1
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Cui Y, Mo Z, Ji P, Zhong J, Li Z, Li D, Qin L, Liao Q, He Z, Guo W, Chen L, Wang Q, Dong G, Chen W, Xiao Y, Xing X. Benzene Exposure Leads to Lipodystrophy and Alters Endocrine Activity In Vivo and In Vitro. Front Endocrinol (Lausanne) 2022; 13:937281. [PMID: 35909554 PMCID: PMC9326257 DOI: 10.3389/fendo.2022.937281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Benzene is a ubiquitous pollutant and mainly accumulates in adipose tissue which has important roles in metabolic diseases. The latest studies reported that benzene exposure was associated with many metabolic disorders, while the effect of benzene exposure on adipose tissue remains unclear. We sought to investigate the effect using in vivo and in vitro experiments. Male adult C57BL/6J mice were exposed to benzene at 0, 1, 10 and 100 mg/kg body weight by intragastric gavage for 4 weeks. Mature adipocytes from 3T3-L1 cells were exposed to hydroquinone (HQ) at 0, 1, 5 and 25 μM for 24 hours. Besides the routine hematotoxicity, animal experiments also displayed significant body fat content decrease from 1 mg/kg. Interestingly, the circulating non-esterified fatty acid (NEFA) level increased from the lowest dose (ptrend < 0.05). Subsequent analysis indicated that body fat content decrease may be due to atrophy of white adipose tissue (WAT) upon benzene exposure. The average adipocyte area of WAT decreased significantly even from 1 mg/kg with no significant changes in total number of adipocytes. The percentages of small and large adipocytes in WAT began to significantly increase or decrease from 1 mg/kg (all p < 0.05), respectively. Critical genes involved in lipogenesis and lipolysis were dysregulated, which may account for the disruption of lipid homeostasis. The endocrine function of WAT was also disordered, manifested as significant decrease in adipokine levels, especially the leptin. In vitro cell experiments displayed similar findings in decreased fat content, dysregulated critical lipid metabolism genes, and disturbed endocrine function of adipocytes after HQ treatment. Pearson correlation analysis showed positive correlations between white blood cell (WBC) count with WAT fat content and plasma leptin level (r = 0.330, 0.344, both p < 0.05). This study shed light on the novel aspect that benzene exposure could induce lipodystrophy and disturb endocrine function of WAT, and the altered physiology of WAT might in turn affect benzene-induced hematotoxicity and metabolic disorders. The study provided new insight into understanding benzene-induced toxicity and the relationship between benzene and adipose tissue.
Collapse
Affiliation(s)
- Ying Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziying Mo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Penglei Ji
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zongxin Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lina Qin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- School of Public Health, Food Safety and Health Research Center, Southern Medical University, Guangzhou, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiumei Xing,
| |
Collapse
|
3
|
Walsh-Wilcox MT, Kaye J, Rubinstein E, Walker MK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induces Vascular Dysfunction That is Dependent on Perivascular Adipose and Cytochrome P4501A1 Expression. Cardiovasc Toxicol 2020; 19:565-574. [PMID: 31115867 DOI: 10.1007/s12012-019-09529-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is associated with hypertension in humans and animals, and studies suggest that cytochrome P4501A1 (Cyp1a1) induction and vascular dysfunction may contribute. We investigated the role of perivascular adipose tissue (PVAT) and Cyp1a1 in TCDD-induced vascular dysfunction. Cyp1a1 wild-type (WT) and knockout (KO) male mice were fed a dough pill containing 1,4-p-dioxane (TCDD vehicle control) on days 0 and 7, or 1000 ng/kg TCDD on day 0 and 250 ng/kg TCDD on day 7. mRNA expression of Cyp1a1 was assessed on days 3, 7, and 14, and of Cyp1b1, 1a2, angiotensinogen, and phosphodiesterase 5a on day 14. Dose-dependent vasoconstriction to a thromboxane A2 mimetic (U46619), and vasorelaxation to acetylcholine and a nitric oxide donor (S-nitroso-N-acetyl-DL-penicillamine, SNAP), were investigated in the aorta with and without PVAT. Cyp1a1 and 1a2 mRNA was induced in aorta of WT mice only with PVAT, and Cyp1a1 induction was sustained through day 14. TCDD significantly enhanced constriction to U46619 in WT mice and inhibited relaxation to both acetylcholine and SNAP, but only in the presence of PVAT. The effects of TCDD on U46619 constriction and SNAP relaxation were not observed in Cyp1a1 KO mice. Finally, in aorta + PVAT of WT mice TCDD significantly induced expression of angiotensinogen and phosphodiesterase 5a both of which could contribute to the TCDD-induced vascular dysfunction. These data establish PVAT as a TCDD target which is critically involved in mediating vascular dysfunction. TCDD enhances vasoconstriction via the thromboxane/prostanoid (TP) receptor and inhibits vasorelaxation via nitric oxide (NO) signaling. This TCDD-induced vascular dysfunction requires perivascular adipose (PVAT) and cytochrome P4501a1 (CYP1a1) induction.
Collapse
Affiliation(s)
- Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA
| | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel.,Ayala Targeted Therapies, Rehovot, Israel
| | | | - Mary K Walker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Safe S, Han H, Goldsby J, Mohankumar K, Chapkin RS. Aryl Hydrocarbon Receptor (AhR) Ligands as Selective AhR Modulators: Genomic Studies. CURRENT OPINION IN TOXICOLOGY 2018; 11-12:10-20. [PMID: 31453421 DOI: 10.1016/j.cotox.2018.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) binds structurally diverse ligands that vary from the environmental toxicant 2,3,7,8-tetrachlorodibenzo-B-dioxin (TCDD) to AhR- active pharmaceuticals and health-promoting phytochemicals. There are remarkable differences in the toxicity of TCDD and related halogenated aromatics (HAs) vs. health promoting AhR ligands, and genomic analysis shows that even among the toxic HAs, there are differences in their regulation of genes and pathways. Thus, like ligands for other receptors, AhR ligands are selective AhR modulators (SAhRMs) which exhibit variable tissue-, organ- and species-specific genomic and functional activities.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology
| | - Huajun Han
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | - Jennifer Goldsby
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | - Robert S Chapkin
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab 2017; 26:660-671.e3. [PMID: 28844881 PMCID: PMC5629120 DOI: 10.1016/j.cmet.2017.08.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity.
Collapse
Affiliation(s)
- Lawrence Kazak
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| | - Edward T Chouchani
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Gina Z Lu
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Curtis J Bare
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amir I Mina
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol 2017; 7:1085-1135. [PMID: 28915320 DOI: 10.1002/cphy.c160038] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We examine the role of adipose tissue, typically considered an energy storage site, as a potential site of toxicant accumulation. Although the production of most persistent organic pollutants (POPs) was banned years ago, these toxicants persist in the environment due to their resistance to biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, and water). As a result, human exposure to these toxicants is inevitable. Largely due to their lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we (i) highlight the physical characteristics of toxicants that enable them to partition into and remain stored in adipose tissue, (ii) discuss the specific mechanisms of action by which these toxicants act to influence adipocyte function, and (iii) review associations between POP exposures and the development of obesity and diabetes. An area of controversy relates to the relative potential beneficial versus hazardous health effects of toxicant sequestration in adipose tissue. © 2017 American Physiological Society. Compr Physiol 7:1085-1135, 2017.
Collapse
Affiliation(s)
- Erin Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Robin Shoemaker
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Prokopec SD, Houlahan KE, Sun RX, Watson JD, Yao CQ, Lee J, P'ng C, Pang R, Wu AH, Chong LC, Smith AB, Harding NJ, Moffat ID, Lindén J, Lensu S, Okey AB, Pohjanvirta R, Boutros PC. Compendium of TCDD-mediated transcriptomic response datasets in mammalian model systems. BMC Genomics 2017; 18:78. [PMID: 28086803 PMCID: PMC5237151 DOI: 10.1186/s12864-016-3446-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/20/2016] [Indexed: 02/04/2023] Open
Abstract
Background 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR). Binding of TCDD to the AHR leads to changes in transcription of numerous genes. Studies evaluating the transcriptional changes brought on by TCDD may provide valuable insight into the role of the AHR in human health and disease. We therefore compiled a collection of transcriptomic datasets that can be used to aid the scientific community in better understanding the transcriptional effects of ligand-activated AHR. Results Specifically, we have created a datasets package – TCDD.Transcriptomics – for the R statistical environment, consisting of 63 unique experiments comprising 377 samples, including various combinations of 3 species (human derived cell lines, mouse and rat), 4 tissue types (liver, kidney, white adipose tissue and hypothalamus) and a wide range of TCDD exposure times and doses. These datasets have been fully standardized using consistent preprocessing and annotation packages (available as of September 14, 2015). To demonstrate the utility of this R package, a subset of “AHR-core” genes were evaluated across the included datasets. Ahrr, Nqo1 and members of the Cyp family were significantly induced following exposure to TCDD across the studies as expected while Aldh3a1 was induced specifically in rat liver. Inmt was altered only in liver tissue and primarily by rat-AHR. Conclusions Analysis of the “AHR-core” genes demonstrates a continued need for studies surrounding the impact of AHR-activity on the transcriptome; genes believed to be consistently regulated by ligand-activated AHR show surprisingly little overlap across species and tissues. Until now, a comprehensive assessment of the transcriptome across these studies was challenging due to differences in array platforms, processing methods and annotation versions. We believe that this package, which is freely available for download (http://labs.oicr.on.ca/boutros-lab/tcdd-transcriptomics) will prove to be a highly beneficial resource to the scientific community evaluating the effects of TCDD exposure as well as the variety of functions of the AHR. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3446-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephenie D Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Kathleen E Houlahan
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Ren X Sun
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - John D Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Cindy Q Yao
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Jamie Lee
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Christine P'ng
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Renee Pang
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Alexander H Wu
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Lauren C Chong
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Ashley B Smith
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Nicholas J Harding
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Ivy D Moffat
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.,Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Allan B Okey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland.,Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Wang ML, Lin SH, Hou YY, Chen YH. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation. Int J Mol Sci 2016; 17:ijms17081256. [PMID: 27527145 PMCID: PMC5000654 DOI: 10.3390/ijms17081256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Mei-Lin Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Yuan-Yu Hou
- Department of Food and Beverage Management, Mackay Medicine, Nursing and Management College, Taipei 112, Taiwan.
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| |
Collapse
|
9
|
Watson JD, Prokopec SD, Smith AB, Okey AB, Pohjanvirta R, Boutros PC. 2,3,7,8 Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity. Arch Toxicol 2016; 91:325-338. [PMID: 27136898 PMCID: PMC5225275 DOI: 10.1007/s00204-016-1720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is an aromatic, long-lived environmental contaminant. While the pathogenesis of TCDD-induced toxicity is poorly understood, it has been shown that the aryl hydrocarbon receptor (AHR) is required. However, the specific transcriptomic changes that lead to toxic outcomes have not yet been identified. We previously identified a panel of 33 genes that respond to TCDD treatment in two TCDD-sensitive rodent species. To identify genes involved in the onset of hepatic toxicity, we explored 25 of these in-depth using liver from two rat strains: the TCDD-resistant Han/Wistar (H/W) and the TCDD-sensitive Long–Evans (L–E). Time course and dose–response analyses of mRNA abundance following TCDD insult indicate that eight genes are similarly regulated in livers of both strains of rat, suggesting that they are not central to the severe L–E-specific TCDD-induced toxicities. The remaining 17 genes exhibited various divergent mRNA abundances between L–E and H/W strains after TCDD treatment. Several genes displayed a biphasic response where the initial response to TCDD treatment was followed by a secondary response, usually of larger magnitude in L–E liver. This secondary response was most often an exaggeration of the original TCDD-induced response. Only cytochrome b5 type A (microsomal) (Cyb5a) had equivalent TCDD sensitivity to the prototypic AHR-responsive cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1), while six genes were less sensitive. Four genes showed an early inter-strain difference that was sustained throughout most of the time course (atypical chemokine receptor 3 (Ackr3), collagen, type XVIII, alpha 1 (Col18a1), Cyb5a and glutamate dehydrogenase 1 (Glud1)), and of those genes examined in this study, are most likely to represent genes involved in the pathogenesis of TCDD-induced hepatotoxicity in L–E rats.
Collapse
Affiliation(s)
- John D Watson
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Stephenie D Prokopec
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Ashley B Smith
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Allan B Okey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland.,Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C Boutros
- Informatics and Bio-computing Program, MaRS Centre, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Lee J, Prokopec SD, Watson JD, Sun RX, Pohjanvirta R, Boutros PC. Male and female mice show significant differences in hepatic transcriptomic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 2015; 16:625. [PMID: 26290441 PMCID: PMC4546048 DOI: 10.1186/s12864-015-1840-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background 2,3,7,8–tetrachlorodibenzo-p-dixion (TCDD) is the most potent of the dioxin congeners, capable of causing a wide range of toxic effects across numerous animal models. Previous studies have demonstrated that males and females of the same species can display divergent sensitivity phenotypes to TCDD toxicities. Although it is now clear that most TCDD-induced toxic outcomes are mediated by the aryl hydrocarbon receptor (AHR), the mechanism of differential responses to TCDD exposure between sexes remains largely unknown. To investigate the differential sensitivities in male and female mice, we profiled the hepatic transcriptomic responses 4 days following exposure to various amounts of TCDD (125, 250, 500 or 1000 μg/kg) in adult male and female C57BL/6Kuo mice. Results Several key findings were revealed by our study. 1) Hepatic transcriptomes varied significantly between the sexes at all doses examined. 2) The liver transcriptome of males was more dysregulated by TCDD than that of females. 3) The alteration of “AHR-core” genes was consistent in magnitude, regardless of sex. 4) A subset of genes demonstrated sex-dependent TCDD-induced transcriptional changes, including Fmo3 and Nr1i3, which were significantly induced in livers of male mice only. In addition, a meta-analysis was performed to contrast transcriptomic profiles of various organisms and tissues following exposure to equitoxic doses of TCDD. Minimal overlap was observed in the differences between TCDD-sensitive or TCDD-resistant models. Conclusions Sex-dependent sensitivities to TCDD exposure are associated with a set of sex-specific TCDD-responsive genes. In addition, complex interactions between the aryl hydrocarbon and sex hormone receptors may affect the observable differences in sensitivity phenotypes between the sexes. Further work is necessary to better understand the roles of those genes altered by TCDD in a sex-dependent manner, and their association with changes to sex hormones and receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1840-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie Lee
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - Stephenie D Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - John D Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| | - Ren X Sun
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland. .,Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland.
| | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|