 04/14/2023]
Abstract
BACKGROUND Exposure to arsenic is a critical risk factor in the complex interplay among genetics, the environment, and human disease. Despite the potential for in utero exposure, the mechanism of arsenic action on vertebrate development and disease is unknown. OBJECTIVES The objective of this study was to identify genes and gene networks perturbed by arsenic during development in order to enhance understanding of the molecular mechanisms of arsenic action. METHODS We exposed zebrafish embryos at 0.25-1.25 hr postfertilization to 10 or 100 ppb arsenic for 24 or 48 hr. We then used total RNA to interrogate genome microarrays and to test levels of gene expression changes by quantitative real-time polymerase chain reaction (QPCR). Computational analysis was used to identify gene expression networks perturbed by arsenic during vertebrate development. RESULTS We identified a set of 99 genes that responded to low levels of arsenic. Nineteen of these genes were predicted to function in a common regulatory network that was significantly associated with immune response and cancer (p < 10(-41)). Arsenic-mediated expression changes were validated by QPCR. CONCLUSIONS In this study we demonstrated that arsenic significantly down-regulates expression levels of multiple genes potentially critical for regulating the establishment of an immune response. The data also provide molecular evidence consistent with phenotypic observations reported in other model systems. Additional mechanistic studies will help explain molecular events regulating early stages of the immune system and long-term consequences of arsenic-mediated perturbation of this system during development.
Collapse
Affiliation(s)
| | - Thomas H. Hampton
- Center for Environmental Health Sciences, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Nina E. Griffin
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Antonio Planchart
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
- Address correspondence to A. Planchart, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Rd., Salisbury Cove, ME 04679 USA. Telephone: (207) 288-9880 ext. 443. Fax: (207) 288-2130. E-mail:
| |
Collapse
|
25
|
Florea AM, Büsselberg D. Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology 2009; 30:803-10. [PMID: 19465052 DOI: 10.1016/j.neuro.2009.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
(Neuro-)toxicity of metal and metal compounds is frequently highlighted. While specific metals or metal compounds are essential for cellular function, other metals are toxic and/or carcinogens. Metals can trigger accidental cell death in the form of necrosis, or activate programmed cell death in the form of apoptosis. The aim of anti-cancer therapy is induction of apoptosis in tumor cells. Therefore, there is an interesting twist in the toxicity of metals and metal compounds (e.g., arsenic trioxide, cisplatin); since they have a higher specificity to induce apoptosis in cancer cells (possibly due to the high turnover in these cells) they are used to cure some forms of cancer. A body of evidence suggests that second messengers, such as modulations in the intracellular calcium concentration, could be involved in metals induced toxicity as well as in the beneficial effects shown by anti-cancer drugs. Here we review the influence on calcium homeostasis induced by some metallic compounds: cisplatin, arsenic trioxide and trimethyltin chloride.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | |
Collapse
|
26
|
Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 2008; 674:3-22. [PMID: 19114126 DOI: 10.1016/j.mrgentox.2008.11.012] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Apoptosis is an evolutionary conserved homeostatic process involved in distinct physiological processes including organ and tissue morphogenesis, development and senescence. Its deregulation is also known to participate in the etiology of several human diseases including cancer, neurodegenerative and autoimmune disorders. Environmental stressors (cytotoxic agents, pollutants or toxicants) are well known to induce apoptotic cell death and to contribute to a variety of pathological conditions. Oxidative stress seems to be the central element in the regulation of the apoptotic pathways triggered by environmental stressors. In this work, we review the established mechanisms by which oxidative stress and environmental stressors regulate the apoptotic machinery with the aim to underscore the relevance of apoptosis as a component in environmental toxicity and human disease progression.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, P. O. Box 12233, 111. T.W. Alexander Drive, Research Triangle Park, NC 27709, United States.
| | | | | | | |
Collapse
|