1
|
Zhang G, Ma Z, Ma Z, Liu P, Zhang L, Lian Z, Guo C. SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis. Cardiovasc Toxicol 2025; 25:97-109. [PMID: 39729180 DOI: 10.1007/s12012-024-09950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury. qRT-PCR and western blot assays were used to detect the levels of mRNAs and proteins. Cardiomyocyte injury was determined by detecting the levels of lactate dehydrogenase and creatine Kinase MB (CK-MB). Cell apoptosis was investigated by flow cytometry and related markers. Levels of IL-6, IL-10, and TNF-α were measured by ELISA. Cell ferroptosis was assessed by detecting the production of reactive oxygen species (ROS), malonaldehyde (MDA), reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio, Fe + content, and related regulators. The interaction between NRF2 and the suppressor of zest 12 (SUZ12) was analyzed by using dual-luciferase reporter and RNA immunoprecipitation assays. AMI rat models were established for in vivo analysis. NRF2 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Forced expression of NRF2 reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis. Moreover, NRF2 overexpression improved cardiac function and injury in vivo. Mechanistically, SUZ12 bound to the promoter of NRF2 and promoted its expression. Further functional analyses showed that SUZ12 overexpression reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis, which were reversed by NRF2 silencing. SUZ12-increased NRF2 suppressed H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis in vitro and improved cardiac functions in rats with I/R injury, suggesting the potential cardioprotective effect of NRF2 in cardiac injury during AMI.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zhimin Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Peilin Liu
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Lin Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Lian
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Caixia Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2024; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
4
|
Qu FX, Guo X, Liu XJ, Zhang SW, Xin Y, Li JY, Wang R, Xu CJ, Li HY, Lu CH. Treatment with a combination of myricitrin and exercise alleviates myocardial infarction in rats via suppressing Nrf2/HO-1 antioxidant pathway. Arch Biochem Biophys 2024; 761:110153. [PMID: 39271097 DOI: 10.1016/j.abb.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, Western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.
Collapse
Affiliation(s)
- Feng-Xia Qu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Xiao-Jun Liu
- Department of Cardiac Surgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Shu-Wen Zhang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Yue Xin
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Jing-Yuan Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Rong Wang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chen-Ji Xu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Hai-Ying Li
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China
| | - Chang-Hong Lu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, PR China.
| |
Collapse
|
5
|
Dhyani N, Tian C, Gao L, Rudebush TL, Zucker IH. Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? Physiology (Bethesda) 2024; 39:0. [PMID: 38687468 PMCID: PMC11460534 DOI: 10.1152/physiol.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.
Collapse
Affiliation(s)
- Neha Dhyani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
6
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
7
|
Bu Y, Liu Y, Liu M, Yan C, Wang J, Wu H, Song H, Zhang D, Xu K, Liu D, Han Y. TRIM55 Aggravates Cardiomyocyte Apoptosis After Myocardial Infarction via Modulation of the Nrf2/HO-1 Pathway. JACC Basic Transl Sci 2024; 9:1104-1122. [PMID: 39444927 PMCID: PMC11494394 DOI: 10.1016/j.jacbts.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/25/2024]
Abstract
Tripartite motif-containing 55 (Trim55) is mainly expressed in myocardium and skeletal muscle, which plays an important role in promoting the embryonic development of the mouse heart. We investigated the role of Trim55 in myocardial infarction and the associated molecular mechanisms. We studied both gain and loss of function in vivo and in vitro. The results showed that Trim55 knockout improved cardiac function and apoptosis after myocardial infarction, and overexpression aggravated cardiac function damage. The mechanism is that Trim55 interacts with nuclear factor, erythroid derived 2 (Nrf2) to accelerate its degradation and inhibit the expression of heme oxygenase 1, thereby promoting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
| | | | - Meili Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dali Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Wu YT, Zhang GY, Li L, Liu B, Wang RY, Song RQ, Hua Y, Bi YM, Han X, Zhang F, Wang D, Xie LP, Zhou YC. Salvia miltiorrhiza suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118214. [PMID: 38641076 DOI: 10.1016/j.jep.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guo-Yong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Lei Li
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ru-Yu Wang
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | | | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ming Bi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Feng Zhang
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Dong Wang
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Ling-Peng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Zuberi S, Rafi H, Hussain A, Hashmi S. Upregulation of Nrf2 in myocardial infarction and ischemia-reperfusion injury of the heart. PLoS One 2024; 19:e0299503. [PMID: 38489253 PMCID: PMC10942075 DOI: 10.1371/journal.pone.0299503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality in the world and is characterized by ischemic necrosis of an area of the myocardium permanently devoid of blood supply. During reperfusion, reactive oxygen species are released and this causes further insult to the myocardium, resulting in ischemia-reperfusion (IR) injury. Since Nrf2 is a key regulator of redox balance, it is essential to determine its contribution to these two disease processes. Conventionally Nrf2 levels have been shown to rise immediately after ischemia and reperfusion but its contribution to disease process a week after the injury remains uncertain. Mice were divided into MI, IR injury, and sham surgery groups and were sacrificed 1 week after surgery. Infarct was visualized using H&E and trichrome staining and expression of Nrf2 was assessed using immunohistochemistry, Western blot, and ELISA. MI displayed a higher infarct size than the IR group (MI: 31.02 ± 1.45%, IR: 13.03 ± 2.57%; p < 0.01). We observed a significantly higher expression of Nrf2 in the MI group compared to the IR model using immunohistochemistry, spot densitometry of Western blot (MI: 2.22 ± 0.16, IR: 1.81 ± 0.10, Sham: 1.52 ± 0.13; p = 0.001) and ELISA (MI: 80.78 ± 27.08, IR: 31.97 ± 4.35; p < 0.01). There is a significantly higher expression of Nrf2 in MI compared to the IR injury group. Modulation of Nrf2 could be a potential target for therapeutics in the future, and its role in cardioprotection can be further investigated.
Collapse
Affiliation(s)
- Sahar Zuberi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi Pakistan
- Department of Physiology, Rashid Latif Khan University Medical College, Lahore, Pakistan
| | - Hira Rafi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi Pakistan
- Postdoctoral Fellow Northwestern University Feinberg School of Medicine Chicago, Illinois, United States of America
| | - Azhar Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi Pakistan
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi Pakistan
| |
Collapse
|
10
|
Zhang Q, Dang YY, Luo X, Fu JJ, Zou ZC, Jia XJ, Zheng GD, Li CW. Kazinol B protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced cardiac injury by modulating the AKT/AMPK/Nrf2 signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:362-371. [PMID: 36740871 PMCID: PMC9904293 DOI: 10.1080/13880209.2023.2173247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Kazinol B (KB), an isoprenylated flavan derived from Broussonetia kazinoki Sieb. (Moraceae) root, has long been used in folk medicine. OBJECTIVE This study examines the protective effects of KB and its underlying mechanisms in hypoxia and reoxygenation (H/R)-induced cardiac injury in H9c2 rat cardiac myoblasts. MATERIALS AND METHODS H9c2 cells were incubated with various concentrations of KB (0, 0.3, 1, 3, 10 and 30 μM) for 2 h and then subjected to H/R insults. The protective effects of KB and its underlying mechanisms were explored. RESULTS KB significantly elevated cell viability (1 μM, 1.21-fold; 3 μM, 1.36-fold, and 10 μM, 1.47-fold) and suppressed LDH release (1 μM, 0.77-fold; 3 μM, 0.68-fold, and 10 μM, 0.59-fold) in H/R-induced H9c2 cells. Further, 10 μM KB blocked apoptotic cascades, as shown by the Annexin-V/PI (0.41-fold), DNA fragmentation (0.51-fold), caspase-3 (0.52-fold), PARP activation (0.27-fold) and Bax/Bcl-2 expression (0.28-fold) assays. KB (10 μM) downregulated reactive oxygen species production (0.51-fold) and lipid peroxidation (0.48-fold); it upregulated the activities of GSH-Px (2.08-fold) and SOD (1.72-fold). KB (10 μM) induced Nrf2 nuclear accumulation (1.94-fold) and increased ARE promoter activity (2.15-fold), HO-1 expression (3.07-fold), AKT (3.07-fold) and AMPK (3.07-fold) phosphorylation. Nrf2 knockdown via using Nrf2 siRNA abrogated KB-mediated protective effects against H/R insults. Moreover, pharmacological inhibitors of AKT and AMPK also abrogated KB-induced Nrf2 activation and its protective function. DISCUSSION AND CONCLUSIONS KB prevented H/R-induced cardiomyocyte injury via modulating the AKT and AMPK-mediated Nrf2 induction. KB might be a promising drug candidate for managing ischemic cardiac disorders.
Collapse
Affiliation(s)
- Qian Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan-Ye Dang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiu Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ji-Jun Fu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Cong Zou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xue-Jing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Guo-Dong Zheng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chu-Wen Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Shi J, Hou J, Sun Y, Jia Z, Zhou Y, Wang C, Zhao H. Chaihujialonggumulitang shows psycho-cardiology therapeutic effect on acute myocardial infarction with comorbid anxiety by the activation of Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis. Biomed Pharmacother 2022; 153:113437. [PMID: 36076489 DOI: 10.1016/j.biopha.2022.113437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anxiety is a common comorbidity of cardiovascular diseases, which deteriorated cardiac function. Chaihujialonggumulitang (BFG) was reported to have antioxidant properties, alleviate myocardial ischemia injury and improve anxiety-like behavior. The Nuclear factor erythroid 2-related factor 2 (Nrf2) /heme oxygenase-1 (HO-1) pathway is the main mechanism to defend against oxidative stress, and improve cardiac function. This study was to investigate the possible mechanism of BFG in the treatment of psycho-cardiology. METHODS AMI with comorbid anxiety rat model was established by ligation of the left anterior descending coronary artery combined with uncertain empty bottle stimulation, followed by the administration of BFG (1 mL/100 g/d by gavage) or Dimethyl fumarate (DMF, 10 mg/kg/d by intraperitoneal injection) for 6 days. Echocardiography, myocardial injury markers, H&E, and Masson staining were employed to evaluate cardiac function. Behavioral tests and hippocampus neurotransmitters were applied to record anxiety-like behavior. We employed immunohistochemistry, RT-PCR, western blotting, and biochemical analysis to detect the protein and gene expression of Nrf2/HO-1 pathway-related factors, and oxidative stress and apoptosis parameters. RESULTS Rats in the AMI and complex groups showed cardiac function deterioration, as well as anxiety-like behavior. BFG improved echocardiography indicators, reduced myocardial injury markers, and attenuated myocardial pathological changes. BFG also ameliorated anxiety-like behaviors and elevated neurotransmitters levels. BFG promoted the activation of Nrf2/HO-1 pathway, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. DMF showed therapeutic effects and molecular mechanisms similar to BFG. CONCLUSION BFG may possess a psycho-cardiology therapeutic effect on AMI with comorbid anxiety by the activation of the Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jinyu Shi
- Beijing University of Chinese Medicine, Beijing 100029, China; The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jiqiu Hou
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zihao Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wang
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Haibin Zhao
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
13
|
QIAN M, FENG ZQ, ZHENG RN, HU KW, SUN JZ, SUN HB, DAI L. Qi-Tai-Suan, an oleanolic acid derivative, ameliorates ischemic heart failure via suppression of cardiac apoptosis, inflammation and fibrosis. Chin J Nat Med 2022; 20:432-442. [DOI: 10.1016/s1875-5364(22)60156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/27/2022]
|
14
|
Bromage DI, Trevelin SC, Huntington J, Yang VX, Muthukumar A, Mackie SJ, Sawyer G, Zhang X, Santos CXC, Safinia N, Smyrnias I, Giacca M, Ivetic A, Shah AM. Nrf2 attenuates the innate immune response after experimental myocardial infarction. Biochem Biophys Res Commun 2022; 606:10-16. [PMID: 35338853 DOI: 10.1016/j.bbrc.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.
Collapse
Affiliation(s)
- Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Silvia C Trevelin
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Josef Huntington
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Victoria X Yang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ananya Muthukumar
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Sarah J Mackie
- School of Cancer and Pharmaceutical Sciences, SGDP Centre, King's College London, Memory Lane, London, SE5 8AF, UK
| | - Greta Sawyer
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Xiaohong Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, GU2 7AL, UK
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
15
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
16
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
17
|
Lu Y, An L, Taylor MRG, Chen QM. Nrf2 signaling in heart failure: expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy. Physiol Genomics 2022; 54:115-127. [PMID: 35073209 PMCID: PMC8897001 DOI: 10.1152/physiolgenomics.00079.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased levels of oxidative stress have been found with heart failure. Whether failing hearts express antioxidant and detoxification enzymes have not been addressed systematically. Nrf2 gene encodes a transcription factor that regulates the expression of antioxidant and detoxification genes. Using RNA-Seq data set from explanted hearts of 37 patients with dilated cardiomyopathy (DCM), 13 patients with ischemic cardiomyopathy (ICM), and 14 nonfailure (NF) donors as a control, we addressed whether failing hearts change the expression of Nrf2, its negative regulator Keap1, and antioxidant or detoxification genes. Significant increases in the ratio of Nrf2 to Keap1 were found to associate with DCM or ICM. Antioxidant genes showed decreased expression in both types of heart failure, including NQO1, SOD1, GPX3, GPX4, GSR, PRDX1, and TXNRD1. Detoxification enzymes, GCLM and EPHX1, also showed decreased expression, whereas the CYP1B1 transcript was elevated in both DCM and ICM. The genes encoding metal-binding protein ferritin were decreased, whereas five out of 12 metallothionein genes showed elevated expression. Our finding on Nrf2 gene expression has been validated by meta-analysis of seven independent data sets of microarray or RNA-Seq for differential gene expression in DCM and ICM from NF controls. In conclusion, minor elevation of Nrf2 gene expression is not coupled to increases in antioxidant and detoxification genes, supporting an impairment of Nrf2 signaling in patients with heart failure. Decreases in multiple antioxidant and detoxification genes are consistent with the observed increases of oxidative stress in failing hearts.
Collapse
Affiliation(s)
- Yingying Lu
- 1Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona,2Interdisciplanary Program in Statistics and Data Science, University of Arizona, Tucson, Arizona
| | - Lingling An
- 3Department of Biosystems Engineering, University of Arizona, Tucson, Arizona
| | - Matthew R. G. Taylor
- 4Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Qin M. Chen
- 1Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
19
|
Yao Y, Song Q, Hu C, Da X, Yu Y, He Z, Xu C, Chen Q, Wang QK. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res 2022; 118:196-211. [PMID: 33483741 DOI: 10.1093/cvr/cvab013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this study was to identify the molecular mechanism for hyperglycaemia-induced metabolic memory in endothelial cells (ECs), and to show its critical importance to development of cardiovascular dysfunction in diabetes. METHODS AND RESULTS Hyperglycaemia induces increased nuclear factor-κB (NF-κB) signalling, up-regulation of miR-27a-3p, down-regulation of nuclear factor erythroid-2 related factor 2 (NRF2) expression, increased transforming growth factor-β (TGF-β) signalling, down-regulation of miR-29, and induction of endothelial-to-mesenchymal transition (EndMT), all of which are memorized by ECs and not erased when switched to a low glucose condition, thereby causing perivascular fibrosis and cardiac dysfunction. Similar metabolic memory effects are found for production of nitric oxide (NO), generation of reactive oxygen species (ROS), and the mitochondrial oxygen consumption rate in two different types of ECs. The observed metabolic memory effects in ECs are blocked by NRF2 activator tert-butylhydroquinone and a miR-27a-3p inhibitor. In vivo, the NRF2 activator and miR-27a-3p inhibitor block cardiac perivascular fibrosis and restore cardiovascular function by decreasing NF-κB signalling, down-regulating miR-27a-3p, up-regulating NRF2 expression, reducing TGF-β signalling, and inhibiting EndMT during insulin treatment of diabetes in streptozotocin-induced diabetic mice, whereas insulin alone does not improve cardiac function. CONCLUSIONS Our data indicate that disruption of hyperglycaemia-induced EC metabolic memory is required for restoring cardiac function during treatment of diabetes, and identify a novel molecular signalling pathway of NF-κB/miR-27a-3p/NRF2/ROS/TGF-β/EndMT involved in metabolic memory.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Changqing Hu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000 Hubei, China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Yubing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Zuhan He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Li Y, Zhang W. Effect of Ginsenoside Rb2 on a Myocardial Cell Model of Coronary Heart Disease through Nrf2/HO-1 Signaling Pathway. Biol Pharm Bull 2022; 45:71-76. [PMID: 34980781 DOI: 10.1248/bpb.b21-00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ginsenoside Rbs are the primary active compounds of Panax ginseng and ginsenoside Rb2 is a renowned component among the Rbs. This study aimed to investigate the potential effects of ginsenoside Rb2 on coronary heart disease (CHD). H9c2 cells were exposed to H2O2 to establish CHD model in vitro. Gene expression was determined by quantitative realtime PCR (qPCR) and Western blot. Cellular functions were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assays. We found that Ginsenoside Rb2 promoted cell proliferation while suppressed oxidative stress and apoptosis of H9c2 cells induced by H2O2 exposure. Mechanistically, Ginsenodise Rb2 involves in the regulation of nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway. Inactivation of Nrf2/HO-1 signaling pathway reversed the effects of ginsenoside Rb2 on H9c2 cells. Taken together, ginsenoside Rb2 exhibited a cardioprotective effect in vitro. The underlying mechanism of ginsenoside Rb2 in H9c2 cells could be standardized to Nrf2/HO-1 signaling pathway, inhibiting cell apoptosis and regaining cell proliferation. The present study has proposed a novel mechanism of ginsenoside Rb2 in the cardioprotective effect.
Collapse
Affiliation(s)
- Yuning Li
- Department of Pharmacy, The 921st Hospital of Joint Logistic Support Force of PLA
| | - Wenhua Zhang
- Department of Pediatrics, The 3rd Hospital of Changsha
| |
Collapse
|
21
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
22
|
Ala M, Eftekhar SP. Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8790369. [PMID: 34765085 PMCID: PMC8577929 DOI: 10.1155/2021/8790369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Sestrin2 is a stress-inducible metabolic regulator and a conserved antioxidant protein which has been implicated in the pathogenesis of several diseases. Sestrin2 can protect against atherosclerosis, heart failure, hypertension, myocardial infarction, stroke, spinal cord injury neurodegeneration, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, acute kidney injury (AKI), chronic kidney disease (CKD), and pulmonary inflammation. Oxidative stress and cellular damage signals can alter the expression of Sestrin2 to compensate for organ damage. Different stress signals such as those mediated by P53, Nrf2/ARE, HIF-1α, NF-κB, JNK/c-Jun, and TGF-β/Smad signaling pathways can induce Sestrin2 expression. Subsequently, Sestrin2 activates Nrf2 and AMPK. Furthermore, Sestrin2 is a major negative regulator of mTORC1. Sestrin2 indirectly regulates the expression of several genes and reprograms intracellular signaling pathways to attenuate oxidative stress and modulate a large number of cellular events such as protein synthesis, cell energy homeostasis, mitochondrial biogenesis, autophagy, mitophagy, endoplasmic reticulum (ER) stress, apoptosis, fibrogenesis, and lipogenesis. Sestrin2 vigorously enhances M2 macrophage polarization, attenuates inflammation, and prevents cell death. These alterations in molecular and cellular levels improve the clinical presentation of several diseases. This review will shed light on the beneficial effects of Sestrin2 on several diseases with an emphasis on underlying pathophysiological effects.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
23
|
Chen QM. Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol Sci 2021; 42:729-744. [PMID: 34332753 DOI: 10.1016/j.tips.2021.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Myocardial ischemia or reperfusion increases the generation of reactive oxygen species (ROS) from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. ROS can be removed by eight endogenous antioxidant and redox systems, many components of which are expressed under the influence of the activated Nrf2 transcription factor. Transcriptomic profiling, sequencing of Nrf2-bound DNA, and Nrf2 gene knockout studies have revealed the power of Nrf2 beyond the antioxidant and detoxification response, from tissue recovery, repair, and remodeling, mitochondrial turnover, and metabolic reprogramming to the suppression of proinflammatory cytokines. Multifaceted regulatory mechanisms for Nrf2 protein levels or activity have been mapped to its functional domains, Nrf2-ECH homology (Neh)1-7. Oxidative stress activates Nrf2 via nuclear translocation, de novo protein translation, and increased protein stability due to removal of the Kelch-like ECH-associated protein 1 (Keap1) checkpoint, or the inactivation of β-transducin repeat-containing protein (β-TrCP), or Hmg-CoA reductase degradation protein 1 (Hrd1). The promise of small-molecule Nrf2 inducers from natural products or derivatives is discussed here. Experimental evidence is presented to support Nrf2 as a lead target for drug development to further improve the treatment outcome for myocardial infarction (MI).
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
24
|
Chen S, Yin Q, Hu H, Chen Q, Huang Q, Zhong M. AOPPs induce HTR-8/SVneo cell apoptosis by downregulating the Nrf-2/ARE/HO-1 anti-oxidative pathway: Potential implications for preeclampsia. Placenta 2021; 112:1-8. [PMID: 34237527 DOI: 10.1016/j.placenta.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Advanced oxidation protein products (AOPPs), which are novel markers of oxidant-mediated protein damage, are prevalent in numerous diseases. We previously demonstrated that AOPPs act as a new class of pathogenic mediators in preeclampsia by causing trophoblast damage and dysfunction. Herein, we explored whether AOPPs could regulate the Nrf-2/ARE/HO-1 anti-oxidative pathway to facilitate the progression of preeclampsia. METHODS To investigate the pathophysiology of preeclampsia, we evaluated the effects of AOPPs on trophoblast damage, apoptotic proteins, and Nrf-2/ARE/HO-1 anti-oxidative pathway expression, as well as their underlying mechanisms. RESULTS AOPPs directly increased the expression of apoptotic proteins and significantly inhibited the expression of Nrf-2/ARE/HO-1 pathway in trophoblasts. Nrf-2 silencing aggravated the AOPPs-induced cell apoptosis in vitro by activating p53 and caspase cascade, whereas Nrf-2 overexpression had the opposite effect. Moreover, Nrf-2 exerted cytoprotective effects by increasing HO-1. DISCUSSION These findings suggest that AOPPs induce trophoblast apoptosis by triggering p53 and caspase activation via inhibition of the Nrf-2/ARE/HO-1 anti-oxidative pathway. Hence, Nrf-2/ARE/HO-1 pathway activation plays a protective role in AOPPs-induced cell apoptosis; thus, holding potential as a therapeutic target against preeclampsia.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qitao Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Wu YT, Xie LP, Hua Y, Xu HL, Chen GH, Han X, Tan ZB, Fan HJ, Chen HM, Li J, Liu B, Zhou YC. Tanshinone I Inhibits Oxidative Stress-Induced Cardiomyocyte Injury by Modulating Nrf2 Signaling. Front Pharmacol 2021; 12:644116. [PMID: 34084132 PMCID: PMC8167655 DOI: 10.3389/fphar.2021.644116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease, a disease caused by many pathogenic factors, is one of the most common causes of death worldwide, and oxidative stress plays a major role in its pathophysiology. Tanshinone I (Tan I), a natural compound with cardiovascular protective effects, is one of the main active compounds extracted from Salvia miltiorrhiza. Here, we investigated whether Tan I could attenuate oxidative stress and oxidative stress–induced cardiomyocyte apoptosis through Nrf2/MAPK signaling in vivo and in vitro. We found that Tan I treatment protected cardiomyocytes against oxidative stress and oxidative stress–induced apoptosis, based on the detection of relevant oxidation indexes such as reactive oxygen species, superoxide dismutase, malondialdehyde, and apoptosis, including cell viability and apoptosis-related protein expression. We further examined the mechanisms underlying these effects, determining that Tan I activated nuclear factor erythroid 2 (NFE2)–related factor 2 (Nrf2) transcription into the nucleus and dose-dependently promoted the expression of Nrf2, while inhibiting MAPK signaling activation, including P38 MAPK, SAPK/JNK, and ERK1/2. Nrf2 inhibitors in H9C2 cells and Nrf2 knockout mice demonstrated aggravated oxidative stress and oxidative stress–induced cardiomyocyte injury; Tan I treatment suppressed these effects in H9C2 cells; however, its protective effect was inhibited in Nrf2 knockout mice. Additionally, the analysis of surface plasmon resonance demonstrated that Tan I could directly target Nrf2 and act as a potential Nrf2 agonist. Collectively, these data strongly indicated that Tan I might inhibit oxidative stress and oxidative stress–induced cardiomyocyte injury through modulation of Nrf2 signaling, thus supporting the potential therapeutic application of Tan I for oxidative stress–induced CVDs.
Collapse
Affiliation(s)
- Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Ling-Peng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Hong-Lin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Jie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,TCM Health Construction Department of Yangjiang People's Hospital, Yangjiang, China
| | - Hong-Mei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
27
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
28
|
Zeng H, Wang L, Zhang J, Pan T, Yu Y, Lu J, Zhou P, Yang H, Li P. Activated PKB/GSK-3 β synergizes with PKC- δ signaling in attenuating myocardial ischemia/reperfusion injury via potentiation of NRF2 activity: Therapeutic efficacy of dihydrotanshinone-I. Acta Pharm Sin B 2021; 11:71-88. [PMID: 33532181 PMCID: PMC7838031 DOI: 10.1016/j.apsb.2020.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Disrupted redox status primarily contributes to myocardial ischemia/reperfusion injury (MIRI). NRF2, the endogenous antioxidant regulator, might provide therapeutic benefits. Dihydrotanshinone-I (DT) is an active component in Salvia miltiorrhiza with NRF2 induction potency. This study seeks to validate functional links between NRF2 and cardioprotection of DT and to investigate the molecular mechanism particularly emphasizing on NRF2 cytoplasmic/nuclear translocation. DT potently induced NRF2 nuclear accumulation, ameliorating post-reperfusion injuries via redox alterations. Abrogated cardioprotection in NRF2-deficient mice and cardiomyocytes strongly supports NRF2-dependent cardioprotection of DT. Mechanistically, DT phosphorylated NRF2 at Ser40, rendering its nuclear-import by dissociating from KEAP1 and inhibiting degradation. Importantly, we identified PKC-δ-(Thr505) phosphorylation as primary upstream event triggering NRF2-(Ser40) phosphorylation. Knockdown of PKC-δ dramatically retained NRF2 in cytoplasm, convincing its pivotal role in mediating NRF2 nuclear-import. NRF2 activity was further enhanced by activated PKB/GSK-3β signaling via nuclear-export signal blockage independent of PKC-δ activation. By demonstrating independent modulation of PKC-δ and PKB/GSK-3β/Fyn signaling, we highlight the ability of DT to exploit both nuclear import and export regulation of NRF2 in treating reperfusion injury harboring redox homeostasis alterations. Coactivation of PKC and PKB phenocopied cardioprotection of DT in vitro and in vivo, further supporting the potential applicability of this rationale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Yang
- Corresponding authors. Tel./fax: +86 25 83271379.
| | - Ping Li
- Corresponding authors. Tel./fax: +86 25 83271379.
| |
Collapse
|
29
|
Zhao C, Yang Y, An Y, Yang B, Li P. Cardioprotective role of phyllanthin against myocardial ischemia-reperfusion injury by alleviating oxidative stress and inflammation with increased adenosine triphosphate levels in the mice model. ENVIRONMENTAL TOXICOLOGY 2021; 36:33-44. [PMID: 32798296 DOI: 10.1002/tox.23008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ischemic heart disease is an imperative cause of high morbidity and mortality globally. The cardiac ischemia/reperfusion damage occur in both reperfusion and ischemia. OBJECTIVE In this exploration, we have planned to examine the cardio-protective action of phyllanthin against the myocardial ischemic-reperfusion injury in mice. MATERIALS AND METHODS The myocardial ischemic reperfusion injury (MI-RI) stimulated via coronary artery occlusion, followed by the 10 mg/kg of phyllanthin treatment. The serum cardiac markers and pro-inflammatory markers level was investigated by using the assay kits. The expressions of oxidative stress and inflammatory markers level were investigated by immunohistochemical analysis. Lipid peroxidation, antioxidant enzymes, and ATPase levels level was examined by standard methods. The expression of oxidative stress markers were inspected by the reverse transcription polymerase chain reaction technique. The heart histology was investigated microscopically. RESULTS The phyllanthin treatment increased the body weight, and heart weight also diminished the infarct size in the MI/RI mice. Cardiac markers status was diminished and the blood pressure markers were augmented by the phyllanthin. Histological analysis revealed the protective role of phyllanthin. Suppressed lipid peroxidation and enhanced antioxidant enzymes were noted in the phyllanthin treated mice MI-RI mice. Phyllanthin appreciably suppressed the pro-inflammatory regulators that is, NF-αB p65, IL-6, IL-1β, and TNF-α and enhanced the antioxidant marker expressions. ATPase levels were improved by the phyllanthin in the MI-RI mice. CONCLUSION These novel findings were confirmed the therapeutic role of phyllanthin against the MI-RI in mice. Hence, it can be a promising agent to treat the MI-RI induced cardiac dysfunction.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yufei Yang
- College of Basic Medicine, Qingdao Binhai University, Qingdao, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Fernández-Ortiz M, Sayed RKA, Fernández-Martínez J, Cionfrini A, Aranda-Martínez P, Escames G, de Haro T, Acuña-Castroviejo D. Melatonin/Nrf2/NLRP3 Connection in Mouse Heart Mitochondria during Aging. Antioxidants (Basel) 2020; 9:antiox9121187. [PMID: 33260800 PMCID: PMC7760557 DOI: 10.3390/antiox9121187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is a major risk for cardiovascular diseases (CVD). Age-related disorders include oxidative stress, mitochondria dysfunction, and exacerbation of the NF-κB/NLRP3 innate immune response pathways. Some of the molecular mechanisms underlying these processes, however, remain unclear. This study tested the hypothesis that NLRP3 inflammasome plays a role in cardiac aging and melatonin is able to counteract its effects. With the aim of investigating the impact of NLRP3 inflammasome and the actions and target of melatonin in aged myocardium, we analyzed the expression of proteins implied in mitochondria dynamics, autophagy, apoptosis, Nrf2-dependent antioxidant response and mitochondria ultrastructure in heart of wild-type and NLRP3-knockout mice of 3, 12, and 24 months-old, with and without melatonin treatment. Our results showed that the absence of NLRP3 prevented age-related mitochondrial dynamic alterations in cardiac muscle with minimal effects in cardiac autophagy during aging. The deficiency of the inflammasome affected Bax/Bcl2 ratio, but not p53 or caspase 9. The Nrf2-antioxidant pathway was also unaffected by the absence of NLRP3. Furthermore, NLRP3-deficiency prevented the drop in autophagy and mice showed less mitochondrial damage than wild-type animals. Interestingly, melatonin treatment recovered mitochondrial dynamics altered by aging and had few effects on cardiac autophagy. Melatonin supplementation also had an anti-apoptotic action in addition to restoring Nrf2-antioxidant capacity and improving mitochondria ultrastructure altered by aging.
Collapse
Affiliation(s)
- Marisol Fernández-Ortiz
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
| | - Ramy K. A. Sayed
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
| | - Antonia Cionfrini
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
| | - Germaine Escames
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
- CIBERfes, Ibs. Granada, 18016 Granada, Spain
| | - Tomás de Haro
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain;
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (A.C.); (P.A.-M.); (G.E.)
- CIBERfes, Ibs. Granada, 18016 Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain;
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20169)
| |
Collapse
|
31
|
Abstract
Heart failure is a worldwide pandemic influencing 26 million individuals worldwide and is expanding. Imbalanced redox homeostasis in cardiac cells alters the structure and function of the cells, which leads to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure. Various targets and agents acting on these such as siRNA, miRNA, interleukin-1, opioids, vasodilators, and SGLT2 inhibitors are being evaluated for heart failure, and nuclear factor erythroid 2-related factor 2 (NRF2) is one of them. NRF2 is a master transcription factor which is expressed in most of the tissues and exhibits a major role in amplification of the antioxidant pathways associated with the enzymes present in myocardium. Increased ROS generation and PI3K-Akt signaling can activate the receptor NRF2. Various in vitro and in vivo and few clinical studies suggested NRF2 may possess a potential for targeting oxidative stress-induced cardiovascular diseases including heart failures. All these studies collectively propose that upregulation of NRF2 will attenuate the increase in hemodynamic stress and provide beneficial role in cardiovascular diseases. The current review shall familiarize readers about the regulations and functions of NRF2. We have also discussed the current evidences suggesting beneficial role of NRF2 activators in heart failure. Graphical abstract.
Collapse
|
32
|
Liu X, Yuan X, Liang G, Zhang S, Zhang G, Qin Y, Zhu Q, Xiao Q, Hou N, Luo JD. BRG1 protects the heart from acute myocardial infarction by reducing oxidative damage through the activation of the NRF2/HO1 signaling pathway. Free Radic Biol Med 2020; 160:820-836. [PMID: 32950688 DOI: 10.1016/j.freeradbiomed.2020.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Brahma-related gene 1 (BRG1) regulates the chromatin structure and expression of cardiac genes. Although BRG1 is downregulated in adult cardiomyocytes, it is reactivated during cardiac stress. The role of BRG1 in acute myocardial infarction (AMI) has not been clearly defined. This study assessed the protective role of BRG1 in AMI using cell cultures and an animal model and explored the underlying molecular events. The results showed that in the peri-infarct zone, expression of BRG1 protein was significantly increased relative to the sham group, which was accompanied by NRF2 and HO1 upregulation and KEAP1 downregulation. BRG1 overexpression through adenoviral intramyocardial injection into AMI mice reduced the infarct size and improved cardiac functions with upregulation of NRF2 and its target HO1 and attenuated oxidative damage and cell apoptosis. However, shRNA-mediated Brg1 knockdown had the opposite effects. These results were further confirmed in cultured primary neonatal rat cardiomyocytes (NRCMs) with oxygen-glucose deprivation (OGD). Moreover, the selective NRF2 inhibitor brusatol could partially reverse cardiomyocyte antioxidant ability and BRG1 overexpression-induced cardiac protection in vitro. In addition, co-immunoprecipitation and immunofluorescence data showed that BRG1 overexpression significantly promoted the BRG1/NRF2 co-localization in cardiomyocytes. The chromatin immunoprecipitation-qPCR revealed BRG1 interaction with the Ho1 promoter and BRG1 overexpression could induce BRG1 binding to the Ho1 promoter during the OGD. In conclusion, this study demonstrated that BRG1 upregulation during AMI in vitro and in vivo increased the NRF2 level and NRF2 nuclear accumulation for HO1 expression to alleviate cardiac myocyte oxidative stress and upregulate cardiomyocyte viability. The BRG1-NRF2-HO1 pathway may represent a novel therapeutic target in the prevention of cardiac dysfunction in AMI patients.
Collapse
Affiliation(s)
- Xiaoping Liu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xun Yuan
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guanfeng Liang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuyun Zhang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guiping Zhang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Qin
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiulian Zhu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qing Xiao
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ning Hou
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jian-Dong Luo
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
33
|
Ma Y, Pan C, Tang X, Zhang M, Shi H, Wang T, Zhang Y. MicroRNA-200a represses myocardial infarction-related cell death and inflammation by targeting the Keap1/Nrf2 and β-catenin pathways. Hellenic J Cardiol 2020; 62:139-148. [PMID: 33197602 DOI: 10.1016/j.hjc.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (MI) is a main cause of emergency death in the world. MicroRNAs (miRs/miRNAs) are a series of small non-coding RNA molecules, which regulate cardiovascular disorders that involve MI. In this study, we explored the function of miR-200a in MI treatment. METHODS We observed down-regulation of miR-200a levels and up-regulation of Keap1 and β-catenin levels in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) and the infarcted heart tissues of MI mouse models, compared to the non-treated NMVCs and normal heart tissues of healthy mice. RESULTS CCK-8 and colony formation assays indicated the reduction in NMVC vitality due to H2O2 treatment and the recovery of cell vitality due to miR-200a overexpression, respectively. Flow cytometry with Annexin and PI staining indicated the inhibition of H2O2-triggered cell apoptosis through ectopically expressed miR-200a. Western blotting and ELISA analyses that detected pro-inflammatory cell factors [interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α] confirmed that miR-200a prevented H2O2-induced NMVC inflammation. Moreover, miR-200a inhibited up-regulation of Keap1 and β-catenin expression in H2O2-treated NMVCs by directly binding with the 3'-UTR regions of both Keap1 and β-catenin. Furthermore, overexpression of Keap1 and β-cateninin in H2O2-treated NMVCs with recovered miR-200a elevated inflammation and apoptosis, respectively. CONCLUSION The results showed that miR-200a expression was inhibited in murine cardiomyocytes due to H2O2 stress in MI cardiac tissues and overexpressed miR-200a could protect the cells from death by regulating the Keap1/Nrf2 and β-catenin signal transduction pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Changjie Pan
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Xiaoqiang Tang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Ming Zhang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Tao Wang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| | - Yong Zhang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213164, China.
| |
Collapse
|
34
|
Lv X, Li Q, Mao S, Qin L, Dong P. The protective effects of memantine against inflammation and impairment of endothelial tube formation induced by oxygen-glucose deprivation/reperfusion. Aging (Albany NY) 2020; 12:21469-21480. [PMID: 33174867 PMCID: PMC7695423 DOI: 10.18632/aging.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death and disability. The dysregulation of cardiac endothelial cells plays a significant role in the pathogenesis of AMI. In the present study, we investigated the potential of memantine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist used in the treatment of Alzheimer's disease, to mitigate the effects of ischemia-reperfusion injury in the peripheral vasculature using human umbilical cord endothelial cells (HUVECs). Previous studies have identified anti-inflammatory and antioxidant effects of memantine, but the effects of memantine on angiogenesis and microtubule formation have not been fully elucidated. Our findings indicate that pretreatment with memantine significantly reduced the expression of interleukin (IL)-6 and IL-8, which are both serum markers if AMI severity. We also demonstrate that memantine could prevent mitochondrial dysfunction and oxidative stress by rescuing mitochondrial membrane potential and reducing the production of reactive oxygen species (ROS) by NADPH oxidase-4 (NOX-4). Importantly, memantine also promoted the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant signaling pathway. Importantly, memantine pretreatment improved cell viability and prevented the decrease in microtubule formation induced by OGD/R. Through a phosphoinositide-3-kinase (PI3K) inhibition experiment, we determined that the PI3K/protein kinase B (Akt) pathway is essential for the effects of memantine on angiogenesis. Together, our findings suggest a potential role for memantine in the prevention and treatment of AMI.
Collapse
Affiliation(s)
- Xiaoxin Lv
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Qiang Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Shuai Mao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Limin Qin
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Peikang Dong
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| |
Collapse
|
35
|
Zhu H, Chen G, Wang Y, Lin X, Zhou J, Wang Z, Suo N. Dimethyl fumarate protects nucleus pulposus cells from inflammation and oxidative stress and delays the intervertebral disc degeneration. Exp Ther Med 2020; 20:269. [PMID: 33199994 PMCID: PMC7664592 DOI: 10.3892/etm.2020.9399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is a common problem in middle-aged and elderly people, and intervertebral disc degeneration (IVDD) is often the main cause. The present study aimed to explore the effects of dimethyl fumarate (DMF) on inflammation and oxidative stress in the intervertebral disc. C57/BL6 mice were used to construct an IVDD model by tail suspension and daily intraperitoneal injections of 10 mg/kg DMF were administered to analyze the effects of DMF on IVDD. In addition, human nucleus pulposus (NP) cells were cultured and stimulated cells with recombinant human IL-1β and DMF to examine the effects of DMF on inflammation and oxidative stress in NP cells. DMF significantly increased the intervertebral disc height index of mice and inhibited the degradation of the extracellular matrix of mouse NP tissue. In addition, DMF also decreased the expression of inflammatory factors [including IL-6, IL-8, matrix metalloproteinase (MMP)3 and MMP13] in NP cells. In terms of oxidative stress, DMF significantly increased the antioxidative stress response in NP cells and reduced endoplasmic reticulum stress. DMF also increased the activity of the nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1 signaling pathway in NP cells and increased the phosphorylation of Akt. DMF also increased the anti-inflammatory and antioxidative ability of NP cells by promoting the activity of the Nrf2/HO-1 and PI3K/Akt signaling pathways, thus delaying IVDD.
Collapse
Affiliation(s)
- Hainian Zhu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Gang Chen
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhua Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuchen Lin
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jingyuan Zhou
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zengshun Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Nanangxiu Suo
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
36
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
37
|
Liu Z, Han K, Huo X, Yan B, Gao M, Lv X, Yu P, Gao G, Chang YZ. Nrf2 knockout dysregulates iron metabolism and increases the hemolysis through ROS in aging mice. Life Sci 2020; 255:117838. [DOI: 10.1016/j.lfs.2020.117838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
|
38
|
Rani N, Arya DS. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur J Pharmacol 2020; 883:173389. [PMID: 32707190 DOI: 10.1016/j.ejphar.2020.173389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Pharmacological strategies aimed at co-activating peroxisome proliferator-activated receptor-gamma (PPAR-γ)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway have shown promising results in alleviating myocardial injury. The aim of the study was to evaluate the role of chrysin, a PPAR-γ agonist, in ischemia-reperfusion (IR)-induced myocardial infarction (MI) in rats and to explore the molecular mechanism driving this activity. To evaluate this hypothesis, chrysin (60 mg/kg, orally), PPAR-γ antagonist (GW9662, 1 mg/kg, intraperitoneally), or both were administered to rats for 28 days. On the 29th day, one-stage ligation of left anterior descending coronary artery for 45 min followed by 60 min of reperfusion was performed. Chrysin significantly decreased infarct size and improved cardiac functions following IR-induced MI. This improvement was corroborated by augmented PPAR-γ/Nrf2 expression as confirmed by immunohistochemistry and western blotting analysis. Chrysin exhibited strong anti-oxidant property as demonstrated by increased GSH and CAT levels and decreased 8-OHdG and TBARS levels. Our findings also imply that chrysin significantly inhibited inflammatory response as validated by decreased NF-κB, IKK-β, CRP, TNF-α and MPO levels. In addition, chrysin decreased TUNEL/DAPI positivity, a marker of apoptotic response and normalized cardiac injury markers. The histopathological and ultrastructural analysis further supported the functional and biochemical outcomes, showing preserved myocardial architecture. Intriguingly, co-administration with GW9662 significantly diminished the cardioprotective effect of chrysin as demonstrated by depressed myocardial function, decreased PPAR-γ/Nrf2 expression and increased oxidative stress. In conclusion, the present study demonstrates that co-activation of PPAR-γ/Nrf2 by chrysin may be crucial for its cardioprotective effect.
Collapse
Affiliation(s)
- Neha Rani
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, Haryana, 132001, India; Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
39
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
40
|
Zainalabidin S, Ramalingam A, Mohamed SFA, Ali SS, Latip J, Yap WB. S-allylcysteine therapy reduces adverse cardiac remodelling after myocardial infarction in a rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Zarkasi KA, Jen-Kit T, Jubri Z. Molecular Understanding of the Cardiomodulation in Myocardial Infarction and the Mechanism of Vitamin E Protections. Mini Rev Med Chem 2019; 19:1407-1426. [DOI: 10.2174/1389557519666190130164334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/10/2018] [Accepted: 01/12/2019] [Indexed: 12/13/2022]
Abstract
:
Myocardial infarction is a major cause of deaths globally. Modulation of several molecular
mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue
damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently,
there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease.
This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate
several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence
the expression of a number of genes and their protein products. Essentially, it inhibits the molecular
progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize
the molecular understanding of the cardiomodulation in myocardial infarction as well as the
mechanism of vitamin E protection.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Tan Jen-Kit
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Yan Q, He B, Hao G, Liu Z, Tang J, Fu Q, Jiang C. KLF9 aggravates ischemic injury in cardiomyocytes through augmenting oxidative stress. Life Sci 2019; 233:116641. [DOI: 10.1016/j.lfs.2019.116641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
43
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
44
|
Fão L, Mota SI, Rego AC. c-Src regulates Nrf2 activity through PKCδ after oxidant stimulus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:686-698. [PMID: 30685263 DOI: 10.1016/j.bbamcr.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/19/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Abstract
Nrf2 is the main transcription factor involved in expression of cell defense enzymes, which is altered in several oxidant-related disorders. Cytosolic Nrf2 activation is modulated through phosphorylation by PKCδ, an enzyme controlled by Src tyrosine kinases. Of relevance, Src family members are involved in numerous cellular processes and regulated by hydrogen peroxide (H2O2). In this study we analysed the activation of cell survival-related signaling proteins, c-Src and Nrf2, and the influence of c-Src kinase on Nrf2 regulation after exposure to H2O2. Acute exposure of HT22 mouse hippocampal neural cells to H2O2 increased c-Src and Nrf2 phosphorylation/activation at Tyr416 and Ser40, respectively. Nrf2 phosphorylation at Ser40, its nuclear accumulation and transcriptional activity involving heme oxygenase-1 (HO-1) expression were dependent on c-Src kinase activation. Moreover, modulation of Nrf2 activity by c-Src occurred through PKCδ phosphorylation at Tyr311. We demonstrate, for the first time, c-Src-mediated regulation of Nrf2 transcriptional activity, via PKCδ activation, following an acute H2O2 stimulus. This work supports that the c-Src/PKCδ/Nrf2 pathway may constitute a novel signaling pathway stimulated by H2O2 and a potential target for the treatment of diseases involving redox deregulation.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Mota
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
45
|
Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 2018; 113:42. [PMID: 30191336 PMCID: PMC6133069 DOI: 10.1007/s00395-018-0700-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP−/− mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl4 (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Iα2 mRNA, Ki67+ fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)+ fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP−/− mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP−/− mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Iα2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.
Collapse
Affiliation(s)
- Andrey Kazakov
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany.
| | - Rabea A Hall
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christian Werner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Timo Meier
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - André Trouvain
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Svetlana Rodionycheva
- Klinik für Thorax- und Herz-Gefäßchirurgie, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 57, 66421, Homburg, Germany
| | - Alexander Nickel
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christoph Maack
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
47
|
Zhao GJ, Hou N, Cai SA, Liu XW, Li AQ, Cheng CF, Huang Y, Li LR, Mai YP, Liu SM, Ou CW, Xiong ZY, Chen XH, Chen MS, Luo CF. Contributions of Nrf2 to Puerarin Prevention of Cardiac Hypertrophy and its Metabolic Enzymes Expression in Rats. J Pharmacol Exp Ther 2018; 366:458-469. [PMID: 29945930 DOI: 10.1124/jpet.118.248369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
Previous evidence has suggested that puerarin may attenuate cardiac hypertrophy; however, the potential mechanisms have not been determined. Moreover, the use of puerarin is limited by severe adverse events, including intravascular hemolysis. This study used a rat model of abdominal aortic constriction (AAC)-induced cardiac hypertrophy to evaluate the potential mechanisms underlying the attenuating efficacy of puerarin on cardiac hypertrophy, as well as the metabolic mechanisms of puerarin involved. We confirmed that puerarin (50 mg/kg per day) significantly attenuated cardiac hypertrophy, upregulated Nrf2, and decreased Keap1 in the myocardium. Moreover, puerarin significantly promoted Nrf2 nuclear accumulation in parallel with the upregulated downstream proteins, including heme oxygenase 1, glutathione transferase P1, and NAD(P)H:quinone oxidoreductase 1. Similar results were obtained in neonatal rat cardiomyocytes (NRCMs) treated with angiotensin II (Ang II; 1 μM) and puerarin (100 μM), whereas the silencing of Nrf2 abolished the antihypertrophic effects of puerarin. The mRNA and protein levels of UGT1A1 and UGT1A9, enzymes for puerarin metabolism, were significantly increased in the liver and heart tissues of AAC rats and Ang II-treated NRCMs. Interestingly, the silencing of Nrf2 attenuated the puerarin-induced upregulation of UGT1A1 and UGT1A9. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction indicated that the binding of Nrf2 to the promoter region of Ugt1a1 or Ugt1a9 was significantly enhanced in puerarin-treated cardiomyocytes. These results suggest that Nrf2 is the key regulator of antihypertrophic effects and upregulation of the metabolic enzymes UGT1A1 and UGT1A9 of puerarin. The autoregulatory circuits between puerarin and Nrf2-induced UGT1A1/1A9 are beneficial to attenuate adverse effects and maintain the pharmacologic effects of puerarin.
Collapse
Affiliation(s)
- Gan-Jian Zhao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Ning Hou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Shao-Ai Cai
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Xia-Wen Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Ai-Qun Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Chuan-Fang Cheng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Yin Huang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Li-Rong Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Yun-Pei Mai
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Shi-Ming Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Cai-Wen Ou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Zhen-Yu Xiong
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Xiao-Hui Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Min-Sheng Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Cheng-Feng Luo
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| |
Collapse
|
48
|
Wang G, Li Y, Peng Y, Tang J, Li H. Association of polymorphisms in MALAT1 with risk of coronary atherosclerotic heart disease in a Chinese population. Lipids Health Dis 2018; 17:75. [PMID: 29631611 PMCID: PMC5891990 DOI: 10.1186/s12944-018-0728-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in vascular remodeling. Down-regulation of MALAT1 can inhibit the proliferation of vascular endothelial cells and vascular smooth muscle cells, reduce cardiomyocyte apoptosis and improve left ventricular function, which is closely linked to numerous pathological processes such as coronary atherosclerotic heart disease (CAD). The aim of this study was to investigate whether polymorphisms in MALAT1 were associated with the susceptibility to CAD. Methods A total of 508 CAD patients and 562 age-, gender-, and ethnicity-matched controls were enrolled in this study. Four polymorphisms in MALAT1 (i.e., rs11227209, rs619586, rs664589, and rs3200401) were genotyped using a TaqMan allelic discrimination assay. Results The rs619586 AG/GG genotypes and G allele were associated with a reduced risk of CAD (AG/GG vs. AA: adjusted OR = 0.66, 95% CI: 0.48–0.91; G vs. A: adjusted OR = 0.68, 95% CI: 0.51–0.90). Stratification analyses showed that CAD patients with rs11227209 CG/GG, rs619586 AG/GG, and rs3200401 CT/TT genotypes exhibited lower levels of TCH (P = 0.02, 0.04, and 0.02, respectively). Moreover, CGCC haplotype was associated with a decreased risk of CAD (OR = 0.28, 95% CI: 0.16–0.48). Multivariate logistic regression analysis identified some independent risk factors for CAD, including rs619586 and rs664589. Subsequent combined analysis showed that the combined genotypes of rs619586AG/GG and rs664589CC were associated with a reduced risk of CAD (OR = 0.29; 95%CI, 0.16–0.53). Conclusions These findings indicate that rs619586AG/GG genotypes in MALAT1 may protect against the occurrence of CAD. Electronic supplementary material The online version of this article (10.1186/s12944-018-0728-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Genan Wang
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yaxiong Li
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yong Peng
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Jian Tang
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Hua Li
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China.
| |
Collapse
|
49
|
Rysä J, Tokola H, Ruskoaho H. Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci Rep 2018; 8:4733. [PMID: 29549296 PMCID: PMC5856749 DOI: 10.1038/s41598-018-23042-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are able to activate hypertrophic growth of cardiomyocytes in the overloaded myocardium. However, the transcriptional profiles triggered by mechanical stretch in cardiac myocytes are not fully understood. Here, we performed the first genome-wide time series study of gene expression changes in stretched cultured neonatal rat ventricular myocytes (NRVM)s, resulting in 205, 579, 737, 621, and 1542 differentially expressed (>2-fold, P < 0.05) genes in response to 1, 4, 12, 24, and 48 hours of cyclic mechanical stretch. We used Ingenuity Pathway Analysis to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks that may lead to mechanical stretch induced hypertrophic growth of cardiomyocytes. We also performed micro (miRNA) expression profiling of stretched NRVMs, and identified that a total of 8 and 87 miRNAs were significantly (P < 0.05) altered by 1-12 and 24-48 hours of mechanical stretch, respectively. Finally, through integration of miRNA and mRNA data, we predicted the miRNAs that regulate mRNAs potentially leading to the hypertrophic growth induced by mechanical stretch. These analyses predicted nuclear factor-like 2 (Nrf2) and interferon regulatory transcription factors as well as the let-7 family of miRNAs as playing roles in the regulation of stretch-regulated genes in cardiomyocytes.
Collapse
Affiliation(s)
- Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.
| | - Heikki Tokola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Department of Pathology, Cancer Research and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Ruskoaho
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|