1
|
Perrot-Applanat M, Pimpie C, Vacher S, Pocard M, Baud V. High Expression of AhR and Environmental Pollution as AhR-Linked Ligands Impact on Oncogenic Signaling Pathways in Western Patients with Gastric Cancer-A Pilot Study. Biomedicines 2024; 12:1905. [PMID: 39200369 PMCID: PMC11351739 DOI: 10.3390/biomedicines12081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The vast majority of gastric cancer (GC) cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GC, often associated with poor overall survival, has constantly increased in Western countries. Epidemiological studies have reported increased mortality from GC after occupational exposure to pro-carcinogens that are metabolically activated by cytochrome P450 enzymes through aryl hydrocarbon receptor (AhR). However, little is known about the role of AhR and environmental AhR ligands in diffuse GC as compared to intestinal GC in Western patients. In a cohort of 29, we demonstrated a significant increase in AhR protein and mRNA expression levels in GCs independently of their subtypes and clinical parameters. AhR and RHOA mRNA expression were correlated in diffuse GC. Further, our study aimed to characterize in GC how AhR and the AhR-related genes cytochrome P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) affect the mRNA expression of a panel of genes involved in cancer development and progression. In diffuse GC, CYP1A1 expression correlated with genes involved in IGF signaling, epithelial-mesenchymal transition (Vimentin), and migration (MMP2). Using the poorly differentiated KATO III epithelial cell line, two well-known AhR pollutant ligands, namely 2-3-7-8 tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP), strongly increased the expression of CYP1A1 and Interleukin1β (IL1B), and to a lesser extend UGT1, NQO1, and AhR Repressor (AhRR). Moreover, the increased expression of CYP1B1 was seen in diffuse GC, and IHC staining indicated that CYP1B1 is mainly expressed in stromal cells. TCDD treatment increased CYP1B1 expression in KATO III cells, although at lower levels as compared to CYP1A1. In intestinal GC, CYP1B1 expression is inversely correlated with several cancer-related genes such as IDO1, a gene involved in the early steps of tryptophan metabolism that contributes to the endogenous AhR ligand kynurenine expression. Altogether, our data provide evidence for a major role of AhR in GC, as an environmental xenobiotic receptor, through different mechanisms and pathways in diffuse and intestinal GC. Our results support the continued efforts to clarify the identity of exogenous AhR ligands in diffuse GC in order to define new therapeutic strategies.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Cynthia Pimpie
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Sophie Vacher
- Department of Genetics, Curie Institute, PSL Research University, 75005 Paris, France;
| | - Marc Pocard
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
- Department of Digestive and Oncology Surgery, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Differentiation and Cancer, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
2
|
Tu R, Kang Y, Pan Y, Da Y, Ren D, Zhang R, Cai Z, Liu Y, Xu J, Ma J, Zhou Z, Yin S, Li X, Zhang P, Zhang Q, Wang J, Lu X, Zhang C. USP29 activation mediated by FUBP1 promotes AURKB stability and oncogenic functions in gastric cancer. Cancer Cell Int 2024; 24:33. [PMID: 38233848 PMCID: PMC10792871 DOI: 10.1186/s12935-024-03224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Gastric cancer is a highly prevalent cancer type and the underlying molecular mechanisms are not fully understood. Ubiquitin-specific peptidase (USP) 29 has been suggested to regulate cell fate in several types of cancer, but its potential role in gastric carcinogenesis remains unclear. METHODS The expression of USP29 in normal and gastric cancer tissues was analyzed by bioinformatics analysis, immunohistochemistry and immunoblot. Gene overexpression, CRISPR-Cas9 technology, RNAi, and Usp29 knockout mice were used to investigate the roles of USP29 in cell culture, xenograft, and benzo[a]pyrene (BaP)-induced gastric carcinogenesis models. We then delineated the underlying mechanisms using mass spectrometry, co-immunoprecipitation (Co-IP), immunoblot, ubiquitination assay, chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and luciferase assays. RESULTS In this study, we found that USP29 expression was significantly upregulated in gastric cancers and associated with poor patient survival. Ectopic expression of USP29 promoted, while depletion suppressed the tumor growth in vitro and in vivo mouse model. Mechanistically, transcription factor far upstream element binding protein 1 (FUBP1) directly activates USP29 gene transcription, which then interacts with and stabilizes aurora kinase B (AURKB) by suppressing K48-linked polyubiquitination, constituting a FUBP1-USP29-AURKB regulatory axis that medicates the oncogenic role of USP29. Importantly, systemic knockout of Usp29 in mice not only significantly decreased the BaP-induced carcinogenesis but also suppressed the Aurkb level in forestomach tissues. CONCLUSIONS These findings uncovered a novel FUBP1-USP29-AURKB regulatory axis that may play important roles in gastric carcinogenesis and tumor progression, and suggested that USP29 may become a promising drug target for cancer therapy.
Collapse
Affiliation(s)
- Rongfu Tu
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China.
| | - Ye Kang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Yiwen Pan
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanyan Da
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Doudou Ren
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Ru Zhang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Zeqiong Cai
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Junpeng Ma
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Zhiyong Zhou
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Shupeng Yin
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Xiaozhuang Li
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Qi Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchao Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chengsheng Zhang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China.
| |
Collapse
|
3
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 PMCID: PMC11520539 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Fischer F, Hufnagel M, Hartwig A, Floeder A, Balbo S, Francies H, Garnett M, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Metabolic Activation of Benzo[ a]pyrene by Human Tissue Organoid Cultures. Int J Mol Sci 2022; 24:ijms24010606. [PMID: 36614051 PMCID: PMC9820386 DOI: 10.3390/ijms24010606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Jill E. Kucab
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Halh Al-Serori
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Rebekah S. S. Beck
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- Correspondence:
| |
Collapse
|
5
|
Saber AT, Hadrup N, Williams A, Mortensen A, Szarek J, Kyjovska Z, Kurz A, Jacobsen NR, Wallin H, Halappanavar S, Vogel U. Unchanged pulmonary toxicity of ZnO nanoparticles formulated in a liquid matrix for glass coating. Nanotoxicology 2022; 16:812-827. [PMID: 36480659 DOI: 10.1080/17435390.2022.2152751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inclusion of nanoparticles can increase the quality of certain products. One application is the inclusion of Zinc oxide (ZnO) nanoparticles in a glass coating matrix to produce a UV-absorbing coating for glass sheets. Yet, the question is whether the inclusion of ZnO in the matrix induces toxicity at low exposure levels. To test this, mice were given single intratracheal instillation of 1) ZnO powder (ZnO), 2) ZnO in a glass matrix coating in its liquid phase (ZnO-Matrix), and 3) the matrix with no ZnO (Matrix). Doses of ZnO were 0.23, 0.67, and 2 µg ZnO/mouse. ZnO Matrix doses had equal amounts of ZnO, while Matrix was adjusted to have an equal volume of matrix as ZnO Matrix. Post-exposure periods were 1, 3, or 28 d. Endpoints were pulmonary inflammation as bronchoalveolar lavage (BAL) fluid cellularity, genotoxicity in lung and liver, measured by comet assay, histopathology of lung and liver, and global gene expression in lung using microarrays. Neutrophil numbers were increased to a similar extent with ZnO and ZnO-Matrix at 1 and 3 d. Only weak genotoxicity without dose-response effects was observed in the lung. Lung histology showed an earlier onset of inflammation in material-exposed groups as compared to controls. Microarray analysis showed a stronger response in terms of the number of differentially regulated genes in ZnO-Matrix exposed mice as compared to Matrix only. Activated canonical pathways included inflammatory and cardiovascular ones. In conclusion, the pulmonary toxicity of ZnO was not changed by formulation in a liquid matrix for glass coating.
Collapse
Affiliation(s)
| | - Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alicja Mortensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Jozef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zdenka Kyjovska
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | | | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,DTU Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Pan Z, Liu Q, Xu J, Li W, Lin H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119163. [PMID: 35305345 DOI: 10.1016/j.envpol.2022.119163] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual-1, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
Collapse
Affiliation(s)
- Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Costal Zone in Zhangzhou, Zhangzhou, 363216, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Qianlong Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
7
|
Bukowska B, Duchnowicz P. Molecular Mechanisms of Action of Selected Substances Involved in the Reduction of Benzo[a]pyrene-Induced Oxidative Stress. Molecules 2022; 27:molecules27041379. [PMID: 35209168 PMCID: PMC8878767 DOI: 10.3390/molecules27041379] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.
Collapse
|
8
|
Santo SGE, Romualdo GR, Santos LAD, Grassi TF, Barbisan LF. Modifying effects of menthol against benzo(a)pyrene-induced forestomach carcinogenesis in female Swiss mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:2245-2255. [PMID: 34331502 DOI: 10.1002/tox.23338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon widespread in the environment and closely associated to tobacco use, which is an important risk factor for highly incident stomach cancer. Menthol, a monoterpene extracted from Mentha genus species, has multiple biological properties, including anti-inflammatory and gastroprotective properties, but its effects on carcinogenesis are still to be fully understood. Thus, we evaluated the modifying effects of Ment against BaP-induced forestomach carcinogenesis. Female Swiss mice received BaP by intragastrical (i.g.) administration (50 mg/kg of body weight [b wt], 2×/week), from weeks 1-5 weeks. Concomitantly, mice received Menthol at 25 (Ment25) or 50 (Ment50) mg/kg b wt (i.g, 3×/week). Animals were euthanized at weeks 5 (n = 5 mice/group) or 30 (n = 10 mice/group). At week 5, both Ment doses reduced peripheral leukocyte blood genotoxicity 4 h after the last BaP administration, but only Ment50 attenuated this biomarker 8 h after the last BaP administration. In accordance to these findings, both Ment interventions attenuated BaP-induced increase in the percentage of H2A.X-positive forestomach epithelial cells. Moreover, Ment50 reduced cell proliferation and apoptosis (i.e., Ki-67 and caspase-3, respectively) in forestomach epithelium but exerted no significant effects on NFκB, and Nrf2 protein levels. At week 30, Ment50 reduced by ~55% the incidence of BaP-induced forestomach diffuse hyperplasia and multiplicity of forestomach tumors (squamous cell papillomas and carcinomas). Our findings indicate that Ment50, administered during initiation phase, attenuates forestomach carcinogenesis by reducing early genotoxicity, cell proliferation, and apoptosis induced by BaP.
Collapse
Affiliation(s)
- Sara Gomes Espírito Santo
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Guilherme Ribeiro Romualdo
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Leandro Alves Dos Santos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tony Fernando Grassi
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
9
|
Abstract
Epigenetic modifications have gained attention since they can be potentially changed with environmental stimuli and can be associated with adverse health outcomes. Epitranscriptome field has begun to attract attention with several aspects since RNA modifications have been linked with critical biological processes and implicated in diseases. Several RNA modifications have been identified as reversible indicating the dynamic features of modification which can be altered by environmental cues. Currently, we know more than 150 RNA modifications in different organisms and on different bases which are modified by various chemical groups. RNA editing, which is one of the RNA modifications, occurs after transcription, which results in RNA sequence different from its corresponding DNA sequence. Emerging evidence reveals the functions of RNA editing as well as the association between RNA editing and diseases. However, the RNA editing field is beginning to grow up and needs more empirical evidence in regard to disease and toxicology. Thus, this review aims to provide the current evidence-based studies on RNA editing modifying genes for genotoxicity and cancer. The review presented the association between environmental xenobiotics exposure and RNA editing modifying genes and focused on the association between the expression of RNA editing modifying genes and cancer. Furthermore, we discussed the future directions of scientific studies in the area of RNA modifications, especially in the RNA editing field, and provided a knowledge-based framework for further studies.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
10
|
Aguilar L, Lara-Flores M, Rendón-von Osten J, Kurczyn JA, Vilela B, da Cruz AL. Effects of polycyclic aromatic hydrocarbons on biomarker responses in Gambusia yucatana, an endemic fish from Yucatán Peninsula, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47262-47274. [PMID: 33891236 DOI: 10.1007/s11356-021-13952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are petroleum components that, when dissolved in the aquatic environment, can disrupt normal animal physiological functions and negatively affect species populations. Gambusia yucatana is an endemic fish of the Yucatán Peninsula that seems to be particularly sensitive to the presence of PAHs dissolved in the water. Here, we examined PAH effects on gene expressions linked to endocrine disruption and biotransformation in this species. Specifically, we examined the expression of vitellogenin I (vtg1), vitellogenin II (vtg2), oestrogen receptor α (esr1), oestrogen receptor β (esr2), aryl hydrocarbon receptor (AhR) and the cytochrome P4503A (CYP3A) genes. We exposed G. yucatana to different concentrations of PAHs (3.89, 9.27, 19.51 μg/L) over a period of 72 h and found changes associated with reproduction, such as increases in hepatic expression of vtg, esr, AhR and CYP3A, mainly at concentrations of 9.27 and 19.51 μg/L. Our results also indicate that benzo[a]pyrene was probably the main PAH responsible for the observed effects. The genes examined here can be used as molecular markers of endocrine-disrupting compounds, as the PAHs, present in the environment, as gene expression increases could be observed as early as after 24 h. These biomarkers can help researchers and conservationists rapidly identify the impacts of oil spills and improve mitigation before the detrimental effects of environmental stressors become irreversible.
Collapse
Affiliation(s)
- Letícia Aguilar
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - Maurílio Lara-Flores
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jorge A Kurczyn
- Institute of Engineering, Coastal Engineering and Processes Laboratory, National Autonomous University of Mexico, Puerto de Abrigo s/n, 97356, Sisal, Yucatán, Mexico
| | - Bruno Vilela
- Institute of Biology, Spatial Ecology Laboratory, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - André Luis da Cruz
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil.
| |
Collapse
|
11
|
The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments. Toxicol Appl Pharmacol 2019; 380:114706. [DOI: 10.1016/j.taap.2019.114706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
|
12
|
Hadrup N, Rahmani F, Jacobsen NR, Saber AT, Jackson P, Bengtson S, Williams A, Wallin H, Halappanavar S, Vogel U. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology 2019; 13:1275-1292. [DOI: 10.1080/17435390.2019.1654004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Feriel Rahmani
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Håkan Wallin
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
13
|
Cai WY, Lin LY, Wang L, Yang L, Ye GD, Zeng Q, Cheng J, Xie YY, Chen ML, Luo QC. Inhibition of Bcl6b promotes gastric cancer by amplifying inflammation in mice. Cell Commun Signal 2019; 17:72. [PMID: 31288844 PMCID: PMC6617686 DOI: 10.1186/s12964-019-0387-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Chronic gastritis has been demonstrated to be a key cause of gastric cancer (GC), and control of gastric inflammation is regarded as an effective treatment for the clinical prevention of gastric carcinogenesis. However, there remains an unmet need to identify the dominant regulators of gastric oncogenesis-associated inflammation in vivo. Methods The mouse model for the study of inflammation-associated GC was induced by Benzo[a]pyrene (BaP) intragastric administration in Bcl6b−/− and wildtype mice on a C57BL/6 background. 5-Aza-2′-deoxycytidine (5-Aza), the demethylation drug, was intraperitoneally injected to restore Bcl6b expression. Human GC tissue array was used to analyse patient survival based on BCL6B and CD3 protein expression. Results Bcl6b was gradually downregulated by its own promoter hypermethylation in parallel to an increasing inflammatory response during the progression of BaP-induced gastric carcinogenesis in mice. Moreover, knockout of Bcl6b dramatically worsened the severity of gastric cancer and aggravated the inflammatory response in the BaP-induced mice GC model. Re-activation of Bcl6b by 5-Aza impeded inflammatory amplification and BaP-induced GC development, prolonging survival time in wildtype mice, whereas no notable curative effect occurred in Bcl6b−/− mice with 5-Aza treatment. Finally, significant negative correlations were detected between the mRNA levels of BCL6B and inflammatory cytokines in human GC tissues; patients harbouring BCL6B-negetive and severe-inflammation GC tumours were found to exhibit the shortest survival time. Conclusions Epigenetic inactivation of Bcl6b promotes gastric cancer through amplification of the gastric inflammatory response in vivo and offers a new approach for GC treatment and regenerative medicine. Electronic supplementary material The online version of this article (10.1186/s12964-019-0387-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang-Yu Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China. .,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Ling-Yun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China.,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China. .,Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China. .,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Li Yang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guo-Dong Ye
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, China.,Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qiang Zeng
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China.,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China.,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuan-Yuan Xie
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen, 361004, Fujian Province, China.,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mao-Li Chen
- Xiamen LifeInt Technology Co., Ltd., Xiamen, Fujian, China
| | - Qi-Cong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, China. .,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Cai L, Li J, Yu L, Wei Y, Miao Z, Chen M, Huang R. Characterization of transcriptional responses mediated by benzo[a]pyrene stress in a new marine fish model of goby, Mugilogobius chulae. Genes Genomics 2018; 41:113-123. [PMID: 30242742 DOI: 10.1007/s13258-018-0743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Benzo[a]pyrene (BaP) is one of the most studied targets among polycyclic aromatic hydrocarbons (PAHs). Because of the complexity of the toxicity mechanism in BaP, little is known about the molecular mechanism at the level of transcription of BaP in marine fishes. The primary objective of this study was to investigate the molecular basis of the effects of BaP on marine fish, using Mugilogobius chulae (Smith 1932) as the model. A closed colony of M. chulae was used for the BaP toxicity test. Two fish liver samples per replicate from each group were excised and blended into one sample by pooling an equal amount of liver tissue. Total RNA of all samples was extracted separately. Equal quantities of total RNA from the three replicates of the two groups were pooled for sequencing. The sequencing cDNA libraries were sequenced using Illumina HiSeq 2000 system. Differentially expressed genes were detected with the DEGSeq R package. In total, 52,364,032 and 53,771,748 clean nucleotide reads were obtained in the control and BaP-exposed libraries, respectively, with N50 lengths of 1277 and 1288 bp, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed a significant enrichment of genes related to detoxification, transportation, and lipid metabolism. We also identified, for the first time, an association between endoplasmic reticulum dysfunction and lipid metabolism resulting from BaP exposure. Using quantitative real-time PCR, some effective molecular biomarkers for monitoring of BaP-polluted seawater were identified. The results demonstrate that BaP enhanced the expression of genes involved in detoxification in M. chulae and inhibited that of genes related to lipid metabolism, possibly by suppressing the expression of numerous ER-related genes involved in fat digestion and absorption.
Collapse
Affiliation(s)
- Lei Cai
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Jianjun Li
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Lujun Yu
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Yuanzheng Wei
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Zongyu Miao
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Meili Chen
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China
| | - Ren Huang
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, No. 11, Fengxin Road, Huangpu District, Guangzhou, 510663, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Cai L, Li J, Yu L, Wei Y, Miao Z, Chen M, Huang R. De novo transcriptome assembly of the new marine fish model of goby, Mugilogobius chulae. Mar Genomics 2018; 40:18-20. [PMID: 32420877 DOI: 10.1016/j.margen.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
The yellowstripe goby (Mugilogobius chulae) is an ideal experimental marine fish model in the field of marine environmental toxicology. To clarify the mechanisms of molecular toxicity of benzo[a]pyrene (BaP) in standard laboratory fish, we carried out a genome-wide analysis of transcriptional profiles in M. chulae by RNA sequencing. A total of 47,979 unigenes were assembled de novo, with N50 lengths of 1658 bp. These results provide an important resource for future studies on the effects of BaP on marine animals.
Collapse
Affiliation(s)
- Lei Cai
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jianjun Li
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lujun Yu
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuanzheng Wei
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zongyu Miao
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Meili Chen
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ren Huang
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
16
|
Integration of the TGx-28.65 genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells. Mutat Res 2017; 806:51-62. [PMID: 29017062 DOI: 10.1016/j.mrfmmm.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Abstract
In vitro gene expression signatures to predict toxicological responses can provide mechanistic context for regulatory testing. We previously developed the TGx-28.65 genomic biomarker from a database of gene expression profiles derived from human TK6 cells exposed to 28 well-known compounds. The biomarker comprises 65 genes that can classify chemicals as DNA damaging or non-DNA damaging. In this study, we applied the TGx-28.65 genomic biomarker in parallel with the in vitro micronucleus (MN) assay to determine if two chemicals of regulatory interest at Health Canada, disperse orange (DO: the orange azo dye 3-[[4-[(4-Nitrophenyl)azo]phenyl] benzylamino]propanenitrile) and 1,2,4-benzenetriol (BT: a metabolite of benzene) are genotoxic or non-genotoxic. Both chemicals caused dose-dependent declines in relative survival and increases in apoptosis. A strong significant increase in MN induction was observed for all concentrations of BT; the top two concentrations of DO also caused a statistically significant increase in MN, but these increases were <2-fold above controls. TGx-28.65 analysis classified BT as genotoxic at all three concentrations and DO as genotoxic at the mid and high concentrations. Thus, although DO only caused a small increase in MN, this response was sufficient to induce a cellular DNA damage response. Benchmark dose modeling confirmed that BT is much more potent than DO. The results strongly suggest that follow-up work is required to assess whether DO and BT are also genotoxic in vivo. This is particularly important for DO, which may require metabolic activation by bacterial gut flora to fully induce its genotoxic potential. Our previously published data and this proof of concept study suggest that the TGx-28.65 genomic biomarker has the potential to add significant value to existing approaches used to assess genotoxicity.
Collapse
|
17
|
Nikota J, Banville A, Goodwin LR, Wu D, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: insights from an adverse outcome pathway framework. Part Fibre Toxicol 2017; 14:37. [PMID: 28903780 PMCID: PMC5598059 DOI: 10.1186/s12989-017-0218-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/05/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The accumulation of MWCNTs in the lung environment leads to inflammation and the development of disease similar to pulmonary fibrosis in rodents. Adverse Outcome Pathways (AOPs) are a framework for defining and organizing the key events that comprise the biological changes leading to undesirable events. A putative AOP has been developed describing MWCNT-induced pulmonary fibrosis; inflammation and the subsequent healing response induced by inflammatory mechanisms have been implicated in disease progression. The objective of the present study was to address a key data gap in this AOP: empirical data supporting the essentiality of pulmonary inflammation as a key event prior to fibrosis. Specifically, Interleukin-1 Receptor1 (IL-1R1) and Signal Transducer and Activator of Transcription 6 (STAT6) knock-out (KO) mice were employed to target inflammation and the subsequent healing response using MWCNTs as a model pro-fibrotic stressor to determine whether this altered the development of fibrosis. RESULTS Wild type (WT) C57BL/6, IL-1R1 (KO) or STAT6 KO mice were exposed to a high dose of Mitsui-7 MWCNT by intratracheal administration. Inflammation was assessed 24 h and 28 days post MWCNT administration, and fibrotic lesion development was assessed 28 days post MWCNT administration. MWCNT-induced acute inflammation was suppressed in IL-1R1 KO mice at the 24 h time point relative to WT mice, but this suppression was not observed 28 days post exposure, and IL-1R1 KO did not alter fibrotic disease development. In contrast, STAT6 KO mice exhibited suppressed acute inflammation and attenuated fibrotic disease in response to MWCNT administration compared to STAT6 WT mice. Whole genome analysis of all post-exposure time points identified a subset of differentially expressed genes associated with fibrosis in both KO mice compared to WT mice. CONCLUSION The findings support the essentiality of STAT6-mediated signaling in the development of MWCNT-induced fibrotic disease. The IL-1R1 KO results also highlight the nature of the inflammatory response associated with MWCNT exposure, and indicate a system with multiple redundancies. These data add to the evidence supporting an existing AOP, and will be useful in designing screening strategies that could be used by regulatory agencies to distinguish between MWCNTs of varying toxicity.
Collapse
Affiliation(s)
- Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Allyson Banville
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Laura Rose Goodwin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Carole Lynn Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Håkan Wallin
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
18
|
Defois C, Ratel J, Denis S, Batut B, Beugnot R, Peyretaillade E, Engel E, Peyret P. Environmental Pollutant Benzo[ a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Front Microbiol 2017; 8:1562. [PMID: 28861070 PMCID: PMC5559432 DOI: 10.3389/fmicb.2017.01562] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[a]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[a]P on two distinct human fecal microbiota. B[a]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[a]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[a]P induces a specific deviation in the microbial metabolism.
Collapse
Affiliation(s)
- Clémence Defois
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Jérémy Ratel
- UR370 QuaPA, MASS Team, Institut National de la Recherche AgronomiqueSaint-Genes-Champanelle, France
| | - Sylvain Denis
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Bérénice Batut
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Réjane Beugnot
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Eric Peyretaillade
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| | - Erwan Engel
- UR370 QuaPA, MASS Team, Institut National de la Recherche AgronomiqueSaint-Genes-Champanelle, France
| | - Pierre Peyret
- MEDIS, Institut National de la Recherche Agronomique, Université Clermont AuvergneClermont-Ferrand, France
| |
Collapse
|
19
|
Labib S, Williams A, Kuo B, Yauk CL, White PA, Halappanavar S. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons. Arch Toxicol 2016; 91:2599-2616. [PMID: 27858113 PMCID: PMC5489644 DOI: 10.1007/s00204-016-1891-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 01/22/2023]
Abstract
The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose–response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose–response curves for each PAH mixture. The predicted and observed pathway dose–response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
20
|
Labib S, Williams A, Guo CH, Leingartner K, Arlt VM, Schmeiser HH, Yauk CL, White PA, Halappanavar S. Comparative transcriptomic analyses to scrutinize the assumption that genotoxic PAHs exert effects via a common mode of action. Arch Toxicol 2016; 90:2461-80. [PMID: 26377693 PMCID: PMC5043007 DOI: 10.1007/s00204-015-1595-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
Abstract
In this study, the accuracy of the assumption that genotoxic, carcinogenic polycyclic aromatic hydrocarbons (PAHs) act via similar mechanisms of action as benzo(a)pyrene (BaP), the reference PAH used in the human health risk assessment of PAH-containing complex mixtures, was investigated. Adult male Muta™Mouse were gavaged for 28 days with seven individual, genotoxic PAHs. Global gene expression profiles in forestomach, liver, and lung (target tissues of exposure) were determined at 3 days post-exposure. The results are compared with our previously published results from mice exposed to BaP via the same exposure regimen. Although all PAHs showed enhanced ethoxyresorufin-O-deethylase activity, DNA adduct formation, and lacZ mutant frequency in the lungs, the unsupervised cluster analysis of differentially expressed genes revealed that the transcriptional changes are both PAH- and tissue-specific, with lung showing the most response. Further bioinformatics-/pathway-based analysis revealed that all PAHs induce expression of genes associated with carcinogenic processes, including DNA damage response, immune/inflammatory response, or cell signaling processes; however, the type of pathways and the magnitude of change varied for each PAH and were not the same as those observed for BaP. Benchmark dose modeling showed transcriptomic data closely reflected the known tumor incidence for the individual PAHs in each tissue. Collectively, the results suggest that the underlying mechanisms of PAH-induced toxicity leading to tumorigenesis are tissue-specific and not the same for all PAHs; based on the tissue type considered, use of BaP as a reference chemical may overestimate or underestimate the carcinogenic potential of PAHs.
Collapse
Affiliation(s)
- S Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - A Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - C H Guo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - K Leingartner
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - H H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - C L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - P A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - S Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
21
|
Wei Y, Zhao L, He W, Yang J, Geng C, Chen Y, Liu T, Chen H, Li Y. Benzo[a]pyrene promotes gastric cancer cell proliferation and metastasis likely through the Aryl hydrocarbon receptor and ERK-dependent induction of MMP9 and c-myc. Int J Oncol 2016; 49:2055-2063. [PMID: 27601158 DOI: 10.3892/ijo.2016.3674] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and the third leading cause of global cancer-related death. Benzo[a]pyrene (BaP), a Group Ⅰ carcinogen categorized by the IARC, is a cumulative foodborne carcinogen and ubiquitous environmental pollutant with potent carcinogenic properties. However, the function and mechanism of BaP exposure on GC progression remains unclear. We investigated the role of BaP in human GC progression to identify potential mechanism underlining its carcinogenic activity. After exposure to various concentrations of BaP, human GC cells SGC-7901 and MNK-45 showed an increased capability of proliferation, migration and invasion. Further study indicated that BaP promotes the expression of matrix metalloproteinase-9 (MMP9) and c-myc at mRNA and protein level, and activates Aryl hydrocarbon receptor (AhR) and ERK pathway. Moreover, BaP-induced overexpression of MMP9 and c-myc were attenuated by the ERK inhibitor U0126 and AhR inhibitor resveratrol, respectively. These data suggest that BaP promotes proliferation and metastasis of GC cells through upregulation of MMP9 and c-myc expression, and this was likely mediated via the AhR and ERK signaling pathway.
Collapse
Affiliation(s)
- Yucai Wei
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Lei Zhao
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Wenting He
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jingwei Yang
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chunyu Geng
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yusheng Chen
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Tao Liu
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yumin Li
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
22
|
Huo X, Jia Y, Liu D, Gao L, Zhang L, Li L, Qi Y, Cao L. Photodynamic diagnosis of gastric cancer using HPPH-CD. RSC Adv 2016. [DOI: 10.1039/c5ra27746a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
24
|
Fang X, Corrales J, Thornton C, Clerk T, Scheffler BE, Willett KL. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure. Toxicol Sci 2015; 146:395-411. [PMID: 26001963 DOI: 10.1093/toxsci/kfv105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene expression. Herein, we performed a genome-wide transcriptional analysis and discovered differential gene expression and splicing in developing zebrafish. Adult zebrafish were exposed to control or 42.0 ± 1.9 µg/l BaP for 7 days. Eggs were collected and raised in control conditions or continuously exposed to BaP until 3.3 and 96 h post-fertilization (hpf). RNA sequencing (RNA-Seq) was conducted on zebrafish embryos and larvae. Data were analyzed to identify differentially expressed (DE) genes (changed at the gene or transcript variant level) and genes with differential exon usage (DEU; changed at the exon level). At 3.3 hpf, BaP exposure resulted in 8 DE genes and 51 DEU genes. At 96 hpf, BaP exposure altered expression in 1153 DE genes and 159 DEU genes. Functional ontology analysis by Ingenuity Pathway Analysis revealed that many disease pathways, including organismal death, growth failure, abnormal morphology of embryonic tissue, congenital heart disease, and adverse neuritogenesis, were significantly enriched for the DE and DEU genes, providing novel insights on the mechanisms of action of BaP-induced developmental toxicities. Collectively, we discovered substantial transcriptomic changes at the gene, transcript variant, and exon levels in developing zebrafish after early life BaP waterborne exposure, and these changes may lead to long-term adverse physiological consequences.
Collapse
Affiliation(s)
- Xiefan Fang
- *Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Jone Corrales
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677
| | - Cammi Thornton
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677
| | - Tracy Clerk
- Center for Biotechnology and Genomics, Alcorn State University, Lorman, Mississippi 39096; and
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, USDA ARS, Stoneville, Mississippi 38776
| | - Kristine L Willett
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677;
| |
Collapse
|
25
|
Bourdon-Lacombe JA, Moffat ID, Deveau M, Husain M, Auerbach S, Krewski D, Thomas RS, Bushel PR, Williams A, Yauk CL. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Regul Toxicol Pharmacol 2015; 72:292-309. [PMID: 25944780 DOI: 10.1016/j.yrtph.2015.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals.
Collapse
Affiliation(s)
| | - Ivy D Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.
| | - Michelle Deveau
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Mainul Husain
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Scott Auerbach
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Russell S Thomas
- National Centre for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
26
|
Sánchez-Martín FJ, Fan Y, Carreira V, Ovesen JL, Vonhandorf A, Xia Y, Puga A. Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice. Toxicol Sci 2015; 146:52-64. [PMID: 25820237 DOI: 10.1093/toxsci/kfv070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI).
Collapse
Affiliation(s)
- Francisco Javier Sánchez-Martín
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Vinicius Carreira
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Jerald L Ovesen
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Andrew Vonhandorf
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
27
|
Halappanavar S, Saber AT, Decan N, Jensen KA, Wu D, Jacobsen NR, Guo C, Rogowski J, Koponen IK, Levin M, Madsen AM, Atluri R, Snitka V, Birkedal RK, Rickerby D, Williams A, Wallin H, Yauk CL, Vogel U. Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:245-64. [PMID: 25504612 DOI: 10.1002/em.21936] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 05/28/2023]
Abstract
We applied transcriptional profiling to elucidate the mechanisms associated with pulmonary responses to titanium dioxide (TiO2 ) nanoparticles (NPs) of different sizes and surface coatings, and to determine if these responses are modified by NP size, surface area, surface modification, and embedding in paint matrices. Adult C57BL/6 mice were exposed via single intratracheal instillations to free forms of TiO2 NPs (10, 20.6, or 38 nm in diameter) with different surface coatings, or TiO2 NPs embedded in paint matrices. Controls were exposed to dispersion medium devoid of NPs. TiO2 NPs were characterized for size, surface area, chemical impurities, and agglomeration state in the exposure medium. Pulmonary transcriptional profiles were generated using microarrays from tissues collected one and 28 d postexposure. Property-specific pathway effects were identified. Pulmonary protein levels of specific inflammatory cytokines and chemokines were confirmed by ELISA. The data were collapsed to 659 differentially expressed genes (P ≤ 0.05; fold change ≥ 1.5). Unsupervised hierarchical clustering of these genes revealed that TiO2 NPs clustered mainly by postexposure timepoint followed by particle type. A pathway-based meta-analysis showed that the combination of smaller size, large deposited surface area, and surface amidation contributes to TiO2 NP gene expression response. Embedding of TiO2 NP in paint dampens the overall transcriptional effects. The magnitude of the expression changes associated with pulmonary inflammation differed across all particles; however, the underlying pathway perturbations leading to inflammation were similar, suggesting a generalized mechanism-of-action for all TiO2 NPs. Thus, transcriptional profiling is an effective tool to determine the property-specific biological/toxicity responses induced by nanomaterials.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics 2014; 15:880. [PMID: 25297811 PMCID: PMC4209037 DOI: 10.1186/1471-2164-15-880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. RESULTS BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. CONCLUSIONS Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.
Collapse
Affiliation(s)
- Jie Zuo
- />Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS UK
| | - Daniel S Brewer
- />School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Volker M Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Colin S Cooper
- />The Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - David H Phillips
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
29
|
Tryba B, Homa P, Wróbel R, Morawski A. Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Nephrotoxicity assessments of benzo(a)pyrene during zebrafish embryogenesis. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1595-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|