1
|
Kim N, Filipovic D, Bhattacharya S, Cuddapah S. Epigenetic toxicity of heavy metals - implications for embryonic stem cells. ENVIRONMENT INTERNATIONAL 2024; 193:109084. [PMID: 39437622 DOI: 10.1016/j.envint.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Exposure to heavy metals, such as cadmium, nickel, mercury, arsenic, lead, and hexavalent chromium has been linked to dysregulated developmental processes, such as impaired stem cell differentiation. Heavy metals are well-known modifiers of the epigenome. Stem and progenitor cells are particularly vulnerable to exposure to potentially toxic metals since these cells rely on epigenetic reprogramming for their proper functioning. Therefore, exposure to metals can impair stem and progenitor cell proliferation, pluripotency, stemness, and differentiation. In this review, we provide a comprehensive summary of current evidence on the epigenetic effects of heavy metals on stem cells, focusing particularly on DNA methylation and histone modifications. Moreover, we explore the underlying mechanisms responsible for these epigenetic changes. By providing an overview of heavy metal exposure-induced alterations to the epigenome, the underlying mechanisms, and the consequences of those alterations on stem cell function, this review provides a foundation for further research in this critical area of overlap between toxicology and developmental biology.
Collapse
Affiliation(s)
- Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - David Filipovic
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
2
|
Hua W, Han X, Li F, Lu L, Sun Y, Hassanian-Moghaddam H, Tian M, Lu Y, Huang Q. Transgenerational Effects of Arsenic Exposure on Learning and Memory in Rats: Crosstalk between Arsenic Methylation, Hippocampal Metabolism, and Histone Modifications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6475-6486. [PMID: 38578163 DOI: 10.1021/acs.est.3c07989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Arsenic (As) is widely present in the natural environment, and exposure to it can lead to learning and memory impairment. However, the underlying epigenetic mechanisms are still largely unclear. This study aimed to reveal the role of histone modifications in environmental levels of arsenic (sodium arsenite) exposure-induced learning and memory dysfunction in male rats, and the inter/transgenerational effects of paternal arsenic exposure were also investigated. It was found that arsenic exposure impaired the learning and memory ability of F0 rats and down-regulated the expression of cognition-related genes Bdnf, c-Fos, mGlur1, Nmdar1, and Gria2 in the hippocampus. We also observed that inorganic arsenite was methylated to DMA and histone modification-related metabolites were altered, contributing to the dysregulation of H3K4me1/2/3, H3K9me1/2/3, and H3K4ac in rat hippocampus after exposure. Therefore, it is suggested that arsenic methylation and hippocampal metabolism changes attenuated H3K4me1/2/3 and H3K4ac while enhancing H3K9me1/2/3, which repressed the key gene expressions, leading to cognitive impairment in rats exposed to arsenic. In addition, paternal arsenic exposure induced transgenerational effects of learning and memory disorder in F2 male rats through the regulation of H3K4me2 and H3K9me1/2/3, which inhibited c-Fos, mGlur1, and Nmdar1 expression. These results provide novel insights into the molecular mechanism of arsenic-induced neurotoxicity and highlight the risk of neurological deficits in offspring with paternal exposure to arsenic.
Collapse
Affiliation(s)
- Weizhen Hua
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fuping Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiqiong Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyang Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
3
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
4
|
Dennison J, Mendez A, Szeto A, Lohse I, Wahlestedt C, Volmar CH. Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse. Biomolecules 2023; 13:1324. [PMID: 37759724 PMCID: PMC10526199 DOI: 10.3390/biom13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic compounds have become attractive small molecules for targeting the multifaceted aspects of Alzheimer's disease (AD). Although AD disproportionately affects women, most of the current literature investigating epigenetic compounds for the treatment of AD do not report sex-specific results. This is remarkable because there is rising evidence that epigenetic compounds intrinsically affect males and females differently. This manuscript explores the sexual dimorphism observed after chronic, low-dose administration of a clinically relevant histone deacetylase inhibitor, chidamide (Tucidinostat), in the 3xTg-AD mouse model. We found that chidamide treatment significantly improves glucose tolerance and increases expression of glucose transporters in the brain of males. We also report a decrease in total tau in chidamide-treated mice. Differentially expressed genes in chidamide-treated mice were much greater in males than females. Genes involved in the neuroinflammatory pathway and amyloid processing pathway were mostly upregulated in chidamide-treated males while downregulated in chidamide-treated females. This work highlights the need for drug discovery projects to consider sex as a biological variable to facilitate translation.
Collapse
Affiliation(s)
- Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Armando Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
6
|
Wu Y, Wang R, Liu R, Ba Y, Huang H. The Roles of Histone Modifications in Metal-Induced Neurological Disorders. Biol Trace Elem Res 2023; 201:31-40. [PMID: 35129806 DOI: 10.1007/s12011-022-03134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Increasing research is illuminating the intricate roles of metal ions in neural development as well as neurological disorders, which may stem from misregulation or dysfunction of epigenetic modifiers. Lead (Pb), cadmium (Cd), aluminum (Al), and arsenic were chosen for critical review because they have become serious public health concerns due to globalization and industrialization. In this review, we will introduce various modes of action of metals and consider the role of two posttranslational modifications: histone acetylation and methylation and how each of them affects gene expression. We then summarize the findings from previous studies on the neurological outcomes and histone alterations in response to the metals on each of the previously described histone modifications mechanisms. Understanding metal-induced histone modifications changes could provide better insight on the mechanism through which neurotoxicity occurs, to propose and validate these modifications as possible biomarkers for early identification of neurological damage, and can help model targeted therapies for the diseases of the brain.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Fu C, Kuang D, Zhang H, Ren J, Chen J. Different components of air pollutants and neurological disorders. Front Public Health 2022; 10:959921. [PMID: 36518583 PMCID: PMC9742385 DOI: 10.3389/fpubh.2022.959921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
The harmful effects of air pollution can cause various diseases. Most research on the hazards of air pollution focuses on lung and cardiovascular diseases. In contrast, the impact of air pollution on neurological disorders is not widely recognized. Air pollution can cause various neurological conditions and diseases, such as neural inflammation, neurodegeneration, and cerebrovascular barrier disorder; however, the mechanisms underlying the neurological diseases induced by various components of air pollutants remain unclear. The present paper summarizes the effects of different components of air pollutants, including particulate matter, ozone, sulfur oxides, carbon oxides, nitrogen oxides, and heavy metals, on the nervous system and describes the impact of various air pollutants on neurological disorders, providing ideas for follow-up research.
Collapse
Affiliation(s)
- Chunlia Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Daibing Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - He Zhang
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinxin Ren
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Fitz NF, Barchowsky A, Koldamova R, Lefterov I. Genome-wide Alteration of Histone Methylation Profiles Associated with Cognitive Changes in Response to Developmental Arsenic Exposure in Mice. Toxicol Rep 2022; 9:393-403. [PMID: 35299870 PMCID: PMC8920871 DOI: 10.1016/j.toxrep.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Inorganic arsenic is a xenobiotic entering the body primarily through contaminated drinking water and food. There are defined mechanisms that describe arsenic’s association with increased cancer incidence, however mechanisms explaining arsenic exposure and neurodevelopmental or aging disorders are poorly defined. In recent years, arsenic effects on epigenome have become a particular focus. We hypothesize that human relevant arsenic exposure during particular developmental windows, or long-term exposure later in life induce pathophysiological neural changes through epigenomic alterations, in particular histone methylation profile, manifesting as cognitive decline. C57BL/6 wild-type mice were continually exposed to sodium arsenite (100 µg/L) in drinking water prior to mating through weaning of the experimental progeny. A second cohort of aged APP/PS mice were chronically exposed to the same level of arsenic. Cognitive testing, histological examination of brains and genome-wide methylation levels of H3K4me3 and H3K27me3 examined after ChIP-seq were used to determine the effects of arsenic exposure. Developmental arsenic exposure caused significantly diminished cognition in wild-type mice. The analysis of ChIP-seq data and experiments with mouse embryonic stem cells demonstrated that epigenetic changes induced by arsenic exposure translated into gene expression alterations associated with neuronal development and neurological disease. Increased hippocampal amyloid plaques levels of APP/PS mice and cognitive decline provided evidence that arsenic exposure aggravated an existing Alzheimer’s disease-like phenotype. We show developmental arsenic exposure significantly impacts histone modifications in brain which remain present into adulthood and provide a potential mechanism by which developmental arsenic exposure influences cognitive functions. We also show that human relevant, chronic arsenic exposure has deleterious effects on adult APP/PS mice and exacerbates existing Alzheimer’s disease-like symptoms. The results demonstrate how developmental arsenic exposure impacts the brain epigenome, leading to altered gene expression later in life. Developmental arsenic exposure impacts biologically significant histone modifications in brain. Decreased trimethylation of H3K27 is associated with processes related to neuron fate and development. Histone modification in brain present a potential mechanism how developmental arsenic exposure impacts cognitive functions. Arsenic exacerbates cognitive deficits and neuroinflammation in AD model mice.
Collapse
|
9
|
Sharma V, Gangopadhyay S, Shukla S, Chauhan A, Singh S, Singh RD, Tiwari R, Singh D, Srivastava V. Prenatal exposure to arsenic promotes sterile inflammation through the Polycomb repressive element EZH2 and accelerates skin tumorigenesis in mouse. Toxicol Appl Pharmacol 2022; 443:116004. [DOI: 10.1016/j.taap.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
10
|
He B, Pan H, Zheng F, Chen S, Bie Q, Cao J, Zhao R, Liang J, Wei L, Zeng J, Li H, Cui X, Ding Y, Chao W, Xiang T, Cheng Y, Qiu G, Huang S, Tang L, Chang J, Luo D, Yang J, Zhang B. Long noncoding RNA LINC00930 promotes PFKFB3-mediated tumor glycolysis and cell proliferation in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:77. [PMID: 35209949 PMCID: PMC8867671 DOI: 10.1186/s13046-022-02282-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Background Metabolic reprogramming is a hallmark of cancer. However, the roles of long noncoding RNAs (lncRNAs) in cancer metabolism, especially glucose metabolism remain largely unknown. Results In this study, we identified and functionally characterized a novel metabolism-related lncRNA, LINC00930, which was upregulated and associated with tumorigenesis, lymphatic invasion, metastasis, and poor prognosis in nasopharyngeal carcinoma (NPC). Functionally, LINC00930 was required for increased glycolysis activity and cell proliferation in multiple NPC models in vitro and in vivo. Mechanistically, LINC00930 served as a scaffold to recruit the RBBP5 and GCN5 complex to the PFKFB3 promoter and increased H3K4 trimethylation and H3K9 acetylation levels in the PFKFB3 promoter region, which epigenetically transactivating PFKFB3, and thus promoting glycolytic flux and cell cycle progression. Clinically, targeting LINC00930 and PFKFB3 in combination with radiotherapy induced tumor regression. Conclusions Collectively, LINC00930 is mechanistically, functionally and clinically oncogenic in NPC. Targeting LINC00930 and its pathway may be meaningful for treating patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02282-9.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China. .,Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Hongli Pan
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.,Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengque Zheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Saiqiong Chen
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jinghe Cao
- Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li Wei
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jianchao Zeng
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hui Li
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Cui
- Department of Otolaryngology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yixuan Ding
- Department of Pathology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wei Chao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Tiantian Xiang
- Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuhe Cheng
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gui Qiu
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shishun Huang
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Libo Tang
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Chang
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Delan Luo
- Department of Gastroenterology, the First People's Hospital of Neijiang City, Neijiang, Sichuan, China
| | - Jie Yang
- Department of Hematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
11
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Saintilnord WN, Fondufe-Mittendorf Y. Arsenic-induced epigenetic changes in cancer development. Semin Cancer Biol 2021; 76:195-205. [PMID: 33798722 PMCID: PMC8481342 DOI: 10.1016/j.semcancer.2021.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Arsenic is a ubiquitous metalloid whose high levels of toxicity pose major health concerns to millions of people worldwide by increasing susceptibility to various cancers and non-cancer illnesses. Since arsenic is not a mutagen, the mechanism by which it causes changes in gene expression and disease pathogenesis is not clear. One possible mechanism is through generation of reactive oxygen species. Another equally important mechanism still very much in its infancy is epigenetic dysregulation. In this review, we discuss recent discoveries underlying arsenic-induced epigenetic changes in cancer development. Importantly, we highlight the proposed mechanisms targeted by arsenic to drive oncogenic gene expression.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
13
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
14
|
Abstract
With extensive use in industrial and agriculture applications, overexposure to heavy metals has become a global public health concern. The nervous system is vulnerable to many heavy metals, including cadmium, lead, and mercury. However, the knowledge about the underlying mechanisms of these metals' neurotoxicity is still very limited. Adult neurogenesis is a process of generating functional neurons from adult neural progenitor/stem cells (aNPCs), which plays an important role in cognitive function and olfaction. The studies of adult neurogenesis provide new insights into mechanisms of heavy metal neurotoxicity. This review summarizes the current research about the effects of heavy metals on adult neurogenesis and discusses their importance in understanding the mechanisms of heavy metals neurotoxicity, as well as challenges and future directions.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Megumi T. Matsushita
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Mohammad S, Page SJ, Sasaki T, Ayvazian N, Rakic P, Kawasawa YI, Hashimoto-Torii K, Torii M. Long-term spatial tracking of cells affected by environmental insults. J Neurodev Disord 2020; 12:38. [PMID: 33327938 PMCID: PMC7745478 DOI: 10.1186/s11689-020-09339-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/13/2020] [Indexed: 11/15/2022] Open
Abstract
Background Harsh environments surrounding fetuses and children can induce cellular damage in the developing brain, increasing the risk of intellectual disability and other neurodevelopmental disorders such as schizophrenia. However, the mechanisms by which early damage leads to disease manifestation in later life remain largely unknown. Previously, we demonstrated that the activation of heat shock (HS) signaling can be utilized as a unique reporter to label the cells that undergo specific molecular/cellular changes upon exposure to environmental insults throughout the body. Since the activation of HS signaling is an acute and transient event, this approach was not intended for long-term tracing of affected cells after the activation has diminished. In the present study, we generated new reporter transgenic mouse lines as a novel tool to achieve systemic and long-term tracking of affected cells and their progeny. Methods The reporter transgenic mouse system was designed so that the activation of HS signaling through HS response element (HSE) drives flippase (FLPo)-flippase recognition target (FRT) recombination-mediated permanent expression of the red fluorescent protein (RFP), tdTomato. With a priority on consistent and efficient assessment of the reporter system, we focused on intraperitoneal (i.p.) injection models of high-dose, short prenatal exposure to alcohol (ethanol) and sodium arsenite (ethanol at 4.0 g/kg/day and sodium arsenite at 5.0 mg/kg/day, at embryonic day (E) 12 and 13). Long-term reporter expression was examined in the brain of reporter mice that were prenatally exposed to these insults. Electrophysiological properties were compared between RFP+ and RFP− cortical neurons in animals prenatally exposed to arsenite. Results We detected RFP+ neurons and glia in the brains of postnatal mice that had been prenatally exposed to alcohol or sodium arsenite. In animals prenatally exposed to sodium arsenite, we also detected reduced excitability in RFP+ cortical neurons. Conclusion The reporter transgenic mice allowed us to trace the cells that once responded to prenatal environmental stress and the progeny derived from these cells long after the exposure in postnatal animals. Tracing of these cells indicates that the impact of prenatal exposure on neural progenitor cells can lead to functional abnormalities in their progeny cells in the postnatal brain. Further studies using more clinically relevant exposure models are warranted to explore this mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09339-w.
Collapse
Affiliation(s)
- Shahid Mohammad
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Stephen J Page
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Toru Sasaki
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Nicholas Ayvazian
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Institute of Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
16
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
17
|
Solomon ER, Caldwell KK, Allan AM. Developmental arsenic exposure is associated with sex differences in the epigenetic regulation of stress genes in the adult mouse frontal cortex. Toxicol Appl Pharmacol 2020; 391:114920. [PMID: 32061746 PMCID: PMC7948303 DOI: 10.1016/j.taap.2020.114920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico HSC, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico HSC, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico HSC, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States.
| |
Collapse
|
18
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
19
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
20
|
Potential facet for prenatal arsenic exposure paradigm: linking endocrine disruption and epigenetics. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Developmental neurotoxicity of inorganic arsenic exposure in Sprague-Dawley rats. Neurotoxicol Teratol 2019; 72:49-57. [DOI: 10.1016/j.ntt.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
|
22
|
Tyler CRS, Smoake JJW, Solomon ER, Villicana E, Caldwell KK, Allan AM. Sex-Dependent Effects of the Histone Deacetylase Inhibitor, Sodium Valproate, on Reversal Learning After Developmental Arsenic Exposure. Front Genet 2018; 9:200. [PMID: 29963072 PMCID: PMC6013562 DOI: 10.3389/fgene.2018.00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023] Open
Abstract
Several studies have demonstrated that exposure to arsenic in drinking water adversely affects brain development and cognitive function in adulthood. While the mechanism by which arsenic induces adverse neurological outcomes remains elusive, studies suggest a link between reduced levels of histone acetylation and impaired performance on a variety of behavioral tasks following arsenic exposure. Using our developmental arsenic exposure (DAE) paradigm, we have previously reported reduced histone acetylation and associated histone acetyltransferase enzyme expression in the frontal cortex of C57BL/6J adult male mice, with no changes observed in the female frontal cortex. In the present study, we sought to determine if DAE produced sex-dependent deficits in frontal cortical executive function using the Y-maze acquisition and reversal learning tasks, which are specific for assessing cognitive flexibility. Further, we tested whether the administration of valproic acid, a class I-IIa histone deacetylase inhibitor, was able to mitigate behavioral and biochemical changes resulting from DAE. As anticipated, DAE inhibited acquisition and reversal learning performance in adult male, but not female, mice. Valproate treatment for 2 weeks restored reversal performance in the male arsenic-exposed offspring, while not affecting female performance. Protein levels of HDACs 1, 2, and 5 were elevated following behavioral assessment but only in DAE male mice; restoration of appropriate HDAC levels occurred after valproate treatment and was concurrent with improved behavioral performance, particularly during reversal learning. Female frontal cortical levels of HDAC enzymes were not impacted by DAE or valproate treatment. Finally, mRNA expression levels of brain-derived neurotrophic factor, Bdnf, which has been implicated in the control of frontal cortical flexibility and is regulated by HDAC5, were elevated in DAE male mice and restored to normal levels following HDACi treatment. Levels of mRNA encoding glutamate receptor ionotropic NMDA type subunits, which have been linked to cognitive flexibility, were not related to the reversal learning deficit in the DAE mice and were not altered by HDACi treatments. These findings demonstrate that DAE alters frontal cortical HDAC levels and Bdnf expression in males, but not females, and that these molecular changes are associated with sex-dependent differences in cognitive flexibility in a reversal-learning task.
Collapse
Affiliation(s)
| | - Jane J W Smoake
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Elizabeth R Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
23
|
Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:045001. [PMID: 29669403 PMCID: PMC6071815 DOI: 10.1289/ehp2322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The epigenome may be an important interface between environmental chemical exposures and human health. However, the links between epigenetic modifications and health outcomes are often correlative and do not distinguish between cause and effect or common-cause relationships. The Adverse Outcome Pathway (AOP) framework has the potential to demonstrate, by way of an inference- and science-based analysis, the causal relationship between chemical exposures, epigenome, and adverse health outcomes. OBJECTIVE The objective of this work is to discuss the epigenome as a modifier of exposure effects and risk, perspectives for integrating toxicoepigenetic data into an AOP framework, tools for the exploration of epigenetic toxicity, and integration of AOP-guided epigenetic information into science and risk-assessment processes. DISCUSSION Organizing epigenetic information into the topology of a qualitative AOP network may help describe how a system will respond to epigenetic modifications caused by environmental chemical exposures. However, understanding the biological plausibility, linking epigenetic effects to short- and long-term health outcomes, and including epigenetic studies in the risk assessment process is met by substantive challenges. These obstacles include understanding the complex range of epigenetic modifications and their combinatorial effects, the large number of environmental chemicals to be tested, and the lack of data that quantitatively evaluate the epigenetic effects of environmental exposure. CONCLUSION We anticipate that epigenetic information organized into AOP frameworks can be consistently used to support biological plausibility and to identify data gaps that will accelerate the pace at which epigenetic information is applied in chemical evaluation and risk-assessment paradigms. https://doi.org/10.1289/EHP2322.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Patrick Allard
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Ingrid L Druwe
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Lisa Helbling Chadwick
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erin Hines
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| |
Collapse
|
24
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Raciti M, Ceccatelli S. Epigenetic mechanisms in developmental neurotoxicity. Neurotoxicol Teratol 2018; 66:94-101. [DOI: 10.1016/j.ntt.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
|
26
|
Murko M, Elek B, Styblo M, Thomas DJ, Francesconi KA. Dose and Diet - Sources of Arsenic Intake in Mouse in Utero Exposure Scenarios. Chem Res Toxicol 2018; 31:156-164. [PMID: 29244955 PMCID: PMC6611170 DOI: 10.1021/acs.chemrestox.7b00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In humans, early life exposure to inorganic arsenic is associated with adverse health effects. Inorganic arsenic in utero or in early postnatal life also produces adverse health effects in offspring of pregnant mice that consumed drinking water containing low part per billion levels of inorganic arsenic. Because aggregate exposure of pregnant mice to inorganic arsenic from both drinking water and food has not been fully evaluated in experimental studies, quantifying arsenic exposure of the developing mouse is problematic. Here, we determined levels of total arsenic and arsenic species in natural ingredient rodent diets that are composed of many plant and animal-derived foodstuffs and in a purified ingredient rodent diet that is composed of a more restricted mixture of foodstuffs. In natural ingredient diets, total arsenic levels ranged from ∼60 to ∼400 parts per billion, and in the purified ingredient diet, total arsenic level was 13 parts per billion. Inorganic arsenic was the predominant arsenic species in trifluoroacetic acid extracts of each diet. Various exposure scenarios were evaluated using information on inorganic arsenic levels in diet and drinking water and on daily food and water consumption of pregnant mice. In a scenario in which pregnant mice consumed drinking water with 10 parts per billion of inorganic arsenic and a natural ingredient diet containing 89 parts per billion of inorganic arsenic, drinking water contributed only ∼20% of inorganic arsenic intake. Quantitation of arsenic species in diets used in studies in which drinking water is the nominal source of arsenic exposure provides more accurate dosimetry and improves understanding of dose-response relations. Use of purified ingredient diets will minimize the discrepancy between the target dosage level and the actual dosage level attained in utero exposure studies designed to evaluate effects of low level exposure to inorganic arsenic.
Collapse
Affiliation(s)
- Manuela Murko
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina 27719, United States
| | - David J. Thomas
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | | |
Collapse
|
27
|
Bhattacharjee P, Paul S, Bhattacharjee S, Giri AK, Bhattacharjee P. Association of H3K79 monomethylation (an epigenetic signature) with arsenic-induced skin lesions. Mutat Res 2017; 807:1-9. [PMID: 29161537 DOI: 10.1016/j.mrfmmm.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Arsenic, a non mutagenic carcinogen, poses a profound health risk upon prolonged exposure. The objective of the study was to analyze the post-translational modifications of the major histone H3 and the associated molecular crosstalk to identify the epigenetic signature of arsenic susceptibility. Herein, we identified significant upregulation of H3K79me1, in individuals with arsenic-induced skin lesion (WSL), and H3K79me1 was found to be regulated by the upstream methyltransferase DOT1L. Moreover, the downstream target molecule 53BP1, a tumor suppressor protein that has a docking preference for H3K79me1 at a site of a double-strand break (DSB), was downregulated, indicating greater DNA damage in the WSL group. Western blot data confirmed higher levels of γH2AX, a known marker of DSBs, in group WSL. In vitro dose-response analysis also confirmed the association of the H3K79me1 signature with arsenic toxicity. Taken together, our findings revealed that H3K79me1 and DOT1L could be a novel epigenetic signature of the arsenic-exposed WSL group.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology and Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
28
|
Caldwell KK, Hafez A, Solomon E, Cunningham M, Allan AM. Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol 2017; 66:102-112. [PMID: 29132937 DOI: 10.1016/j.ntt.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexander Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Matthew Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
29
|
Rao CV, Pal S, Mohammed A, Farooqui M, Doescher MP, Asch AS, Yamada HY. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 2017; 8:57605-57621. [PMID: 28915699 PMCID: PMC5593671 DOI: 10.18632/oncotarget.17745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023] Open
Abstract
Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide "hot spots" where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Sanya Pal
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Mudassir Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Mark P Doescher
- Stephenson Cancer Center and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Adam S Asch
- Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
30
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
31
|
Alegría-Torres JA, Carrizales-Yánez L, Díaz-Barriga F, Rosso-Camacho F, Motta V, Tarantini L, Bollati V. DNA methylation changes in Mexican children exposed to arsenic from two historic mining areas in San Luis potosí. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:717-723. [PMID: 27862296 DOI: 10.1002/em.22062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
Arsenic is a carcinogen and epimutagen that threatens the health of exposed populations worldwide. In this study, we examined the methylation status of Alu and long interspersed nucleotide elements (LINE-1) and their association with levels of urinary arsenic in 84 Mexican children between 6 and 12 years old from two historic mining areas in the State of San Luis Potosí, Mexico. Urinary arsenic levels were determined by atomic absorption spectrophotometry and DNA methylation analysis was performed in peripheral blood leukocytes by bisulfite-pyrosequencing. The geometric mean of urinary arsenic was 26.44 µg/g Cr (range 1.93-139.35). No significant differences in urinary arsenic or methylation patterns due to gender were observed. A positive correlation was found between urinary arsenic and the mean percentage of methylated cytosines in Alu sequences (Spearman correlation coefficient r = 0.532, P < 0.001), and a trend of LINE-1 hypomethylation was also observed (Spearman correlation coefficient r = -0.232, P = 0.038) after adjustment for sex and age. A linear regression model showed an association with log-normalized urinary arsenic for Alu (β = 1.05, 95% CI: 0.67; 1.43, P < 0.001) and LINE-1 (β = -0.703, 95% CI: -1.36; -0.38, P = 0.038). Despite the low-level arsenic exposure, a subtle epigenetic imbalance measured as DNA methylation was detected in the leukocytes of Mexican children living in two historic mining areas. Environ. Mol. Mutagen. 57:717-723, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Alejandro Alegría-Torres
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, México
- Laboratorio de Investigación Molecular en Nutrición (LIMON), Universidad del Centro de México UCEM, San Luis Potosí, México
| | - Leticia Carrizales-Yánez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, México
| | - Fernando Díaz-Barriga
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, México
| | - Fernando Rosso-Camacho
- Laboratorio de Investigación Molecular en Nutrición (LIMON), Universidad del Centro de México UCEM, San Luis Potosí, México
| | - Valeria Motta
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Tarantini
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Tyler CR, Labrecque MT, Solomon ER, Guo X, Allan AM. Prenatal arsenic exposure alters REST/NRSF and microRNA regulators of embryonic neural stem cell fate in a sex-dependent manner. Neurotoxicol Teratol 2016; 59:1-15. [PMID: 27751817 DOI: 10.1016/j.ntt.2016.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Exposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs. The master negative regulator of neural-lineage, REST/NRSF, controls the precise timing of fate specification and differentiation of neural stem cells (NSCs). Early in development (embryonic day 14), we observed increased expression of Rest, its co-repressor, CoREST, and the inhibitory RNA binding/splicing protein, Ptbp1, and altered expression of mRNA spliced isoforms of Pbx1 that are directly regulated by these factors in the male brain in response to prenatal 50ppb arsenic exposure. These increases were concurrent with decreased expression of microRNA-9 (miR-9), miR-9*, and miR-124, all of which are REST/NRSF targets and inversely regulate Rest expression to allow for maturation of NSCs. Exposure to arsenic decreased the formation of neuroblasts in vitro from NSCs derived from male pup brains. The female response to arsenic was limited to increased expression of CoREST and Ptbp2, an RNA binding protein that allows for appropriate splicing of genes involved in the progression of neurogenesis. These changes were accompanied by increased neuroblast formation in vitro from NSCs derived from female pups. Unexposed male mice express transcriptomic factors to induce differentiation earlier in development compared to unexposed females. Thus, arsenic exposure likely delays differentiation of NSCs in males while potentially inducing precocious differentiation in females early in development. These effects are mitigated by embryonic day 18 of development. Arsenic-induced dysregulation of the regulatory loop formed by REST/NRSF, its target microRNAs, miR-9 and miR-124, and RNA splicing proteins, PTBP1 and 2, leads to aberrant programming of NSC function that is perhaps perpetuated into adulthood inducing deficits in differentiation we have previously observed.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States
| | - Matthew T Labrecque
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Xun Guo
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
33
|
Howe CG, Gamble MV. Influence of Arsenic on Global Levels of Histone Posttranslational Modifications: a Review of the Literature and Challenges in the Field. Curr Environ Health Rep 2016; 3:225-37. [PMID: 27352015 PMCID: PMC4967376 DOI: 10.1007/s40572-016-0104-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arsenic is a human carcinogen and also increases the risk for non-cancer outcomes. Arsenic-induced epigenetic dysregulation may contribute to arsenic toxicity. Although there are several reviews on arsenic and epigenetics, these have largely focused on DNA methylation. Here, we review investigations of the effects of arsenic on global levels of histone posttranslational modifications (PTMs). Multiple studies have observed that arsenic induces higher levels of H3 lysine 9 dimethylation (H3K9me2) and also higher levels of H3 serine 10 phosphorylation (H3S10ph), which regulate chromosome segregation. In contrast, arsenic causes a global loss of H4K16ac, a histone PTM that is a hallmark of human cancers. Although the findings for other histone PTMs have not been entirely consistent across studies, we discuss biological factors which may contribute to these inconsistencies, including differences in the dose, duration, and type of arsenic species examined; the tissue or cell line evaluated; differences by sex; and exposure timing. We also discuss two important considerations for the measurement of histone PTMs: proteolytic cleavage of histones and arsenic-induced alterations in histone expression.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-1205. Fax: 212-305-3857
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-7949. Fax: 212-305-3857
| |
Collapse
|
34
|
Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. Associations between Blood and Urine Arsenic Concentrations and Global Levels of Post-Translational Histone Modifications in Bangladeshi Men and Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1234-40. [PMID: 26967670 PMCID: PMC4977054 DOI: 10.1289/ehp.1510412] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Exposure to inorganic arsenic is associated with numerous adverse health outcomes, with susceptibility differing by sex. Although evidence from in vitro studies suggests that arsenic alters post-translational histone modifications (PTHMs), evidence in humans is limited. OBJECTIVES The objectives were to determine: a) if arsenic exposure is associated with global (percent) levels of PTHMs H3K36me2, H3K36me3, and H3K79me2 in a sex-dependent manner, and b) if %PTHMs are stable when arsenic exposure is reduced. METHODS We examined associations between arsenic, measured in blood and urine, and %PTHMs in peripheral blood mononuclear cells from 317 participants enrolled in the Bangladesh Folic Acid and Creatine Trial (FACT). We also examined the stability of %PTHMs after the use of arsenic-removal water filters (n = 60). RESULTS Associations between natural log-transformed (ln) urinary arsenic, adjusted for creatinine (uAsCr), and %H3K36me2 differed significantly between men and women (p = 0.01). ln(uAsCr) was positively associated with %H3K36me2 in men [β = 0.12; 95% confidence interval (CI): 0.01, 0.23, p = 0.03] but was negatively associated with %H3K36me2 in women (β = -0.05; 95% CI: -0.12, 0.02, p = 0.19). The patterns of associations with blood arsenic were similar. On average, water filter use was also associated with reductions in %H3K36me2 (p < 0.01), but this did not differ significantly by sex. Arsenic was not significantly associated with %H3K36me3 or %H3K79me2 in men or women. CONCLUSIONS Arsenic exposure was associated with %H3K36me2 in a sex-specific manner but was not associated with %H3K36me3 or %H3K79me2. Additional studies are needed to assess changes in %H3K36me2 after arsenic removal. CITATION Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. 2016. Associations between blood and urine arsenic concentrations and global levels of post-translational histone modifications in Bangladeshi men and women. Environ Health Perspect 124:1234-1240; http://dx.doi.org/10.1289/ehp.1510412.
Collapse
Affiliation(s)
| | | | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | - Abu B. Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Max Costa
- Department of Environmental Medicine, Langone Medical Center, New York University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences,
- Address correspondence to M.V. Gamble, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 11th Floor, 722 W. 168th St., New York, NY 10032 USA. Telephone: (212) 305-7949. E-mail:
| |
Collapse
|
35
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
36
|
Sex bias in paediatric autoimmune disease – Not just about sex hormones? J Autoimmun 2016; 69:12-23. [DOI: 10.1016/j.jaut.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
|
37
|
Cousminer DL, Widén E, Palmert MR. The genetics of pubertal timing in the general population: recent advances and evidence for sex-specificity. Curr Opin Endocrinol Diabetes Obes 2016; 23:57-65. [PMID: 26574646 PMCID: PMC4734379 DOI: 10.1097/med.0000000000000213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This article overviews advances in the genetics of puberty based on studies in the general population, describes evidence for sex-specific genetic effects on pubertal timing, and briefly reviews possible mechanisms mediating sexually dimorphic genetic effects. RECENT FINDINGS Pubertal timing is highly polygenic, and many loci are conserved among ethnicities. A number of identified loci underlie both pubertal timing and related traits such as height and BMI. It is increasingly apparent that understanding the factors modulating the onset of puberty is important because the timing of this developmental stage is associated with a wider range of adult health outcomes than previously appreciated. Although most of the genetic effects underlying the timing of puberty are common between boys and girls, some effects show sex-specificity and many are epigenetically modulated. Several potential mechanisms, including hormone-independent ones, may be responsible for observed sex differences. SUMMARY Studies of pubertal timing in the general population have provided new knowledge about the genetic architecture of this complex trait. Increasing attention paid to sex-specific effects may provide key insights into the sexual dimorphism in pubertal timing and even into the associations between puberty and adult health risks by identifying common underlying biological pathways.
Collapse
Affiliation(s)
- Diana L. Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | - Mark R. Palmert
- Division of Endocrinology, the Hospital for Sick Children
- The Departments of Pediatrics and Physiology, University of Toronto, Canada
| |
Collapse
|
38
|
Tyler CR, Weber JA, Labrecque M, Hessinger JM, Edwards JS, Allan AM. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic. Data Brief 2015; 5:248-54. [PMID: 26543888 PMCID: PMC4589800 DOI: 10.1016/j.dib.2015.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jessica A Weber
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Matthew Labrecque
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Justin M Hessinger
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeremy S Edwards
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemical & Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA ; Cancer Research & Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
39
|
Allan AM, Hafez AK, Labrecque MT, Solomon ER, Shaikh MN, Zheng X, Ali A. Sex-Dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain. Toxicol Rep 2015; 2:1376-1390. [PMID: 26855884 PMCID: PMC4741109 DOI: 10.1016/j.toxrep.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previously we have shown that prenatal moderate arsenic exposure (50 ppb) disrupts glucocorticoid receptor (GR) programming and that these changes continue into adolescence in males. However, it was not clear what the molecular mechanisms were promoting these GR programming changes or if these changes occurred in arsenic-exposed females. In the present studies, we assessed the effects of arsenic on protein and mRNA of the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (Hsd) isozymes and compared the levels of methylation within the promoters of the Nr3c1 and Hsd11b1 genes in female fetal brain at embryonic days (E) 14 and 18. Prenatal arsenate exposure produced sex specific effects on the glucocorticoid system. Compared to males, females were resistant to arsenic induced changes in GR, 11β-Hsd-1 and 11β-Hsd-2 protein levels despite observed elevations in Nr3c1 and Hsd11b2 mRNA. This sex-specific effect was not due to differences in the methylation of the GR promoter as methylation of the Nr3c1 gene was either unchanged (region containing the egr-1 binding site) or similarly reduced (region containing the SP-1 transcription factor binding site) in both males and females exposed to arsenic. Arsenic did produce sex and age-specific changes in the methylation of Hsd11b1 gene, producing increased methylation in females at E14 and decreased methylation at E18.These changes were not attributed to changes in DNMT levels. Since arsenate metabolism could interfere with the generation of methyl donor groups, we assessed glutathione (GSH), S-adenosylmethionine (SAM) and As 3 methyltransferase (As3MT). Exposed males and females had similar levels of As3MT and SAM; however, females had higher levels of GSH/GSSH. It is possible that this greater anti-oxidative capacity within the females provides protection against low to moderate arsenate. Our data suggest that the GR signaling system in female offspring was not as affected by prenatal arsenic and predicts that female arsenic-exposed mice should have normal GR feedback regulation.
Collapse
Affiliation(s)
- Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexander K Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthew T Labrecque
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Elizabeth R Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M Nabil Shaikh
- Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xianyun Zheng
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Abdulmehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|