1
|
Goldar S, Gachumi G, Siciliano SD, Hogan NS. The role of efflux transporters in cytotoxicity and intracellular concentration of chlorpyrifos and chlorpyrifos oxon in human cell lines. Toxicol In Vitro 2024; 101:105942. [PMID: 39284535 DOI: 10.1016/j.tiv.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK-2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO. Inhibition of efflux transporters did not affect the cytotoxicity of CPF and CPFO in HK-2 cells. Co-incubation of CPF with P-gp and BCRP inhibitors increased the intracellular concentration of CPF in HepG2 cells suggesting that both transporters play a role in limiting the cellular accumulation of CPF in HepG2 cells. Our results provide evidence that inhibition of efflux transporters can enhance CPF-induced toxicity through enhanced cellular accumulation and raises additional questions regarding how pesticide-transporter interactions may influence toxicity of mixtures containing pesticides and other environmental chemicals.
Collapse
Affiliation(s)
- Samira Goldar
- Toxicology Graduate Program, Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - George Gachumi
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
2
|
Bosu S, Rajamohan N, Al Salti S, Rajasimman M, Das P. Biodegradation of chlorpyrifos pollution from contaminated environment - A review on operating variables and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118212. [PMID: 38272293 DOI: 10.1016/j.envres.2024.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/12/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Chlorpyrifos (CPF) is a highly toxic phosphate-rich organic pesticide (OP), identified as an emerging contaminant and used extensively in agricultural production. CPF persistence in the environment and its potential health hazards has become increasingly concerning worldwide in recent years due to exponential rise in food demand. Biodegradation of chlorpyrifos by microbial cultures is a promising approach to reclaiming contaminated soil and aquatic environments. The purpose of this review is to summarize the current understanding of microbiological aspects of xenobiotic chlorpyrifos biodegradation, including microbial diversity, metabolic pathways, and factors that modulate it. In both aerobic and anaerobic environments, CPF is biochemically broken down by a broad spectrum of bacteria and fungi. Hydrolysis, dehalogenation, and oxidation of chlorpyrifos are all enzymatic reactions that lead to its degradation. Biodegradation rate and efficiency are strongly influenced by parametric variables such as co-substrates abundance, pH, temperature, and initial chlorpyrifos concentration. The review provides evidence that microbial biodegradation is a viable method for remediating chlorpyrifos-contaminated sites in a sustainable and safe manner.
Collapse
Affiliation(s)
- Subrajit Bosu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Shatha Al Salti
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | | | - Papiya Das
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
3
|
Bai J, Deng S, Fu H, Yang Q, Ren F, Zeng S, Chen Z, Yang Y, Wu Z. Chlorpyrifos induces placental oxidative stress and barrier dysfunction by inducing mitochondrial apoptosis through the ERK/MAPK signaling pathway: In vitro and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166449. [PMID: 37634732 DOI: 10.1016/j.scitotenv.2023.166449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide that is widely used in agricultural production and residential environments worldwide. In this study, we determined the harmful effects and toxicological mechanism of CPF in porcine trophectoderm (pTr) cells and the placenta of female mice during pregnancy. The findings revealed that CPF significantly decreased cell viability and increased intracellular lactate dehydrogenase (LDH) release in pTr cells. Similarly, CPF induced reproductive toxicity in pregnant maternal mice, including decreased maternal, fetal, and placental weights. Moreover, following CPF treatment, pTr cells and the placenta of female mice showed significant apoptosis. JC-1 staining and flow cytometry analysis also revealed that the mitochondrial membrane potential (MMP) of pTr cells treated with CPF was significantly depolarized. Additionally, CPF can induce an increase in reactive oxygen species (ROS) and barrier dysfunction in pTr cells and the placenta of female mice. We further verified that CPF-induced mitochondrial apoptosis is mediated by the MAPK signaling pathway, as shown by using of small molecular inhibitors of related proteins. Also, CPF-induced oxidative stress, barrier dysfunction, and mitochondrial apoptosis in pTr cells were alleviated by U0126, an inhibitor of the ERK/MAPK signaling pathway. These findings suggested that exposure to CPF in early pregnancy might be a potential risk fator affecting placental formation and function in humans and animals.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Wu M, Yan F, Liu Q, Liao G, Shen Y, Bai Z, Liu X. Effects of Xenobiotic Compounds on Preeclampsia and Potential Mechanisms. TOXICS 2023; 11:492. [PMID: 37368592 DOI: 10.3390/toxics11060492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Preeclampsia (PE) refers to a disease with new hypertension and albuminuria or other end-organ damage after 20 weeks of pregnancy. As a major complication of pregnancy, PE can increase the morbidity and mortality of pregnant women and fetuses and cause serious social burden. Recently, it has been found that exposure to xenobiotic compounds, especially endocrine disruptors in the environment, may contribute to the development of PE. However, the underlying mechanism is still unclear. It is generally believed that PE is related to placental dysplasia, spiral artery remodelling failure, oxidative stress, etc. Therefore, in order to better prevent the occurrence of PE and reduce the damage and impact on mother and fetus, this paper reviews the role and potential mechanism of PE induced by exogenous chemicals and provides an outlook on the environmental etiology of PE.
Collapse
Affiliation(s)
- Miaoliang Wu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Fuhui Yan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Qian Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Ganzhong Liao
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Shen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoshan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
5
|
Fouyet S, Olivier E, Leproux P, Boutefnouchet S, Dutot M, Rat P. Cocktail Effect of Endocrine Disrupting Chemicals: Application to Chlorpyrifos in Lavender Essential Oils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12984. [PMID: 36232284 PMCID: PMC9566273 DOI: 10.3390/ijerph191912984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Chlorpyrifos is a pesticide that is toxic to human health and has been banned for the past decade. Due to its persistent and bioaccumulative properties, chlorpyrifos is still present in soil. Pregnant women can be exposed to chlorpyrifos through drinking water and herbal products, such as essential oils (EOs), resulting in adverse effects to the mother and fetus. Our objective was to evaluate and compare the potential endocrine disrupting effects of chlorpyrifos "free" or in contaminated lavender EO. We studied the release of four hormones and the activation of the P2X7 cell death receptor in human placental JEG-Tox cells as key biomarkers of endocrine toxicity for pregnant women (hPlacentox assay). We observed that "free" chlorpyrifos disrupted placental hormones and activated the P2X7 receptor, whereas chlorpyrifos in lavender EO disrupted only the placental hormones. We confirm that chlorpyrifos can be classified as an endocrine disrupting chemical (EDC) for pregnant women and point out that its endocrine disrupting effect may not be apparent when present in lavender EOs. Our results reveal the existence of specific reverse cocktail effects that may have protective properties against EDCs.
Collapse
Affiliation(s)
- Sophie Fouyet
- Université Paris cité, CNRS CiTCoM, 75006 Paris, France
- Laboratoires Léa Nature, 17180 Périgny, France
| | | | | | | | - Mélody Dutot
- Université Paris cité, CNRS CiTCoM, 75006 Paris, France
- Yslab, Recherche & Développement, 29000 Quimper, France
| | - Patrice Rat
- Université Paris cité, CNRS CiTCoM, 75006 Paris, France
| |
Collapse
|
6
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Zhu HL, Dai LM, Xiong YW, Shi XT, Liu WB, Fu YT, Zhou GX, Zhang S, Gao L, Zhang C, Zhao LL, Xu XF, Huang YC, Xu DX, Wang H. Gestational exposure to environmental cadmium induces placental apoptosis and fetal growth restriction via Parkin-modulated MCL-1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127268. [PMID: 34583167 DOI: 10.1016/j.jhazmat.2021.127268] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal cadmium (Cd), a classical environmental pollutant, causes placental apoptosis and fetal growth restriction (FGR), whereby the mechanism remains unclear. Here, our human case-control study firstly showed that there was a positive association of Parkin mitochondrial translocation, MCL-1 reduction, placental apoptosis, and all-cause FGR. Subsequently, Cd was administered to establish in vitro and in vivo models of placental apoptosis or FGR. Our models demonstrated that Parkin mitochondrial translocation was observed in Cd-administrated placental trophoblasts. Meaningfully, Parkin siRNA (siR) dramatically mitigated Cd-triggered apoptosis in placental trophoblasts. Mdivi-1 (M-1), an inhibitor for Parkin mitochondrial translocation, mitigated Cd-induced apoptosis in placental trophoblasts, which further ameliorated the effect of attenuated placental sizes in Cd-exposed mice. Furthermore, the interaction of MCL-1 with Parkin or Ub in Cd-stimulated cells was stronger than that in controls. MG132, an inhibitor for proteasome, abolished MCL-1 degradation in Cd-stimulated cells. Importantly, Parkin siR and M-1 memorably abolished the ubiquitin-dependent degradation of MCL-1 in placental trophoblasts. Interestingly, mito-TEMPO and melatonin, two mitochondria-targeted antioxidants, obviously rescued Cd-caused mitochondrial membrane potential (MMP) decrease, Parkin mitochondrial translocation, MCL-1 degradation, and apoptosis in placental trophoblasts. In conclusion, cadmium induces placental apoptosis and FGR via mtROS-mediated Parkin-modulated degradation of MCL-1.
Collapse
Affiliation(s)
- Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Ting Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shuang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Concentration-dependent effects of chlorpyrifos oxon on peroxisome proliferator-activated receptor signaling in MCF-7 cells. Toxicol In Vitro 2022; 78:105268. [PMID: 34756920 PMCID: PMC8710288 DOI: 10.1016/j.tiv.2021.105268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Chlorpyrifos oxon (CPO) is the active metabolite of the organophosphorus pesticide, chlorpyrifos. CPO is a potent inhibitor of acetylcholinesterase (AChE) and other serine hydrolases including fatty acid amide hydrolase (FAAH). AChE is critical in regulating cholinergic signaling while FAAH catalyzes the inactivation of fatty acid signaling lipids including the endocannabinoid (eCB) N-arachidonylethanolamine (anandamide, AEA) and eCB-like metabolites (e.g., oleoylethanolamide, OEA). AEA and OEA are both peroxisome proliferator-activated receptor (PPAR) agonists that regulate numerous genes involved in lipid metabolism and energy homeostasis. We used the MCF-7 human breast cancer cell line, which expresses AChE, FAAH and PPAR alpha and gamma subtypes, to evaluate the potential effects of CPO on PPAR-related gene expression in an in vitro human cell system. CPO elicited relatively similar concentration-dependent inhibition of both AChE and FAAH. Marked concentration- and time-dependent changes in the expression of four selected PPAR-related genes, LXRα, ACOX1, ABCG2 and AGPAT2, were noted. These findings suggest chlorpyrifos may influence lipid metabolism through blocking the degradation of eCBs or eCB-like metabolites and in turn affecting PPAR receptor activation. The results highlight the potential for non-cholinesterase actions of this common insecticide metabolite through disruption of PPAR signaling including effects on lipid metabolism, immune function and inflammation.
Collapse
|
9
|
Jiang Y, He Y, Li W, Ni J, Li J, Peng L, Luo L, Rui R, Ju S. Exposure to chlorpyrifos leads to spindle disorganization and mitochondrial dysfunction of porcine oocytes during in vitro maturation. Theriogenology 2021; 173:249-260. [PMID: 34399389 DOI: 10.1016/j.theriogenology.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
Chlorpyrifos (CPF), as one of the most extensively applied organophosphorus pesticides (OPs) in agricultural and domestic settings, causes a potential threat to human and animal health. Various reproductive toxicities of CPF have been reported, however, little information is available on whether CPF exposure could exert toxic effects on mammalian oocytes. Herein, the effects of CPF on the meiotic maturation and developmental capability of porcine oocytes were investigated, and the possible toxic mechanisms of CPF were also explored. Porcine cumulus-oocyte complexes (COCs) were treated with 0, 5, 10, or 20 μM CPF for 44 h during in vitro maturation (IVM), and the results showed that the first polar body (PB1) extrusion rate was significantly decreased, and the subsequent developmental competence of the resulting metaphase II (MII) oocytes was also impaired when the concentration of CPF reached 10 μM. In addition, a higher percentage of CPF-exposed oocytes were arrested at the anaphase-telophase I (ATI) stage, accompanied by misaligned chromosomes and aberrant spindles. Furthermore, higher levels of ROS and upregulated antioxidant-related genes (CAT, SOD1, SOD2, GPX) were detected in CPF-treated oocytes. Additionally, CPF treatment led to the depolarization of mitochondrial membrane potential (MMP) and the release of cytochrome c (Cyt c). Simultaneously, the apoptotic rate of the oocytes was significantly increased, and the expression levels of Bax and CASPASE3 were significantly upregulated after CFP exposure. Together, exposure to 10 μM CPF can disrupt the meiotic cycle progression, lead to aberrant spindles and mitochondrial dysfunction, which eventually induce oxidative stress and apoptosis in porcine oocytes.
Collapse
Affiliation(s)
- Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jia Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Liping Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
10
|
Farajzadeh MA, Kiavar L, Pezhhanfar S. Development of a method based on dispersive liquid-liquid microextraction followed by partial vaporization of the extract for ultra-preconcentration of some pesticide residues in fruit juices. J Chromatogr A 2021; 1653:462427. [PMID: 34332315 DOI: 10.1016/j.chroma.2021.462427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
A new simple and efficient method has been developed for the ultra-preconcentration of multiclass pesticide residues including penconazole, chlorpyrifos, ametryn, clodinafop-propargyl, diniconazole, oxadiazon, and fenpropathrin from some fruit juice samples based on evaporation of the sedimented organic phase obtained from dispersive liquid-liquid microextraction. The enriched target analytes were analyzed by gas chromatography-flame ionization detection. In the microextraction procedure, a mixture of iso-propanol as a disperser and 1,2-dibromoethane as an extraction solvent is quickly injected into an aqueous phase containing the analytes and centrifuged. Afterward, the sedimented phase is transferred into a special shaped vaporization vessel and vaporized with nitrogen gas stream until remaining about 2 µL of it. Eventually, 1 µL of the remained sedimented phase is removed and analyzed by separation system. The optimum extraction and disperser solvents were found to be 1,2-dibromoethane and iso-propanol, respectively. In addition, the optimum pH range was 6-8, and nitrogen gas stream at a flow rate of 90 mL min-1 in a downward oriented vessel was applied. Eventually, the limits of detection and quantification were obtained in the ranges of 45-78 and 149-261 ng L-1, respectively. Relative standard deviations at the concentrations of 300, 500 and 1000 ng L-1 of each analyte were ranged between 2.2% and 5.8% for intra-day (n = 6) precision. Inter-day (n = 3) precision at a concentration of 500 ng L-1 of each analyte was obtained in the range of 4.9-7.1%. In addition, enrichment factors and extraction recoveries were ranged from 1382-2246 and 55-89%, respectively. Finally, the method was successfully utilized in analysis of the target pesticides in the selected juices.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Laleh Kiavar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Enderle I, Costet N, Cognez N, Zaros C, Caudeville J, Garlantezec R, Chevrier C, Nougadere A, De Lauzon-Guillain B, Le Lous M, Beranger R. Prenatal exposure to pesticides and risk of preeclampsia among pregnant women: Results from the ELFE cohort. ENVIRONMENTAL RESEARCH 2021; 197:111048. [PMID: 33766571 DOI: 10.1016/j.envres.2021.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific syndrome caused by abnormal placentation. Although environmental chemicals, including some pesticides, are suspected of impairing placentation and promoting preeclampsia, its relationship with preeclampsia has been insufficiently explored. OBJECTIVES We aimed to investigate the relation between non-occupational exposure to pesticides during pregnancy and the risk of preeclampsia. METHODS The study cohort comprised 195 women with and 17,181 without preeclampsia from the ELFE birth cohort. We used toxicogenomic approaches to select 41 pesticides of interest for their possible influence on preeclampsia. We assessed household pesticide use (self-reported data), environmental exposure to agricultural pesticides (geographic information systems), and dietary exposure (food-frequency questionnaire with data from monitoring pesticide residues in food and water). Dietary exposures to pesticides were grouped into clusters of similar exposures to resolve collinearity issues. For each exposure source, pesticides were mutually adjusted, and odds ratios estimated with logistic regression models. RESULTS The quantity of prochloraz applied within a kilometer of the women's homes was higher in women with than without preeclampsia (fourth quartile vs. others; adjusted odds ratio [aOR] = 1.54; 95%CI: 1.02, 2.35), especially when preeclampsia was diagnosed before 34 weeks of gestation (aOR = 2.25; 95%CI: 1.01, 5.06). The reverse was observed with nearby cypermethrin application (aOR = 0.59, 95%CI: 0.36, 0.96). In sensitivity analyses, women with preeclampsia receiving antihypertensive treatment had a significantly higher probability of using herbicides at home during pregnancy than women without preeclampsia (aOR = 2.20; 95%CI: 1.23, 3.93). No statistically significant association was found between dietary exposure to pesticide residues and preeclampsia. DISCUSSION While the most of the associations examined remained statistically non-significant, our results suggest the possible influence on preeclampsia of residential exposures to prochloraz and some herbicides. These estimations are supported by toxicological and mechanistic data.
Collapse
Affiliation(s)
- Isabelle Enderle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France.
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Noriane Cognez
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Zaros
- French Institute for Demographic Studies (Ined), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, F-75020, Paris, France
| | - Julien Caudeville
- INERIS (French National Institute for Industrial Environment and Risks), 60550, Verneuil-en-Halatte, France
| | - Ronan Garlantezec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Alexandre Nougadere
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, F-94701, Maisons-Alfort, France
| | | | - Maela Le Lous
- Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Rémi Beranger
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| |
Collapse
|
12
|
Silva V, Gil-Martins E, Silva B, Rocha-Pereira C, Sousa ME, Remião F, Silva R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin Drug Metab Toxicol 2021; 17:441-482. [PMID: 33283552 DOI: 10.1080/17425255.2021.1861247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: P-glycoprotein (P-gp) is an important efflux pump responsible for the extruding of many endogenous and exogenous substances out of the cells. P-gp can be modulated by different molecules - including xanthone derivatives - to surpass the multidrug resistance (MDR) phenomenon through P-gp inhibition, or to serve as an antidotal strategy in intoxication scenarios through P-gp induction/activation.Areas covered: This review provides a perspective on P-gp modulators, with particular focus on xanthonic derivatives, highlighting their ability to modulate P-gp expression and/or activity, and the potential impact of these effects on the pharmacokinetics, pharmacodynamics and toxicity of P-gp substrates.Expert opinion: Xanthones, of natural or synthetic origin, are able to modulate P-gp, interfering with its protein synthesis or with its mechanism of action, by decreasing or increasing its efflux capacity. These modulatory effects make the xanthonic scaffold a promising source of new derivatives with therapeutic potential. However, the mechanisms beyond the xanthones-mediated P-gp modulation and the chemical characteristics that make them more potent P-gp inhibitors or inducers/activators are still understudied. Furthermore, a new window of opportunity exists in the neuropathologies field, where xanthonic derivatives with potential to modulate P-gp should be further explored to optimize the prevention/treatment of brain pathologies.
Collapse
Affiliation(s)
- Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Chiu KC, Sisca F, Ying JH, Tsai WJ, Hsieh WS, Chen PC, Liu CY. Prenatal chlorpyrifos exposure in association with PPARγ H3K4me3 and DNA methylation levels and child development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116511. [PMID: 33540251 DOI: 10.1016/j.envpol.2021.116511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlorpyrifos, one of the most widely used pesticides, can penetrate the placenta and affect fetal growth and neurodevelopment. Epigenetic regulation of peroxisome proliferator-activated receptor gamma (PPARγ), such as DNA methylation and trimethylation of lysine 4 of H3 (H3K4me3), may provide a potential mechanism for how fetal growth and development are impacted by chlorpyrifos exposure. The aims of the study were to investigate whether prenatal chlorpyrifos exposure was associated with H3K4me3 and DNA methylation levels of the PPARγ gene in the placenta and the related effects on birth outcomes and neurodevelopment. METHODS Among 425 mother-infant pairs from the Taiwan Birth Panel Study, chlorpyrifos levels were measured in cord blood by using online SPE-LC/HESI/MS/MS; placental PPARγ H3K4me3 and DNA methylation levels were measured by ChIP-qPCR and pyrosequencing, respectively; the neonates' health outcomes were extracted from the medical records; and childhood neurodevelopment was evaluated by using the Comprehensive Developmental Inventory for Infants and Toddlers in 2-year-old children. Multivariable regression models were used to adjust for potential confounders. RESULTS After controlling for potential confounders, each unit increase in the natural log-transformed prenatal chlorpyrifos exposure level was associated with an increase in the PPARγ DNA methylation level (adjusted β (aβ) = 0.77, p = 0.032) and poorer performance in the cognitive and language domains at 2 years old, especially in boys (aβ = -1.66, p = 0.016, and aβ = -1.79, p = 0.023, respectively). PPARγ H3K4me3 levels were positively associated with gestational age (aβ = 0.16, p = 0.011), birth weight (aβ = 30.52, p = 0.013), birth length (aβ = 0.18, p = 0.003 and aβ = 0.15, p = 0.042), and gross-motor performance (aβ = 1.67, p = 0.036). CONCLUSIONS Our findings suggested that prenatal chlorpyrifos exposure affected PPARγ DNA methylation levels and performance in the cognitive and language domains.
Collapse
Affiliation(s)
- Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Fran Sisca
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Jen-Hao Ying
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Wan-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, 100, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, 100, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National,Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, 100, Taiwan.
| |
Collapse
|
14
|
Kumar SN, Vaibhav K, Bastia B, Singh V, Ahluwalia M, Agrawal U, Borgohain D, Raisuddin S, Jain AK. Occupational exposure to pesticides in female tea garden workers and adverse birth outcomes. J Biochem Mol Toxicol 2021; 35:e22677. [PMID: 33350548 DOI: 10.1002/jbt.22677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/17/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
Pesticides are globally used to eliminate pests from crops and plants. The increased use of pesticides has posed a serious threat to human health. This study evaluates the effects of pesticide exposure on pregnancy outcomes in tea garden workers (TGW). The acetylcholinesterase (AChE) activity was measured in the maternal blood, placenta, and cord blood of TGW and housewives (HWs). The placental structure and expression of hypoxia-inducible factor (HIF)-1α were also analyzed in TGW and HW groups delivering low birth weight (LBW) and normal birth weight (NBW) babies. A significantly decreased AChE activity was observed in maternal blood and cord blood in TGW as compared with HW in the LBW group. However, it did not change significantly in the NBW group (p < .05). The adjusted regression analysis of birth outcomes (birth weight, head circumference, infant's length, and ponderal index) revealed a significant and positive association with the levels of AChE activity in maternal blood, placenta, and cord blood in TGW (p < .05). The histological analysis showed significantly higher placental syncytial knots, chorangiosis, fibrinoid deposition, necrosis, and stromal fibrosis in the LBW group of TGW. Microinfarction, increased fibrinoid deposition, and atypical villi characteristics, such as mushroom-like structures, were observed during scanning electron microscopy along with increased HIF-1α expression in placental tissues of TGW exposed to pesticides. Results suggest that occupational pesticide exposure during pregnancy may decrease AChE activity and cause in utero pathological changes accompanied by an increased HIF-1α expression, which also contributes to placental insufficiency and fetal growth restriction.
Collapse
Affiliation(s)
- Shashi Nandar Kumar
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Kumar Vaibhav
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Banajit Bastia
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Vishwajeet Singh
- Department of Biostatistics, All India Institute of Medical Science, New Delhi, India
| | - Meenakshi Ahluwalia
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Usha Agrawal
- Cancer Research, Imaging and Bio-Banking Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Deepa Borgohain
- Department of Obstetrics and Gynecology, Assam Medical College, Assam, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Arun Kumar Jain
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
15
|
Adibi JJ, Layden AJ, Yin Q, Xun X, Peddada S, Birru RL. A toolkit for the application of placental-fetal molecular biomarkers in epidemiologic studies of the fetal origins of chronic disease. CURR EPIDEMIOL REP 2020; 8:20-31. [PMID: 33777648 DOI: 10.1007/s40471-020-00258-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of review In this review, we provide essential background knowledge and an analytical framework for the application of placental-fetal molecular biomarkers in fetal origins chronic disease epidemiology. The widely available and highly quantitative placental hormone human chorionic gonadotropin (hCG) is used as an example. hCG is currently used for diagnosing fetal genetic disorders; yet it can and should be expanded to understanding the fetal origins of chronic diseases. We provide justification and methods to do this. Recent findings Ten papers published in the last 5 years were identified with supportive findings relevant to the application of biomarkers of hCG in epidemiologic studies on the developmental origins of health and disease (DOHaD). Summary There is increasing and consistent evidence that placental-fetal biomarkers may be highly informative in observational studies, as exemplified by hCG, with the correct approaches for measurement and data analysis.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
| | - Alexander J Layden
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
| | - Qing Yin
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
| | - Shyamal Peddada
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health
| | - Rahel L Birru
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
| |
Collapse
|
16
|
Gheibi P, Eftekhari Z, Doroud D, Parivar K. Chlorpyrifos effects on integrin alpha v and beta 3 in implantation window phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29530-29538. [PMID: 32440878 DOI: 10.1007/s11356-020-08288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF), as a worldwide pesticide, can effect on the integrins αv and β3 which play a main role in the implantation window. Therefore, the aim of this study was to consider CPF effects on integrin alpha v and beta 3 in implantation window phase. Thirty female NMRI mice were separated into groups of CPF, sham, and control. After 6 weeks, each group was mated, and on the 5th day of gestation, all mice were euthanized. Estradiol and progesterone levels were detected by the enzyme-linked immunosorbent assay (ELISA) test; two subunits of integrins (αv and β3) genes and proteins of endometrium were analyzed by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry method, respectively. Fibrosis of the liver which evaluated by Masson's trichrome stain was increased in the CPF group compared with the others. But estradiol and progesterone levels were significantly decreased in CPF groups. Based on the findings, the proportion of genes' expressions of integrin subunits declined by the effect of CPF, while there was not any notable consequence on mice in the sham group. Alpha v and beta 3 integrin proteins expressed in all groups, but the concentration of these proteins in CPF groups was lower than in other groups. This study has shown that the decline of estradiol and progesterone downregulates the expression of αv and β3 integrins which were influenced by CPF exposure. Changing these patterns of proteins could have numerous influences on unsuccessful implantation. Therefore, this experimental study recommends that inclusive consideration of the effects of insecticides may be crucial to women's unrecognized cause of infertility.
Collapse
Affiliation(s)
- Parisa Gheibi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Zohre Eftekhari
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran.
| | - Delaram Doroud
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
17
|
Effect of Chlorpyrifos on human extravillous-like trophoblast cells. Reprod Toxicol 2019; 90:118-125. [PMID: 31509763 DOI: 10.1016/j.reprotox.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023]
Abstract
An increased risk of pregnancy disorders has been reported in women and animal models exposed to organophosphate pesticides. However, less information is available on impacts to human placental function. Here, we addressed the impact of chlorpyrifos (CPF) on extravillous cytotrophoblasts (evCTB) employing HTR8/SVneo cells as an in vitro model. Cell proliferation, migration and invasion were not affected by CPF under conditions where cell viability was not compromised; however, we observed reduced expression of genes for vascular endothelial growth factor receptor 1, hypoxia-inducible factor 1-alpha, peroxisome proliferator activated receptor gamma, and the β-subunit of human chorionic gonadotropin. These results are the first effects reported by organophosphate pesticide in evCTB cells and show altered expression of several genes important for placental development that could serve as potential biomarkers for future research.
Collapse
|
18
|
Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. CHEMOSPHERE 2019; 231:326-336. [PMID: 31132539 DOI: 10.1016/j.chemosphere.2019.05.133] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 05/28/2023]
Abstract
Numerous recent studies have shown that endocrine disrupting chemicals (EDCs) in the body of pregnant women can pass through the placenta and be exposed to the fetus, leading to fetal development and cognitive impairment. Placentation through invasion of trophoblast cells and vascular remodeling is essential to maintaining maternal and fetal health throughout the pregnancy. Abnormal placentation can lead to pregnancy disorders such as preeclampsia (PE) and intrauterine growth retardation (IUGR). However, many studies have not been conducted on whether EDCs can inhibit the development and function of the placenta. Isolating placental tissues to analyze the effect of EDCs on placentation has several limitations. In this review, we discussed the types of EDCs that can pass through the placental barrier and accumulate in the placenta with relative outcome. EDCs can be released from a variety of products including plasticizers, pesticides, and retardant. We also discussed the development and dysfunction of the placenta when EDCs were treated on trophoblast cells or pregnant rodent models. The effects of EDCs on the placenta of livestock are also discussed, together with the molecular mechanism of EDCs acting in trophoblast cells. We describe how EDCs cross the membrane of trophoblasts to regulate signaling pathways, causing genetic and epigenetic changes that lead to changes in cell viability and invasiveness. Further studies on the effects of EDCs on placenta may draw attention to the correct use of products containing EDCs during pregnancy.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
19
|
Fry RC, Bangma J, Szilagyi J, Rager JE. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol Appl Pharmacol 2019; 378:114635. [PMID: 31233757 DOI: 10.1016/j.taap.2019.114635] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/12/2023]
Abstract
During pregnancy, the placenta is critical for the regulation of maternal homeostasis and fetal growth and development. Exposures to environmental chemicals during pregnancy can be detrimental to the health of the placenta and therefore adversely impact maternal and fetal health. Though research on placental-derived developmental toxicity is expanding, testing is limited by the resources required for traditional test methods based on whole animal experimentation. Alternative strategies utilizing in vitro methods are well suited to contribute to more efficient screening of chemical toxicity and identification of biological mechanisms underlying toxicity outcomes. This review aims to summarize methods that can be used to evaluate toxicity resulting from exposures during the prenatal period, with a focus on newer in vitro methods centered on placental toxicity. The following key aspects are reviewed: (i) traditional test methods based on animal developmental toxicity testing, (ii) in vitro methods using monocultures and explant models, as well as more recently developed methods, including co-cultures, placenta-on-a-chip, and 3-dimensional (3D) cell models, (iii) endpoints that are commonly measured using in vitro designs, and (iv) the translation of in vitro methods into chemical evaluations and risk assessment applications. We conclude that findings from in vitro placental models can contribute to the screening of potentially hazardous chemicals, elucidation of chemical mechanism of action, incorporation into adverse outcome pathways, estimation of doses eliciting toxicity, derivation of extrapolation factors, and characterization of overall risk of adverse outcomes, representing key components of chemical regulation in the 21st century.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Leung MCK, Silva MH, Palumbo AJ, Lohstroh PN, Koshlukova SE, DuTeaux SB. Adverse outcome pathway of developmental neurotoxicity resulting from prenatal exposures to cannabis contaminated with organophosphate pesticide residues. Reprod Toxicol 2019; 85:12-18. [PMID: 30668982 DOI: 10.1016/j.reprotox.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/07/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
There is growing concern that increased use of medical and recreational cannabis may result in increased exposure to contaminants on the cannabis, such as pesticides. Several states are moving towards implementing robust regulation of the sales, cultivation, and manufacture of cannabis products. However, there are challenges with creating health-protective regulations in an industry that, to date, has been largely unregulated. The focus of this publication is a theoretical examination of what may happen when women are exposed pre-conceptually or during pregnancy to cannabis contaminated with pesticides. We propose an adverse outcome pathway of concomitant prenatal exposure to cannabinoids and the organophosphate pesticide chlorpyrifos by curating what we consider to be the key events at the molecular, cellular, and tissue levels that result in developmental neurotoxicity. The implications of this adverse outcome pathway underscore the need to elucidate the potential developmental neurotoxicity that may result from prenatal exposure to pesticide-contaminated cannabis.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States.
| | - Marilyn H Silva
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Amanda J Palumbo
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Peter N Lohstroh
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Svetlana E Koshlukova
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Shelley B DuTeaux
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| |
Collapse
|
21
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Abruzzese GA, Crisosto N, De Grava Kempinas W, Sotomayor-Zárate R. Developmental programming of the female neuroendocrine system by steroids. J Neuroendocrinol 2018; 30:e12632. [PMID: 29968423 DOI: 10.1111/jne.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Developmental programming refers to processes that occur during early life that may have long-term consequences, modulating adult health and disease. Complex diseases, such as diabetes, cancer and cardiovascular disease, have a high prevalence in different populations, are multifactorial, and may have a strong environmental component. The environment interacts with organisms, affecting their behaviour, morphology and physiology. This interaction may induce permanent or long-term changes, and organisms may be more susceptible to environmental factors during certain developmental stages, such as the prenatal and early postnatal periods. Several factors have been identified as responsible for inducing the reprogramming of various reproductive and nonreproductive tissues. Among them, both natural and synthetic steroids, such as endocrine disruptors, are known to have either detrimental or positive effects on organisms depending on the dose of exposure, stage of development and biological sexual background. The present review focuses on the action of steroids and endocrine disruptors as agents involved in developmental programming and on their modulation and effects on female neuroendocrine functions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás Crisosto
- Endocrinology and Metabolism Laboratory West Division, School of Medicine, University of Chile, Santiago, Chile
- Endocrinology Unit, Clínica Las Condes, Santiago, Chile
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, Universidade Estadual Paulista-UNESP, Botucatu, Sao Paulo, Brazil
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Ding M, Yang Y, Duan X, Wang S, Feng X, Wang T, Wang P, Liu S, Li L, Liu J, Tang L, Niu X, Zhang Y, Li G, Yao W, Cui L, Wang W. Association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:563-568. [PMID: 29929132 DOI: 10.1016/j.ecoenv.2018.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Omethoate, an organophosphorous pesticide, can cause a variety of health effects, especially the decrease of cholinesterase activity. The aim of this study is to explore the association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed population. Cholinesterase activities in whole blood, red blood cell and plasma were detected using acetylthiocholine and dithio-bis-(nitrobenzoic acid) method; Genetic Genotyping of POT1 rs1034794, POT1 rs10250202, TERF1 rs3863242 and TERT rs2736098 were performed with PCR-RFLP. The cholinesterase activities of whole blood, red blood cells and plasma in exposure group are significantly lower than that of the control group (P < 0.001). Multivariate analysis indicates that exposure group (b = - 1.016, P < 0.001), agender (b = 0.365, P < 0.001), drinking (b = 0.271, P = 0.004) and TERF1rs3863242 (b = - 0.368, P = 0.016) had an impact on cholinesterase activities. The results suggest that individual carrying AG+GG genotypes in TERF1 gene rs3863242 polymorphism were susceptible to damage in cholinesterase induced by omethoate.
Collapse
Affiliation(s)
- Mingcui Ding
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute for Occupational Medicine, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suxiang Liu
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lei Li
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Junling Liu
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lixia Tang
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Xinhua Niu
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Yuhong Zhang
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Guoyu Li
- Department of Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
24
|
Adedara IA, Owoeye O, Awogbindin IO, Ajayi BO, Rocha JBT, Farombi EO. Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural deficits associated with pesticide chlorpyrifos exposure in rats. Chem Biol Interact 2018; 296:105-116. [PMID: 30267645 DOI: 10.1016/j.cbi.2018.09.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
Exposure to pesticide chlorpyrifos (CPF) is associated with neurodevelopmental toxicity both in humans and animals. Diphenyl diselenide (DPDS) is a simple synthetic organoselenium well reported to possess antioxidant, anti-inflammatory and neuroprotective effects. However, there is paucity of information on the beneficial effects of DPDS on CPF-mediated brain injury and neurobehavioural deficits. The present study investigated the neuroprotective mechanism of DPDS in rats sub-chronically treated with CPF alone at 5 mg/kg body weight or orally co-treated with DPDS at 2.5 and 5 mg/kg body weight for 35 consecutive days. Endpoint analyses using video-tracking software in a novel environment revealed that co-treatment with DPDS significantly (p < 0.05) protected against CPF-mediated locomotor and motor deficits precisely the decrease in maximum speed, total distance travelled, body rotation, absolute turn angle, forelimb grip strength as well as the increase in negative geotaxis and incidence of fecal pellets. The enhancement in the neurobehavioral activities of rats co-treated with DPDS was verified by track plot analyses. Besides, DPDS assuaged CPF-induced decrease in acetylcholinesterase and antioxidant enzymes activities and the increase in myeloperoxidase activity and lipid peroxidation level in the mid-brain, cerebral cortex and cerebellum of the rats. Histologically, DPDS co-treatment abrogated CPF-mediated neuronal degeneration in the cerebral cortex, dentate gyrus and cornu ammonis3 in the treated rats. In conclusion, the neuroprotective mechanisms of DPDS is related to the prevention of oxidative stress, enhancement of redox status and acetylcholinesterase activity in brain regions of the rats. DPDS may be a promising chemotherapeutic agent against brain injury resulting from CPF exposure.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To assess the strength of evidence for associations between environmental toxicants and hypertensive disorders of pregnancy, suggest potential biological mechanisms based on animal and in vitro studies, and highlight avenues for future research. RECENT FINDINGS Evidence is strongest for links between persistent chemicals, including lead, cadmium, organochlorine pesticides, and polycyclic biphenyls, and preeclampsia, although associations are sometimes not detectable at low-exposure levels. Results have been inconclusive for bisphenols, phthalates, and organophosphates. Biological pathways may include oxidative stress, epigenetic changes, endocrine disruption, and abnormal placental vascularization. Additional prospective epidemiologic studies beginning in the preconception period and extending postpartum are needed to assess the life course trajectory of environmental exposures and women's reproductive and cardiovascular health. Future studies should also consider interactions between chemicals and consider nonlinear associations. These results confirm recommendations by the International Federation of Gynecology and Obstetrics, the American Society for Reproductive Medicine, the American Academy of Pediatrics, and the Endocrine Society that providers counsel their pregnant patients to limit exposure to environmental toxicants.
Collapse
|
26
|
Tsiaoussis J, Hatzidaki E, Docea AO, Nikolouzakis TK, Petrakis D, Burykina T, Mamoulakis C, Makrigiannakis A, Tsatsakis A. Molecular and clinical aspects of embryotoxicity induced by acetylcholinesterase inhibitors. Toxicology 2018; 409:137-143. [PMID: 30055296 DOI: 10.1016/j.tox.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase inhibitors are widely used for a variety of medical, agricultural and public health purposes. Consequently, exposure is highly possible during lifetime. However, their systematic use raises concerns for the potential impact on the fetus and newborn since these substances may affect angiogenesis, the neonatal and maternal intensive care, neuroimmune function and response, mammary growth/lactation via cholinergic/non-cholinergic central and peripheral neuroendocrine pathways. New methodologies, neuroscientific technologies and research studies are needed to harness existing knowledge along with the proper management, availability for new acetylcholinesterase inhibitors, with stable pharmacodynamics and clinical outcomes.
Collapse
Affiliation(s)
- J Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - E Hatzidaki
- Department of Neonatology, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - A O Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - T K Nikolouzakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - D Petrakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| | - T Burykina
- Department of Analytical and Forensic Medical Chemistry, Sechenov University, 119991, Moscow, Russian Federation
| | - C Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, 71003, Heraklion, Crete, Greece.
| | - A Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003, Heraklion, Crete, Greece.
| | - A Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
27
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
28
|
hCG and Its Disruption by Environmental Contaminants during Human Pregnancy. Int J Mol Sci 2018; 19:ijms19030914. [PMID: 29558393 PMCID: PMC5877775 DOI: 10.3390/ijms19030914] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a hormone of considerable importance in the establishment, promotion and maintenance of human pregnancy. It has been clearly demonstrated that hCG exerts multiple endocrine, paracrine and autocrine actions on a variety of gestational and non-gestational cells and tissues. These actions are directed to promote trophoblast invasiveness and differentiation, placental growth, angiogenesis in uterine vasculature, hormone production, modulation of the immune system at the maternal-fetal interface, inhibition of myometrial contractility as well as fetal growth and differentiation. In recent years, considerable interest has been raised towards the biological effects of environmental contaminants, particularly endocrine disrupting chemicals (EDCs). Emerging evidence suggests that prenatal exposure to selected EDCs can have a deleterious impact on the fetus and long-lasting consequences also in adult life. The results of the in vitro effects of commonly found EDCs, particularly Bisphenol A (BPA) and para-Nonylphenol (p-NP), indicate that these substances can alter hCG production and through this action could exert their fetal damage, suggesting that hCG could represent and become a potentially useful clinical biomarker of an inappropriate prenatal exposure to these substances.
Collapse
|
29
|
Liu J, Zhang X, Yang M, Hu M, Zhong G. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci Rep 2018; 8:2152. [PMID: 29391422 PMCID: PMC5794795 DOI: 10.1038/s41598-018-20265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaoying Zhang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mengran Yang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Meiying Hu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|