1
|
Mahadik SR, Reddy ART, Choudhary K, Nama L, Jamdade MS, Singh S, Murti K, Kumar N. Arsenic induced cardiotoxicity: An approach for molecular markers, epigenetic predictors and targets. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104558. [PMID: 39245244 DOI: 10.1016/j.etap.2024.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant, has been acknowledged as a significant issue for public health due to its widespread pollution of drinking water and food supplies. The present review aimed to study the toxicity associated with the cardiac system. Prolonged exposure to arsenic has been associated with several harmful health outcomes, especially cardiotoxicity. Arsenic-induced cardiotoxicity encompasses a range of cardiovascular abnormalities, including cardiac arrhythmias, ischemic heart disease, and cardiomyopathy. To tackle this toxicity, understanding the molecular markers, epigenetic predictors, and targets involved in arsenic-induced cardiotoxicity is essential for creating preventative and therapeutic approaches. For preventive measures against this heavy metal poisoning of groundwater, it is crucial to regularly monitor water quality, re-evaluate scientific findings, and educate the public about the possible risks. This review thoroughly summarised what is currently known in this field, highlighting the key molecular markers, epigenetic modifications, and potential therapeutic targets associated with arsenic-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sakshi Ramesh Mahadik
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Annem Ravi Teja Reddy
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Mohini Santosh Jamdade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
2
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
3
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
4
|
Rezaeian M, Mohamadi M, Ahmadinia H, Mohammadi H, Ghaffarian-Bahraman A. Lead and arsenic contamination in henna samples marketed in Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:913. [PMID: 37395865 DOI: 10.1007/s10661-023-11532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Since ancient times, people around the world have used natural cosmetics to improve or change the appearance of their nails, skin, and hair. Henna is a plant-based dye that has been used over the centuries for medical and cosmetic purposes. The present work was aimed to investigate the presence of lead (Pb) and arsenic (As) in various types of commonly consumed henna samples in Iran. A total of thirty-nine henna samples from both local and imported products (3 colors in 13 brands) were randomly collected from popular and herbal medicine markets. The atomic absorption spectrometry (AAS) technique was used for the analysis of the samples. The amount of Pb and As in 100% samples was higher than the calculated limit of quantitation (LOQ). The concentrations of Pb and As in the samples were at the ranges of 9.56-16.94 μg/g and 0.25-1.12 μg/g, respectively. The mean level of Pb was higher in black and red products, compared with the green henna. The levels of Pb and As in 53.85% and 7.7% of the henna samples exceeded the permissible limits recommended by the World Health Organization (WHO), respectively. In addition, the mean levels of Pb and As contamination in the imported samples were significantly higher, in comparison to the local henna samples. To our knowledge, this is the first study assessing Pb and As contamination in the henna samples consumed in Iran. Our study demonstrated that there is a potential risk of exposure to Pb through henna in the Iranian consumers.
Collapse
Affiliation(s)
- Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, Medical School, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Mohamadi
- Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, Medical School, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology, Faculty of Pharmacy, Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Vidosavljević M, Puntarić D, Gvozdić V, Vidosavljević D, Šijanović S, Šekerija M, Venus M, Jovičić M, Begović L. ARSENIC IN DRINKING WATER AND URINE AND ITS RELATIONSHIP WITH MALIGNANT TUMORS OF URINARY TRACT IN OSIJEK-BARANJA COUNTY, CROATIA. Acta Clin Croat 2023; 62:95-103. [PMID: 38966031 PMCID: PMC11221220 DOI: 10.20471/acc.2023.62.s2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Increased values of arsenic in potable water in eastern Croatia has been a matter of scientific interest for the past two decades due to numerous health effects, including carcinogenic ones. This study investigated whether prolonged exposure to increased arsenic from water could be detectable through increased arsenic in urine, and whether it influenced the incidence of kidney and bladder cancer in Osijek-Baranja County. Inductively coupled plasma mass spectrometry (ICP-MS) was used for analysis of water samples from available water sources (wells, aqueducts). In addition, examinees from Osijek, Našice, Vladislavci, Čepin and Dalj gave their urine samples for analysis. Data on cancer incidence were obtained from the Institute for Public Health Registry and cumulative incidence of kidney and bladder cancer was calculated for the period between January 1, 2000 and December 31, 2018. Elevated arsenic concentration in drinking water was recorded in Vladislavci, Čepin and Osijek area with values above the allowed maximum according to the EU standards (10 µg L-1) and as a result, arsenic levels in urine of the inhabitants were also elevated. Cumulative incidence for bladder cancer showed correlation between increased arsenic in water and urine in the areas affected by increased arsenic in water. Epidemiologic data suggest a conclusion that elevated arsenic could be considered at least as a cofounding factor for urinary tract cancer.
Collapse
Affiliation(s)
- Marina Vidosavljević
- Molecular Biosciences Interdisciplinary Postgraduate Study, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Health Care Center of Osijek-Baranya County, Osijek, Croatia
| | | | - Vlatka Gvozdić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Vidosavljević
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Siniša Šijanović
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Miroslav Venus
- Sveti Rok Institute of Public Health of Virovitica-Podravina County, Virovitica, Croatia
| | - Miloš Jovičić
- Faculty of Medicine in Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
Upadhyay AK, Mallick S, Singh R, Singh L, Singh N, Mandotra SK, Singh A, Srivastava RP, Pandey S, Saxena G. Novel cost-effective design for bio-volatilization studies in photosynthetic microalgae exposed to arsenic with emphasis on growth and glutathione modulation. Front Microbiol 2023; 14:1170740. [PMID: 37405156 PMCID: PMC10315497 DOI: 10.3389/fmicb.2023.1170740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
A novel laboratory model was designed to study the arsenic (As) biotransformation potential of the microalgae Chlorella vulgaris and Nannochloropsis sp. and the cyanobacterium Anabaena doliolum. The Algae were treated under different concentrations of As(III) to check their growth, toxicity optimization, and volatilization potential. The results revealed that the alga Nannochloropsis sp. was better adopted in term of growth rate and biomass than C. vulgaris and A. doliolum. Algae grown under an As(III) environment can tolerate up to 200 μM As(III) with moderate toxicity impact. Further, the present study revealed the biotransformation capacity of the algae A. doliolum, Nannochloropsis sp., and Chlorella vulgaris. The microalga Nannochloropsis sp. volatilized a large maximum amount of As (4,393 ng), followed by C. vulgaris (4382.75 ng) and A. doliolum (2687.21 ng) after 21 days. The present study showed that As(III) stressed algae-conferred resistance and provided tolerance through high production of glutathione content and As-GSH chemistry inside cells. Thus, the biotransformation potential of algae may contribute to As reduction, biogeochemistry, and detoxification at a large scale.
Collapse
Affiliation(s)
- Atul K. Upadhyay
- Department of Environmental Science, School of Earth & Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shekhar Mallick
- Plant Ecology and Environmental Science, National Botanical Research Institute, Lucknow, India
| | - Ranjan Singh
- Department of Environmental Science, School of Earth & Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Lav Singh
- Central Academy for State Forest Services, Burnight, Assam, India
- Forest Training Institute, Kanpur (Ministry of Environment, Forest and Climate change, Govt. of Uttar Pradesh, India
| | - Nitesh Singh
- Department of Plant Pathology, Faculty of Agricultural Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, India
| | - S. K. Mandotra
- Department of Botany, Panjab University, Chandigarh, India
| | - Arpit Singh
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
| | | | - Shivaraman Pandey
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
- Government PG College, Datia, Madhya Pradesh, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Ferragut Cardoso AP, Nail AN, Banerjee M, Wise SS, States JC. miR-186 induces tetraploidy in arsenic exposed human keratinocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114823. [PMID: 36989553 DOI: 10.1016/j.ecoenv.2023.114823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Sandra S Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Glodowska M, Ma Y, Smith G, Kappler A, Jetten M, Welte CU. Nitrate leaching and its implication for Fe and As mobility in a Southeast Asian aquifer. FEMS Microbiol Ecol 2023; 99:fiad025. [PMID: 36918194 PMCID: PMC10038221 DOI: 10.1093/femsec/fiad025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The drinking water quality in Southeast Asia is at risk due to arsenic (As) groundwater contamination. Intensive use of fertilizers may lead to nitrate (NO3-) leaching into aquifers, yet very little is known about its effect on iron (Fe) and As mobility in water. We ran a set of microcosm experiments using aquifer sediment from Vietnam supplemented with 15NO3- and 13CH4. To assess the effect of nitrate-dependent anaerobic methane oxidation (N-DAMO) we also inoculated the sediment with two different N-DAMO enrichment cultures. We found that native microorganisms and both N-DAMO enrichments could efficiently consume all NO3- in 5 days. However, CH4 oxidation was observed only in the inoculated microcosms, suggesting that the native microbial community did not perform N-DAMO. In uninoculated microcosms, NO3- was preferentially used over Fe(III) as an electron acceptor and consequently inhibited Fe(III) reduction and As mobilization. The addition of N-DAMO enrichment cultures led to Fe(III) reduction and stimulated As and Mn release into the water. The archaeal community in all treatments was dominated by Ca. Methanoperedens while the bacterial community consisted of various denitrifiers. Our results suggest that input of N fertilizers to the aquifer decreases As mobility and that CH4 cannot serve as an electron donor for NO3- reduction.
Collapse
Affiliation(s)
- Martyna Glodowska
- Department of Microbiology, RIBES, Radboud University, 6525, Nijmegen, the Netherlands
| | - Yinxiao Ma
- Department of Microbiology, RIBES, Radboud University, 6525, Nijmegen, the Netherlands
| | - Garrett Smith
- Department of Microbiology, RIBES, Radboud University, 6525, Nijmegen, the Netherlands
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074, Tübingen, Germany
| | - Mike Jetten
- Department of Microbiology, RIBES, Radboud University, 6525, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, 6525, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Rasin P, Haribabu J, Malappuram KM, Manakkadan V, Palakkeezhillam VNV, Echeverria C, Sreekanth A. A “turn-on” fluorescent chemosensor for the meticulous detection of gallium (III) ion and its use in live cell imaging, logic gates and keypad locks. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang N, Li W, Wang N, Li M, Wang H. Influence of Humic Acids on the Removal of Arsenic and Antimony by Potassium Ferrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4317. [PMID: 36901331 PMCID: PMC10001810 DOI: 10.3390/ijerph20054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the removal ability of potassium ferrate (K2FeO4) on aqueous heavy metals has been confirmed by many researchers, little information focuses on the difference between the individual and simultaneous treatment of elements from the same family of the periodic table. In this project, two heavy metals, arsenic (As) and antimony (Sb) were chosen as the target pollutants to investigate the removal ability of K2FeO4 and the influence of humic acid (HA) in simulated water and spiked lake water samples. The results showed that the removal efficiencies of both pollutants gradually increased along the Fe/As or Sb mass ratios. The maximum removal rate of As(III) reached 99.5% at a pH of 5.6 and a Fe/As mass ratio of 4.6 when the initial As(III) concentration was 0.5 mg/L; while the maximum was 99.61% for Sb(III) at a pH of 4.5 and Fe/Sb of 22.6 when the initial Sb(III) concentration was 0.5 mg/L. It was found that HA inhibited the removal of individual As or Sb slightly and the removal efficiency of Sb was significantly higher than that of As with or without the addition of K2FeO4. For the co-existence system of As and Sb, the removal of As was improved sharply after the addition of K2FeO4, higher than Sb; while the latter was slightly better than that of As without K2FeO4, probably due to the stronger complexing ability of HA and Sb. X-ray energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the precipitated products to reveal the potential removal mechanisms based on the experimental results.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Wenwen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao 266061, China
| | - Man Li
- Shandong Soil Pollution Prevention and Recalcination Center, Jinan 250033, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
11
|
Medina S, Zhang H, Santos-Medina LV, Yee ZA, Martin KJ, Wan G, Bolt AM, Zhou X, Stýblo M, Liu KJ. Arsenite Methyltransferase Is an Important Mediator of Hematotoxicity Induced by Arsenic in Drinking Water. WATER 2023; 15:448. [PMID: 36936034 PMCID: PMC10019457 DOI: 10.3390/w15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic arsenic exposures via the consumption of contaminated drinking water are clearly associated with many deleterious health outcomes, including anemia. Following exposure, trivalent inorganic arsenic (AsIII) is methylated through a series of arsenic (+III oxidation state) methyltransferase (As3MT)-dependent reactions, resulting in the production of several intermediates with greater toxicity than the parent inorganic arsenicals. The extent to which inorganic vs. methylated arsenicals contribute to AsIII-induced hematotoxicity remains unknown. In this study, the contribution of As3MT-dependent biotransformation to the development of anemia was evaluated in male As3mt-knockout (KO) and wild-type, C57BL/6J, mice following 60-day drinking water exposures to 1 mg/L (ppm) AsIII. The evaluation of hematological indicators of anemia revealed significant reductions in red blood cell counts, hemoglobin levels, and hematocrit in AsIII-exposed wild-type mice as compared to unexposed controls. No such changes in the blood of As3mt-KO mice were detected. Compared with unexposed controls, the percentages of mature RBCs in the bone marrow and spleen (measured by flow cytometry) were significantly reduced in the bone marrow of AsIII-exposed wild-type, but not As3mt-KO mice. This was accompanied by increased levels of mature RBCS in the spleen and elevated levels of circulating erythropoietin in the serum of AsIII-exposed wild-type, but not As3mt-KO mice. Taken together, the findings from the present study suggest that As3MT-dependent biotransformation has an essential role in mediating the hematotoxicity of AsIII following drinking water exposures.
Collapse
Affiliation(s)
- Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | | | - Zachary A. Yee
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Kaitlin J. Martin
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Du C, Li Z. Contamination and health risks of heavy metals in the soil of a historical landfill in northern China. CHEMOSPHERE 2023; 313:137349. [PMID: 36435322 DOI: 10.1016/j.chemosphere.2022.137349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Landfill-induced heavy metal (HM) contamination of soils is a widespread and complex problem. The levels and potential hazards of HM contamination in landfills must be evaluated before they can be reused for any purpose. In order to reuse a historical landfill in northern China, 376 sampling sites were selected in 2019 using the checkerboard layout method, and the levels of arsenic (As), mercury (Hg), antimony (Sb), copper (Cu), lead (Pb), cadmium (Cd), nickel (Ni), zinc (Zn), and thallium (Tl) in the soil were measured. Multiple evaluation methods established the HM pollution levels, agricultural suitability, and health risks associated with the sampling sites. In most parts of the study area, the concentrations of all nine HMs exceeded the screening levels and maximum allowable concentrations for agricultural soils. Only the soils in Zones 5 and 6 can be used for agricultural activity. Moreover, the deep soils were heavily contaminated with HMs in certain areas, possibly because of leaching and infiltration in the surface soil and the rise and diffusion of polluted groundwater. The soil HMs in the study area posed a higher carcinogenic risks to both adults and children. The average carcinogenic risk associated with As was 6.12 × 10-4, which was the major contributor to carcinogenic risk at all HM-contaminated sites. The results of this work empirically demonstrated that soil HM pollution is severe and problematic in the study area and remedial measures are urgently required.
Collapse
Affiliation(s)
- Chuan Du
- State Nuclear Electric Power Planning Design and Research Institute CO., LTD, Beijing, 100095, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhanping Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China; Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Toxic metals and essential elements contents in fruit juices and other non-alcoholic beverages from local markets in New Orleans, Louisiana. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Nuvolone D, Stoppa G, Petri D, Voller F. Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy). BMC Public Health 2023; 23:71. [PMID: 36627610 PMCID: PMC9832768 DOI: 10.1186/s12889-022-14818-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Arsenic in drinking water is a global public health concern. This study aims to investigate the association between chronic low-level exposure to arsenic in drinking water and health outcomes in the volcanic area of Mt. Amiata in Italy, using a residential cohort study design. METHODS Chronic exposure to arsenic in drinking water was evaluated using monitoring data collected by the water supplier. A time-weighted average arsenic exposure was estimated for the period 2005-2010. The population-based cohort included people living in five municipalities in the Mt. Amiata area between 01/01/1998 and 31/12/2019. Residence addresses were georeferenced and each subject was matched with arsenic exposure and socio-economic status. Mortality and hospital discharge data were selected from administrative health databases. Cox proportional hazard models were used to test the associations between arsenic exposure and outcomes, with age as the temporal axis and adjusting for gender, socio-economic status and calendar period. RESULTS The residential cohort was composed of 30,910 subjects for a total of 407,213 person-years. Analyses reported risk increases associated with exposure to arsenic concentrations in drinking water > 10 µg/l for non-accidental mortality (HR = 1.07 95%CI:1.01-1.13) and malignant neoplasms in women (HR = 1.14 95%CI:0.97-1.35). Long-term exposure to arsenic concentrations > 10 µg/l resulted positively associated with several hospitalization outcomes: non-accidental causes (HR = 1.06 95%CI:1.03-1.09), malignant neoplasms (HR = 1.10 95%CI:1.02-1.19), lung cancer (HR = 1.85 95%CI:1.14-3.02) and breast cancer (HR = 1.23 95%CI:0.99-1.51), endocrine disorders (HR = 1.13 95%CI:1.02-1.26), cardiovascular (HR = 1.12 95%CI:1.06-1.18) and respiratory diseases (HR = 1.10 95%CI:1.03-1.18). Some risk excesses were also observed for an exposure to arsenic levels below the regulatory standard, with evidence of exposure-related trends. CONCLUSIONS Our population-based cohort study in the volcanic area of Mt. Amiata showed that chronic exposure to arsenic concentrations in drinking water above the current regulatory limit was associated with a plurality of outcomes, in terms of both mortality and hospitalization. Moreover, some signs of associations emerge even at very low levels of exposure, below the current regulatory limit, highlighting the need to monitor arsenic concentrations continuously and implement policies to reduce concentrations in the environment as far as possible.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy.
| | - Giorgia Stoppa
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Unit of Biostatistics, Epidemiology and Public Health, DCTVPH, University of Padua, 35131, Padua, Italy
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
| |
Collapse
|
15
|
Khatun M, Siddique AE, Wahed AS, Haque N, Tony SR, Islam J, Alam S, Sarker MK, Kabir I, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Association between serum periostin levels and the severity of arsenic-induced skin lesions. PLoS One 2023; 18:e0279893. [PMID: 36598904 PMCID: PMC9812306 DOI: 10.1371/journal.pone.0279893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a potent environmental toxicant and human carcinogen. Skin lesions are the most common manifestations of chronic exposure to arsenic. Advanced-stage skin lesions, particularly hyperkeratosis have been recognized as precancerous diseases. However, the underlying mechanism of arsenic-induced skin lesions remains unknown. Periostin, a matricellular protein, is implicated in the pathogenesis of many forms of skin lesions. The objective of this study was to examine whether periostin is associated with arsenic-induced skin lesions. A total of 442 individuals from low- (n = 123) and high-arsenic exposure areas (n = 319) in rural Bangladesh were evaluated for the presence of arsenic-induced skin lesions (Yes/No). Participants with skin lesions were further categorized into two groups: early-stage skin lesions (melanosis and keratosis) and advanced-stage skin lesions (hyperkeratosis). Drinking water, hair, and nail arsenic concentrations were considered as the participants' exposure levels. The higher levels of arsenic and serum periostin were significantly associated with skin lesions. Causal mediation analysis revealed the significant effect of arsenic on skin lesions through the mediator, periostin, suggesting that periostin contributes to the development of skin lesions. When skin lesion was used as a three-category outcome (none, early-stage, and advanced-stage skin lesions), higher serum periostin levels were significantly associated with both early-stage and advanced-stage skin lesions. Median (IQR) periostin levels were progressively increased with the increasing severity of skin lesions. Furthermore, there were general trends in increasing serum type 2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and immunoglobulin E (IgE) levels with the progression of the disease. The median (IQR) of IL-4, IL-5, IL-13, eotaxin, and IgE levels were significantly higher in the early-and advanced-stage skin lesions compared to the group of participants without skin lesions. The results of this study suggest that periostin is implicated in the pathogenesis and progression of arsenic-induced skin lesions through the dysregulation of type 2 immune response.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abdus S. Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahnur Alam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
16
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
17
|
Suresh S, Sillanpää M, Banat F, Vissa RK. Adsorption of arsenic in aqueous solution onto iron impregnated bagasse fly ash. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:861-879. [PMID: 36406603 PMCID: PMC9672292 DOI: 10.1007/s40201-022-00827-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The present study examined the adsorption of As(III) and As(V) (arsenics) from aqueous solutions using FeCl3 impregnated bagasse fly ash (BFA-Fe). Batch adsorption studies were carried out to evaluate the effect of various parameters like initial pH (pH 0 ), adsorbent dose (m), contact time (t), initial concentration (C 0 ) and temperature (T) on the removal of As(III) and As(V) from aqueous solutions. The maximum removal of As(III) and As(V) was found ~ 95% and ~ 97% at lower concentration (< 20 μg/dm3) and ~ 86% and ~ 87% at higher concentration (500 μg/dm3), respectively, using 3 g/dm3 of BFA dosage at 303 K. The adsorption of arsenics on BFA-Fe was very rapid. Pseudo-second-order kinetic model well represented the adsorption kinetics of both As(III) and As(V). Error analyses functions for adsorption of As(III) and As(V) onto BFA-Fe. Based on these error analyses, R-P isotherm was found to be fitted. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, were also calculated. At 25.0 to 45.0 °C, the values of ΔG° lie in the range of -43.85, -45.34, -48.82, -51.31, -53.8, and -44.75, -48.3, -51.84, -55.39, -58.93, -55.57 for As (III), and As (V) respectively, indicating that adsorption is spontaneous and exothermic in nature. Regeneration study was carried out by different solvent and thermal methods. Our results revealed that BFA-Fe can be reused directly for making fire-briquettes to explore its energy value. From this study, As containment is most effective removal from aqueous solution and mimic to any contaminated water resources.
Collapse
Affiliation(s)
- Sundaramurthy Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology Bhopal, MP 462 003 Bhopal, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ravi Kiran Vissa
- Process Engineer, L&T AdVENT, Larsen & Toubro Ltd. Powai, Mumbai, 400 072 India
| |
Collapse
|
18
|
Inherited genetic effects on arsenic metabolism: A comparison of effects on arsenic species measured in urine and in blood. Environ Epidemiol 2022; 6:e230. [PMID: 36530933 PMCID: PMC9746746 DOI: 10.1097/ee9.0000000000000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and chronic exposure is associated with adverse health outcomes, including cancer and cardiovascular disease. Consumed iAs can undergo two methylation reactions catalyzed by arsenic methyltransferase (AS3MT), producing monomethylated and dimethylated forms of arsenic (MMA and DMA). Methylation of iAs helps facilitate excretion of arsenic in urine, with DMA composing the majority of arsenic species excreted. Past studies have identified genetic variation in the AS3MT (10q24.32) and FTCD (21q22.3) regions associated with arsenic metabolism efficiency (AME), measured as the proportion of each species present in urine (iAs%, MMA%, and DMA%), but their association with arsenic species present in blood has not been examined. We use data from three studies nested within the Health Effects and Longitudinal Study (HEALS)-the Nutritional Influences on Arsenic Toxicity Study, the Folate and Oxidative Stress study, and the Folic Acid and Creatine Trial-to examine the association of previously identified genetic variants with arsenic species in both urine and blood of 334 individuals. We confirm that the genetic variants in AS3MT and FTCD known to effect arsenic species composition in urine (an excreted byproduct of metabolism) have similar effects on arsenic species in blood (a tissue type that directly interacts with many organs, including those prone to arsenic toxicity). This consistency we observe provides further support for the hypothesis the AME SNPs identified to date impact the efficiency of arsenic metabolism and elimination, thereby influencing internal dose of arsenic and the dose delivered to toxicity-prone organs and tissues.
Collapse
|
19
|
Ma L, Huo X, Yang A, Yu S, Ke H, Zhang M, Bai Y. Metal Exposure, Smoking, and the Risk of COPD: A Nested Case-Control Study in a Chinese Occupational Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710896. [PMID: 36078612 PMCID: PMC9518333 DOI: 10.3390/ijerph191710896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 05/17/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) was the third leading cause of death worldwide in 2019, with a significant disease burden. We conducted a nested case-control study using data from the China Metal-Exposed Workers Cohort Study (Jinchang Cohort) and assessed the associations of exposure to metals and tobacco smoking with the risk of COPD. We used the logistic regression model and the interaction multiplication model to assess the independent and combined effects of heavy metal and smoke exposure on COPD. The cumulative incidence of COPD was 1.04% in 21,560 participants during a median of two years of follow-up. The risk of COPD was significantly elevated with an increase in the amount of tobacco smoked daily (p < 0.05), the number of years of smoking (ptrend < 0.05), and the number of packs of cigarettes smoked per year (ptrend < 0.01). Compared with the low metal exposure group, the adjusted OR was 1.22 (95% CI: 0.85-1.76) in the medium exposure group (mining/production workers) and 1.50 (95% CI: 1.03-2.18) in the high exposure group; smoking and metal exposure had a combined effect on the incidence of COPD (pinteraction < 0.01), with an OR of 4.60 for those with >40 pack-years of smoking who also had the highest metal exposures. Both exposures to metals and smoking were associated with the risk of COPD, and there was an interaction between the two exposures for the risk of COPD.
Collapse
Affiliation(s)
- Li Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- Correspondence: (L.M.); (Y.B.); Tel.: +86-931-8915191 (L.M.); +86-931-8915526 (Y.B.)
| | - Xinxin Huo
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Ke
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mingxia Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yana Bai
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- Correspondence: (L.M.); (Y.B.); Tel.: +86-931-8915191 (L.M.); +86-931-8915526 (Y.B.)
| |
Collapse
|
20
|
Yang F, Tan Z, Dai Y, Wang X, Huang Z, Kan C, Wang S. Arsenic exposure increases susceptibility to Ptpn11-induced malignancy in mouse embryonic fibroblasts through mitochondrial hypermetabolism. Am J Transl Res 2022; 14:4591-4605. [PMID: 35958497 PMCID: PMC9360862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the synergistic effect and metabolic mechanism of chronic arsenic exposure and PTPN11 gain-of-function mutation on tumorigenesis. METHODS Arsenic-transformed Ptpn11+/+ (WT-As) and Ptpn11D61G/+ -mutant (D61G-As) mouse embryonic fibroblasts (MEFs) were established by chronic treatment of low-dose arsenic. We used cell counting, plate colony and soft agar colony formation, and a nude mouse xenograft model to detect malignant transformation and tumorigenesis in vitro and in vivo. To detect mitochondrial oxidative phosphorylation (OXPHOS), we used Seahorse real-time cell metabolic analysis as well as adenosine triphosphate (ATP) and ROS production assays. Lastly, we examined mTOR signaling pathway changes by western blotting. RESULTS Low-dose arsenic exposure promoted WT MEFs proliferation and exacerbated malignancy driven by Ptpn11D61G/+ mutation. Additionally, Ptpn11D61G/+ -mutant MEFs exhibited increased mitochondrial metabolism and low-dose arsenic amplified this malignant metabolic activity. Mechanistically, the mTOR signaling pathway was activated in Ptpn11D61G/+ -mutant MEFs and was further phosphorylated in arsenic-treated MEFs expressing Ptpn11D61G/+ . Critically, tumorigenesis induced by the synergistic effect of low-dose arsenic and Ptpn11D61G/+ mutation was prevented by mTOR pathway inhibition via rapamycin. CONCLUSION This study found that metabolic reprogramming, particularly mitochondrial hyperactivation, is a core mechanism underlying tumorigenesis induced by the synergistic effect of Ptpn11D61G/+ mutation and arsenic exposure. Furthermore, these findings suggested mTOR is a therapeutic target for Ptpn11-associated cancers.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Yuanjuan Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Xingxing Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Zhen Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University Hefei, Anhui, China
| |
Collapse
|
21
|
Modestin E, Devault DA, Baylet A, Massat F, Dolique F. Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:553. [PMID: 35779140 DOI: 10.1007/s10661-022-10230-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Sargassum strandings in the coastal environment can introduce arsenic into food webs. In this context, we assessed the risk of exposure to arsenic for consumers of Caribbean bivalves. In 2019, specimens of Asaphis deflorata and Phacoides pectinatus were collected in an Atlantic coastal zone of Martinique (island) to monitor the presence of arsenic species by LC-ICP-MS. The total arsenic (tAs) concentrations were, on average, 34.4 ± 3.8 and 76.9 ± 22.3 µg.g-1 dry weight for P. pectinatus and A. deflorata, respectively. Seven compounds of arsenic were detected in bivalve soft bodies. In P. pectinatus, monomethylarsonic acid was present at a relatively significant concentration (≈ 29.6%). These results were coupled with survey data collected in 2013 and again in 2019, from the main consumers of bivalves. The tAs intake was up to 6 mg.day-1 for a 240 g (wet weight) meal of bivalves. In addition, we proposed toxicological reference doses also based on detected toxic forms of arsenic and tested their relevance. We concluded that monitoring of total arsenic would be sufficient to ensure the protection of bivalve consumers. Consumption patterns expose consumers to a potential health risk. However, due to a decrease in consumption frequency associated with the depletion of bivalve resources by decomposing Sargassum mats, arsenic exposure has decreased. In the French Caribbean, this is the first study on the risk of human arsenic contamination from the ingestion of bivalves. This study is a contribution to the monitoring of arsenic in the Caribbean coastal environment.
Collapse
Affiliation(s)
| | - Damien A Devault
- Centre Universitaire de Formation Et de Recherche de Mayotte, Département Des Sciences Et Technologies, 97660, Dembeni, France
| | | | - Félix Massat
- La Drôme Laboratoire, 26904, Valence Cedex, France
| | | |
Collapse
|
22
|
Assessment of Arsenic in Hair of the Inhabitants of East Croatia—Relationship to Arsenic Concentrations in Drinking Water. WATER 2022. [DOI: 10.3390/w14101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The problem of elevated arsenic concentrations in water and environment is an increasing public health concern. The aim of the study was to assess the arsenic content in human hair in selected areas of eastern Croatia and to compare them with measured values after installation of a new water supply system. The hair samples were taken in the areas of wider Osijek and Vinkovci area and analyzed using the ICP–MS method. These data were also compared with data for Vinkovci previously published in 2004. Depending on the investigated area, the median concentrations ranged from 0.02 to 0.9 µg g−1, whereby this last value exceeded the upper range of the reference value (0.319 µg g−1). The arsenic concentrations from the Našice, Osijek and Vinkovci areas were within or slightly above the maximum allowed reference range. The highest median values in hair samples were detected in Čepin, with arsenic-contaminated potable water, while in areas where the water source was changed, the values were significantly lower. The results add to the conclusion that there has been significant reduction in hair arsenic concentrations in the population that was given access to clean, uncontaminated water from other regional sources.
Collapse
|
23
|
Saldaña-Villanueva K, Pérez-Vázquez FJ, Ávila-García IP, Méndez-Rodríguez KB, Carrizalez-Yáñez L, Gavilán-García A, Vargas-Morales JM, Van-Brussel E, Diaz-Barriga F. A preliminary study on health impacts of Mexican mercury mining workers in a context of precarious employment. J Trace Elem Med Biol 2022; 71:126925. [PMID: 35051884 DOI: 10.1016/j.jtemb.2022.126925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Mercury mining is one of the main sources of mercury (Hg) release into the environment, causing serious impacts on human health and the environment. Workers in these mines are employed informally and precariously and therefore lack labor rights such as social security. The objective of the study is to make visible the exposure to environmental contaminants and the health of workers in mercury mines. An environmental assessment was conducted to determine workers' exposure to contaminants; urine samples were obtained to measure exposure to mercury and arsenic, and blood samples were obtained for lead and cadmium. Clinical parameters were also evaluated. Concentrations of Hg, As and Pb were determined in soil, 279.4 mg/kg (24.4-788.5), 14.7 mg/kg (9.5-20.3) and 1.4 mg/kg (1-2.8), respectively. The exposure results for mercury were 551 μg/g creatinine, for arsenic 50 μg/L and for lead 4.7 μg/dL. Cd-B was not found. In addition, 17.6 % of the workers had diabetes and 17.6 % had renal disorders. Principal Component Regression was performed obtaining an r2 of 0.86 for glomerular filtration rate and 0.54 for albumin creatinine ratio using clinical, occupational, and metal exposure variables. Exposure to Hg in this type of mine is not exclusive, so there is a cumulative risk of chronic exposure to different environmental pollutants directly impacting the health of workers. It is necessary to implement health strategies and different work opportunities for these workers.
Collapse
Affiliation(s)
- Kelvin Saldaña-Villanueva
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Francisco J Pérez-Vázquez
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Ivette P Ávila-García
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Karen B Méndez-Rodríguez
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Leticia Carrizalez-Yáñez
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Arturo Gavilán-García
- National Institute of Ecology and Climate Change, Secretariat of the Environment and Natural Resources (SEMARNAT) Mexico, Mexico
| | - Juan M Vargas-Morales
- School of Chemistry, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Department of Pharmacology and Toxicology, School of Medicine, UASLP, Toxicological Care Information Center (CIAT), Hospital Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico
| | - Fernando Diaz-Barriga
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, San Luis Potosi, Mexico.
| |
Collapse
|
24
|
Tong S, Yang L, Gong H, Wang L, Li H, Yu J, Li Y, Deji Y, Nima C, Zhao S, Gesang Z, Kong C, Wang X, Men Z. Association of selenium, arsenic, and other trace elements in drinking water and urine in residents of the plateau region in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26498-26512. [PMID: 34855178 DOI: 10.1007/s11356-021-17418-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Drinking water is considered to be an important exposure pathway for humans to ingest trace elements; human urine samples are widely accepted as biometric substrates that can reflect human exposure to trace elements. The current study aimed at investigating the concentrations of trace elements including selenium (Se), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in drinking water and human urine in plateau region of China, determining the association among trace elements in drinking water and urine, and analyzing their associations with age and gender. The results showed that the majority of trace element concentrations were in the range of the World Health Organization (WHO 2011) guideline values, in both urine samples of male and female, and the median values were descending in the order: Zn > Cu > As > Se > Cr > Ni > Mn > Pb > Cd > Co. Selenium contributed to the excretion of As, Cr, Cu, Cd, and Zn in human body, group of 31-40 years appeared to present the greatest excretion ability in most of the trace elements. Weak positive correlations were observed between age and Mn in female urine samples, and negative correlations were observed between age and Se, As, Co, and Cu in male urine samples and between age and Co in female urine samples, respectively. Significant positive correlation was observed in As between drinking water and the whole human urine. In the same family, female seemed to show higher proportions of urinary As levels than male. This study will provide elementary information regarding trace element levels in drinking water and human urine in residents in plateau region of China and is helpful to provide reference for dietary nutrient trace element intake and effective control for local resident.
Collapse
Affiliation(s)
- Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- College of Tourism and Historical Culture, Liupanshui Normal University, Liupanshui, 553004, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongqiang Gong
- Tibet Center of Disease Control and Prevention, Lhasa, 850030, People's Republic of China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yangzong Deji
- Tibet Center of Disease Control and Prevention, Lhasa, 850030, People's Republic of China
| | - Cangjue Nima
- Tibet Center of Disease Control and Prevention, Lhasa, 850030, People's Republic of China
| | - Shengcheng Zhao
- Tibet Center of Disease Control and Prevention, Lhasa, 850030, People's Republic of China
| | - Zongji Gesang
- Tibet Center of Disease Control and Prevention, Lhasa, 850030, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoya Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhuming Men
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
25
|
Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Wu X, Shen J, Cao H, Yuan M, Ye T, Lin C, Zhang C, Xu F. Theoretical sight into hydrogen bond interactions between arsenious acid and thiols in aqueous and HEPES solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
28
|
Medina S, Bolt AM, Zhou X, Wan G, Xu H, Lauer FT, Liu KJ, Burchiel SW. Arsenite and monomethylarsonous acid disrupt erythropoiesis through combined effects on differentiation and survival pathways in early erythroid progenitors. Toxicol Lett 2021; 350:111-120. [PMID: 34274428 PMCID: PMC8487637 DOI: 10.1016/j.toxlet.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Strong epidemiological evidence demonstrates an association between chronic arsenic exposure and anemia. We recently found that As+3 impairs erythropoiesis by disrupting the function of GATA-1; however the downstream pathways impacted by the loss of GATA-1 function have not been evaluated. Additionally, our previous findings indicate that the predominant arsenical in the bone marrow of mice exposed to As+3 in their drinking water for 30 days was MMA+3, but the impacts of this arsenical on erythorpoisis also remain largely unknown. The goal of this study was to address these critical knowledge gaps by evaluating the comparative effects of arsenite (As+3) and the As+3 metabolite, monomethyarsonous acid (MMA+3) on two critical regulatory pathways that control the differentiation and survival of early erythroid progenitor cells. We found that 500 nM As+3 and 100 and 500 nM MMA+3 suppress erythropoiesis by impairing the differentiation of early stage erythroid progenitors. The suppression of early erythroid progenitor cell development was attributed to combined effects on differentiation and survival pathways mediated by disruption of GATA-1 and STAT5. Our results show that As+3 primarily disrupted GATA-1 function; whereas, MMA+3 suppressed both GATA-1 and STAT5 activity. Collectively, these findings provide novel mechanistic insights into arsenic-induced dyserythropoiesis and suggest that MMA+3 may be more toxic than As+3 to early developing erythroid cells.
Collapse
Affiliation(s)
- Sebastian Medina
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA; New Mexico Highlands University, Department of Biology, Las Vegas, NM, 87701, USA
| | - Alicia M Bolt
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Xixi Zhou
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Guanghua Wan
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Huan Xu
- East China University of Science and Technology, School of Pharmacy, Shanghai, 200237, China
| | - Fredine T Lauer
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Scott W Burchiel
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA.
| |
Collapse
|
29
|
Ali K, Iqbal A, Bukhari SM, Safdar S, Raiz A, Ali W, Hussain A, Javid A, Hussain M, Ali MM, Mahmud A, Iqbal MJ, Nasir MF, Mubeen I, Kanwal S, Sughra F, Khattak A, Saleem M. Amelioration potential of Moringa oleifera extracts against sodium arsenate induced embryotoxicity and genotoxicity in mouse (Mus musculus). BRAZ J BIOL 2021; 83:e248022. [PMID: 34468531 DOI: 10.1590/1519-6984.248022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested that arsenic crosses the placenta and affects the fetus development. The study under consideration aims to show comparative ameliorative effect of Moringa oleifera leaf and flower extracts against sodium arsenate induced fetus toxicity of mice. Pregnant mice (N=44) were kept in lab and divided into eleven group from (A to K) and were orally administered the doses 6 mg/kg, 12 mg/kg for sodium arsenate, 150 mg/kg and 300 mg/kg for Moringa oleifera leaf extracts (MOLE) and 150 mg/kg and 300 mg/kg for Moringa oleifera flower extracts (MOFE) comparing with control. The investigation revealed evident reduction in the fetuses weight, hind limb, fore limb, tail and snout length, crown rump and head circumferences well as malformations in tail, feet, arms, legs, skin and eyes in the negative control group (only administered with sodium arsenate). Co-administration of sodium arsenate with MOLE and MOFE ameliorate the reversed effect of sodium arsenate on the shape, length, body weight and DNA damage of fetus significantly at 95% confidence interval. However, Moringa oleifera leaf extract showed more significant results in comparison to Moringa oleifera flower extract. Hence concluded that Moringa oleifera leaf extract ameliorated the embryo toxic effects of sodium arsenate and can be used against environmental teratogens.
Collapse
Affiliation(s)
- K Ali
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Iqbal
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - S M Bukhari
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - S Safdar
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Raiz
- Department of Zoology, GC Women University, Faisalabad, Pakistan
| | - W Ali
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Hussain
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Javid
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - M Hussain
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - M M Ali
- University of Veterinary & Animal Sciences, Institute of Biochemistry and Biotechnology, Lahore, Pakistan
| | - A Mahmud
- University of Veterinary & Animal Sciences, Department of Poultry Production, Lahore, Pakistan
| | - M J Iqbal
- Bahauddin Zakariya University, Department of Zoology, Multan, Pakistan
| | - M F Nasir
- Bahauddin Zakariya University, Department of Zoology, Multan, Pakistan
| | - I Mubeen
- Government College University, Department of Zoology, Lahore, Pakistan
| | - S Kanwal
- University of Okara, Department of Zoology, Okara, Pakistan
| | - F Sughra
- University of Education, Department of Zoology, Division of Science & Technology, Lahore, Pakistan
| | - A Khattak
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - M Saleem
- Department of Zoology, Virtual University of Lahore, Lahore, Pakistan
| |
Collapse
|
30
|
Howladar MF, Hossain MN, Anju KA, Das D. Ecological and health risk assessment of trace metals in water collected from Haripur gas blowout area of Bangladesh. Sci Rep 2021; 11:15573. [PMID: 34341388 PMCID: PMC8329277 DOI: 10.1038/s41598-021-94830-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The study aims to assess the trace metals and physicochemical properties of water in the adjacent to the Sylhet gas blowout area. Trace metals were analyzed using atomic absorption spectrophotometer, whereas physicochemical parameters were evaluated in-situ state using portable instruments and also in the laboratory. Trace metals Pb, Cd, and Ni were found in the water samples higher than the acceptable limit by WHO standards, whereas the concentration of Cu and Zn were within acceptable limit, respectively. The correlation coefficient matrix and factor loading analysis spectacle that the interrelationship among the physicochemical parameters, trace elements, as well as other ions are moderate to strongly corellated which reflecting the homogeneous source of origin. According to contamination factor, Nemerow multi-factor index, pollution load index, and also, potential ecological risk index, the water of the region is quite polluted in case of Pb, Cd, and Ni but unpolluted for Cu and Zn. The water quality index indicates that treatment of water is required before using it for domestic purposes. The health quotient and hazard index results are less than standard value 1 suggesting that there is no noncarcinogenic risk in the area. The carcinogenic analysis shows that the lifetime incremental cancer risk mean value of Cd and Ni are fairly insignificant and Pb is more significant for children to cause health problem. The ILCR value of Cd and Ni are insignificant whereas Pb is significant to pose health risk for adults. Physicochemical parameters revealed that the water was slightly acidic and soft in nature implying to avoid the water from this area for drinking purposes. At the end, it can be concluded that this study will be useful for the residence as well as the policymaker to take the protective surveillance measures around the areas.
Collapse
Affiliation(s)
- M Farhad Howladar
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Md Numan Hossain
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Khaleda Akter Anju
- Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Debjani Das
- Department of Geography and Environment, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
31
|
Das A, Sanyal T, Bhattacharjee P, Bhattacharjee P. Depletion of S-adenosylmethionine pool and promoter hypermethylation of Arsenite methyltransferase in arsenic-induced skin lesion individuals: A case-control study from West Bengal, India. ENVIRONMENTAL RESEARCH 2021; 198:111184. [PMID: 33894237 DOI: 10.1016/j.envres.2021.111184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Methylation of arsenic compounds in the human body occurs following a series of biochemical reactions in the presence of methyl donor S-adenosylmethionine (SAM) and catalyzed by arsenite methyltransferase (AS3MT). However, the extent and pattern of methylation differs among the arsenic exposed individuals leading to differential susceptibility. The mechanism for such inter-individual difference is enigmatic. In the present case-control study we recruited exposed individuals with and without arsenic induced skin lesion (WSL and WOSL), and an unexposed cohort, each having 120 individuals. Using ELISA, we observed a reduction in SAM levels (p < 0.05) in WSL compared to WOSL. Linear regression analysis revealed a negative correlation between urinary arsenic concentration and SAM concentration between the study groups. qRT-PCR revealed a significant down-regulation (p < 0.01) of key regulatory genes like MTHFR, MTR, MAT2A and MAT2B of SAM biogenesis pathway in WSL cohort. Methylation-specific PCR revealed significant promoter hypermethylation of AS3MT (WSL vs. WOSL: p < 0.01) which resulted in its subsequent transcriptional repression (WSL vs. WOSL: p < 0.001). Linear regression analysis also showed a negative correlation between SAM concentration and percentage of promoter methylation. Taken together, these results indicate that reduction in SAM biogenesis along with a higher utilization of SAM results in a decreased availability of methyl donor. These along with epigenetic down-regulation of AS3MT may be responsible for higher susceptibility in arsenic exposed individuals.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tamalika Sanyal
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
32
|
Oyibo A, Gbadegesin MA, Odunola OA. Ethanol extract of Vitellaria paradoxa (Gaertn, F) leaves protects against sodium arsenite - induced toxicity in male wistar rats. Toxicol Rep 2021; 8:774-784. [PMID: 33854955 PMCID: PMC8027566 DOI: 10.1016/j.toxrep.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022] Open
Abstract
The inadvertent exposure to arsenic has been associated with diverse diseases such as cancers. Vitellaria paradoxa is a medicinal plant with antidiabetic and antiproliferative properties. Here, we assessed the ameliorative role of Ethanol Leaf extract of Vitellaria paradoxa (ELVp) in Sodium Arsenite (SA) - induced toxicity in rats after oral treatment for two weeks as follows: Group 1 (Control, distilled water), Group 2 (Vitamin E, 100 mg/kg), Groups 3 and 4 (ELVp, 100 & 200 mg/kg respectively), Group 5 (SA, 2.5 mg/kg), Group 6 (SA + Vit E) and Group 7 (SA + ELVp (100 mg/kg) and Group 8 (SA + ELVp (200 mg/kg). The results indicated that SA significantly increased liver and kidney function markers and elevated platelet, white blood cell (WBC) count and malondialdehyde levels in rats. Additionally, SA decreased Red Blood Cell (RBC), Hemoglobin (HGB) and Hematocrit (HCT) levels in rats (p < 0.05). Sodium arsenite caused mild expression of BCL-2 protein> NF-Kb = p53 in the kidney of rats. However, ELVp ameliorated SA-induced toxicity in the liver and kidney of rats with respect to these markers. Overall, ELVp has hepatoprotective, nephroprotective and apoptotic properties against sodium arsenite-induced toxicity.
Collapse
Affiliation(s)
- Aghogho Oyibo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A. Gbadegesin
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A. Odunola
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
33
|
Nowakowski P, Markiewicz-Żukowska R, Soroczyńska J, Puścion-Jakubik A, Mielcarek K, Borawska MH, Socha K. EVALUATION OF TOXIC ELEMENT CONTENT AND HEALTH RISK ASSESSMENT OF EDIBLE WILD MUSHROOMS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Gu L, Yu J, Fan Y, Wang S, Yang L, Liu K, Wang Q, Chen G, Zhang D, Ma Y, Wang L, Liu A, Cao H, Li X, Li K, Tao F, Sheng J. The Association Between Trace Elements Exposure and the Cognition in the Elderly in China. Biol Trace Elem Res 2021; 199:403-412. [PMID: 32323131 DOI: 10.1007/s12011-020-02154-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to evaluate the association between aluminum (Al), arsenic (As), barium (Ba), cobalt (Co), manganese (Mn), selenium (Se), strontium (Sr), thallium (Tl), and vanadium (V) levels in whole blood and the cognitive ability of people over 60 years old. A total of 1217 eligible participants were enrolled in our study in Lu'an city, Anhui province, China. The inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the concentration of nine trace elements in the whole blood, which reflect their exposure levels. Mini-mental State Examination (MMSE) scale was employed to screen the cognitive function of the elderly. Logistic regression was applied to assess the associations of nine whole blood trace elements with cognition. In the work, it has found that high levels of whole blood As and Se are risk factors for cognitive dysfunction. As and Se quartile were correlated with increased risk of cognitive dysfunction, and with the odds ratio (OR) of 2.06 (95% CI 1.30-3.25; p-trend = 0.002), 1.947 (95% CI 1.20-3.17; p-trend = 0.007) in the highest quartile. However, high concentration of Al, V, and Ba in whole blood were protective factors for cognitive function [OR = 0.63 (95% CI 0.40-0.98; p-trend = 0.040), 0.549 (95% CI 0.36-0.85; p-trend = 0.007), 0.460 (95% CI 0.28-0.75; p-trend = 0.002) respectively]. The study suggested that the exposure of some trace elements (As, Se) were associated with the increased risk of cognitive dysfunction; on the contrary, other elements (Al, V, Ba) could be protective factor for cognitive function. These findings need to be confirmed in additional research of a large elderly population.
Collapse
Affiliation(s)
- Ling Gu
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jinhui Yu
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yong Fan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ying Ma
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Wang
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Xiude Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Kaichun Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle / Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230601, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle / Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
35
|
Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol 2020; 409:115306. [PMID: 33127375 PMCID: PMC7772821 DOI: 10.1016/j.taap.2020.115306] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Karen T Udoh
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
36
|
Lobo C, Castellari J, Colman Lerner J, Bertola N, Zaritzky N. Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water. Int J Biol Macromol 2020; 164:1575-1583. [DOI: 10.1016/j.ijbiomac.2020.07.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
|
37
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
38
|
Das TK, Sakthivel TS, Jeyaranjan A, Seal S, Bezbaruah AN. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. CHEMOSPHERE 2020; 253:126702. [PMID: 32302903 DOI: 10.1016/j.chemosphere.2020.126702] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Iron (Fe)-based adsorbents have been promoted for aqueous arsenic adsorption because of their low cost and potential ease of scale-up in production. However, their field application is, so far, limited because of their low Fe use efficiency (i.e., not all available Fe is used), slow adsorption kinetics, and low adsorption capacity. In this study, we synthesized graphene oxide iron nanohybrid (GFeN) by decorating iron/iron oxide (Fe/FexOy) core-shell structured iron nanoparticles (FeNPs) on the surface of graphene oxide (GO) via a sol-gel process. The deposition of FeNPs on GO for the nanohybrid (GFeN) improves Fe use efficiency and arsenic mobility in the nanohybrid, thereby improving the arsenic removal capacity and kinetics. We achieved removal capacities of 306 mg/g for As(III) and 431 mg/g for As(V) using GFeN. Rapid reduction (>99% in <10 min) of As(III) and As(V) (initial concentration, C0 = 100 μg/L) was achieved with the nanohybrid (250 mg/L). There were no significant interferences by the coexisting anions and organic matters at environmentally relevant concentrations. Based on the experimental data, we have proposed that both electrostatic interaction and surface complexation contributed to ultra-high arsenic removal by GFeN. The GO sheets acted as the reservoirs for the electrons released during surface corrosion of the FeNPs and the electrons were transferred back to the FeNPs to rejuvenate the oxidized surface. The rejuvenated FeNP surface layer helped in additional arsenic removal.
Collapse
Affiliation(s)
- Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58105, USA
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA
| | - Aadithya Jeyaranjan
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA; College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
39
|
ÇUBUK S, TASKAN MC, KÖK YETIMOGLU E, KAHRAMAN MV. A New Fluorescent Sensor for Arsenic(III) Determination in Aqueous Media. ANAL SCI 2020; 36:807-811. [DOI: 10.2116/analsci.19p415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soner ÇUBUK
- Marmara University, Faculty of Arts and Sciences, Chemistry Department
| | | | - Ece KÖK YETIMOGLU
- Marmara University, Faculty of Arts and Sciences, Chemistry Department
| | - M. Vezir KAHRAMAN
- Marmara University, Faculty of Arts and Sciences, Chemistry Department
| |
Collapse
|
40
|
Wu X, Yu H, Yuan M, Cao H, Ye T, Yu J, Xu F. H-bond interactions between arsenite and deoxynucleotides at different pH values: A combined computational and experimental study. CHEMOSPHERE 2020; 251:126395. [PMID: 32155498 DOI: 10.1016/j.chemosphere.2020.126395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Deoxynucleotides can be good monomers for arsenite ion-imprinted polymers (IIPs) due to the successful obtainment of aptamers which can specifically recognize arsenite. However, the recognition and interaction mechanism between arsenite and deoxynucleotides is still not clear. In this work, the binding interactions between arsenite and deoxynucleotides (dAMP, dTMP, dGMP, dCMP) as pH changing from 1 to 14 were investigated using density functional theory calculations as well as spectroscopy analysis. dGMP was calculated to have the largest affinity towards arsenite. H3AsO30-dGMP0 binding at phosphate group, H3AsO30-dAMP2-, H3AsO30-dCMP0 and H3AsO30-dTMP2- binding around nucleobase were found to be the most stable complexes. This suggests the optimal pH ranges for binding interactions of dAMP, dCMP, dGMP and dTMP towards arsenite might be 6.10-9.23, 1.00-4.50, 1.00-2.40 and 6.40-9.23, respectively, which agree with UV/VIS experimental results. Reduced Density Gradient method indicated that the binding interactions of arsenite with deoxynucleotides are mainly attributed to hydrogen bonds (H-bond). The strengths of these H-bonds are affected by pH. FT-IR and NMR spectroscopy analysis also provided essential H-bonding information, giving direct evidence to support the computational conclusions.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huaxing Yu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Min Yuan
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Cao
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tai Ye
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinsong Yu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fei Xu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
41
|
|
42
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
43
|
Saqib NU, Khan A, Alam I, Rahim M. Glass beads immobilized doped TiO2 NPs with enhanced adsorption efficiency for arsenic(III) from aqueous solution. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
da Costa TP, Quinteiro P, Tarelho LAC, Arroja L, Dias AC. Life cycle assessment of woody biomass ash for soil amelioration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:126-140. [PMID: 31610474 DOI: 10.1016/j.wasman.2019.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The increasing use of forest biomass as a fuel for power plants due to environmental concerns will certainly increase the amount of woody biomass ash produced. Because of the environmental problems derived from woody biomass ash disposal, an important aspect for the sustainable development of the energy sector is the implementation of effective ash management strategies. The purpose of this study is to assess the environmental impacts of woody biomass ash landfarming for soil amelioration through a Life Cycle Assessment. The baseline scenario corresponds to the current most common practice of woody biomass ash management (landfilling), and two different landfarming alternatives were assessed: liming and fertilisation. Credits were given to the system due to the substitution of three traditional liming products and five traditional fertilisers. Woody biomass ash landfarming presented satisfactory performance in five impact categories under study in comparison to landfilling. When woody biomass ash was used for liming, the environmental savings were more pronounced when substituting hydrated lime. For potassium supply, the substitution of potassium nitrate by woody biomass ash presented the best environmental performance, while for phosphorus supply, the environmental savings were more pronounced substituting single superphosphate. However, in four impact categories, the environmental impacts of ash landfarming exceeded the impacts of ash landfilling, due to the emission to soil of nutrients and trace elements to soil. But this does not necessarily imply increased risks for the environment, as the potential pollutants leaching depends on their bioavailability in the soil.
Collapse
Affiliation(s)
- Tamíris Pacheco da Costa
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Quinteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís A C Tarelho
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Arroja
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Cláudia Dias
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
45
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
46
|
Karagas MR, Punshon T, Davis M, Bulka CM, Slaughter F, Karalis D, Argos M, Ahsan H. Rice Intake and Emerging Concerns on Arsenic in Rice: a Review of the Human Evidence and Methodologic Challenges. Curr Environ Health Rep 2019; 6:361-372. [PMID: 31760590 PMCID: PMC7745115 DOI: 10.1007/s40572-019-00249-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Rice is a major staple food worldwide and a dietary source of arsenic. We therefore summarized the state of the epidemiologic evidence on whether rice consumption relates to health outcomes associated with arsenic exposure. RECENT FINDINGS While epidemiologic studies have reported that higher rice consumption may increase the risk of certain chronic conditions, i.e., type 2 diabetes, most did not consider specific constituents of rice or other sources of arsenic exposure. Studies that examined rice intake stratified by water concentrations of arsenic found evidence of increasing trends in cardiovascular disease risk, skin lesions, and squamous cell skin cancers and bladder cancer associated with higher rice consumption. Further studies are needed to understand the health impacts of arsenic exposure from rice consumption taking into account all sources of rice intake and potential confounding by other dietary constituents or contaminants and arsenic exposure from sources such as water.
Collapse
Affiliation(s)
- Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Matt Davis
- Department of Systems, Populations and Leadership, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis Slaughter
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Despina Karalis
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Maria Argos
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
47
|
Parvez F, Akhtar E, Khan L, Haq MA, Islam T, Ahmed D, Eunus HEMM, Hasan AKMR, Ahsan H, Graziano JH, Raqib R. Exposure to low-dose arsenic in early life alters innate immune function in children. J Immunotoxicol 2019; 16:201-209. [PMID: 31703545 PMCID: PMC7041495 DOI: 10.1080/1547691x.2019.1657993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Lamia Khan
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Md. Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Tariqul Islam
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Dilruba Ahmed
- Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - HEM Mahbubul Eunus
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - AKM Rabiul Hasan
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5841 South Maryland Avenue, Chicago, IL
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
48
|
Arsenic Exposure, Assessment, Toxicity, Diagnosis, and Management: Guidance for Occupational and Environmental Physicians. J Occup Environ Med 2019; 60:e634-e639. [PMID: 30358658 DOI: 10.1097/jom.0000000000001485] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
: Arsenic is ubiquitous in the environment and human exposure can occur from multiple possible routes including diet. Occupational medicine physicians asked to evaluate workers with elevated urine arsenic levels may be unaware that many sources of arsenic exposure are not work related. In this paper, we address arsenic exposure sources and pathways, adverse health effects of arsenic exposure and those subpopulations at increased risk, and the evaluation and treatment of those exposed to elevated arsenic levels.
Collapse
|
49
|
Wang Y, Liu Y, Liu S, Wu B. Influence of Iron on Cytotoxicity and Gene Expression Profiles Induced by Arsenic in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224484. [PMID: 31739468 PMCID: PMC6888336 DOI: 10.3390/ijerph16224484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
The toxicity of arsenic (As) could be influenced by many environmental factors and elements. Iron (Fe) is one of the elements that could be involved in As-induced toxicity. In this study, the interactive effects of Fe and As in HepG2 cells were analyzed based on cytotoxicity and transcriptomic analyses. The results showed that Fe could decrease cell viability and increase mitochondrial depolarization induced by As exposure. Oxidative stress and damage have been proven to be one of the main mechanisms of As toxicity. Our results showed that Fe increased the generation of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) induced by As exposure. Microarray analysis further verified that Fe increased the alteration of gene expression and biological processes related to oxidative stress, cell proliferation, and the apoptotic signaling pathway caused by As exposure. Both results of cytotoxicity and transcriptomic analyses suggest that an increase of Fe in the human body could increase the As-induced toxicity, which should be considered during the health risk assessment of As.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
- Correspondence:
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| |
Collapse
|
50
|
Cortes-Arriagada D, Mella A. Performance of doped graphene nanoadsorbents with first-row transition metals (Sc Zn) for the adsorption of water-soluble trivalent arsenicals: A DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|