1
|
Jia W, Li C, Chen H, Wang X, Liu Y, Shang W, Wang B, Meng W, Guo Y, Zhu L, Wang D, Zhou D, Zhao B, Wei L. ISRIB ameliorates spatial learning and memory impairment induced by adolescent intermittent ethanol exposure in adult male rats. Neurochem Int 2024; 179:105834. [PMID: 39142353 DOI: 10.1016/j.neuint.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Alcohol exposure in adolescence is considered a major cause of cognitive impairments later in life including spatial learning and memory. Integrated stress response (ISR), a program of conservative translation and transcription, is crucial in synaptic plasticity and memory. Although previous studies have elucidated ISR in different brain areas involved in learning and memory disorders, the impact of ISR on learning and memory following adolescent alcohol exposure remains unclear. Here, we demonstrated that adolescent intermittent ethanol (AIE) exposure caused spatial learning and memory impairment, combined with neuronal damage in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (HIP) in adult rats. Moreover, integrated stress response inhibitor (ISRIB) administration not only improved spatial learning and memory impairment and neuronal damage but also inhibited the endoplasmic reticulum stress (ER) and reversed changes in synaptic proteins. These findings suggested that ISRIB ameliorates AIE exposure-induced spatial learning and memory deficits by improving neural morphology and synaptic function through inhibiting ER stress signaling pathway in the mPFC, NAc and HIP in adulthood. Our findings may enhance comprehension of cognitive function and neuronal effects of adolescent ethanol exposure and ISRIB treatment may be an underlying potential option for addressing alcohol-induced learning and memory deficits.
Collapse
Affiliation(s)
- Wenge Jia
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chenchen Li
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hongyun Chen
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinyu Wang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yuan Liu
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wanbing Shang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Bian Wang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wenjing Meng
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yaxin Guo
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lijie Zhu
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Dan Wang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Danya Zhou
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Wen W, Li H, Lauffer M, Hu D, Zhang Z, Lin H, Wang Y, Leidinger M, Luo J. Sex-specific effects of alcohol on neurobehavioral performance and endoplasmic reticulum stress: an analysis using neuron-specific MANF deficient mice. Front Pharmacol 2024; 15:1407576. [PMID: 39130640 PMCID: PMC11310019 DOI: 10.3389/fphar.2024.1407576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Excessive alcohol exposure can cause neurobehavioral deficits and structural alterations in the brain. Emerging research evidence suggests that endoplasmic reticulum (ER) stress plays an important role in alcohol-induced neurotoxicity. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress inducible protein and is responsible to maintain ER homeostasis. MANF is highly expressed in both the developing and mature brain. We have previously shown that MANF deficiency exacerbated alcohol induced neurodegeneration and ER stress in the developing brain. However, little is known regarding the role of MANF in alcohol induced neuronal damage in the adult brain. In this study, we used a neuron-specific MANF knockout (KO) mouse model to investigate the effect of MANF deficiency on acute binge alcohol exposure-induced neurobehavioral deficits and ER stress. Adult male and female MANF KO mice and littermate controls received daily alcohol gavage (5 g/kg) for 10 days and then subjected to a battery of neurobehavioral tests including rotarods, balance beam, DigiGait, open field, elevated plus maze, Barnes maze, and three-chamber sociability task. Female MANF KO animals were more susceptible to alcohol-induced body weight loss. Alcohol exposure did not affect motor function, however female but not male MANF KO mice exhibited an increased locomotor activity in open field test. Learning and memory was not significantly impaired, but it was altered by MANF deficiency in females while it was affected by alcohol treatment in males. Both alcohol-exposed male and female MANF KO mice displayed increased sociability. Alcohol induced the expression of ER chaperones GRP78 and GRP94 and altered the levels of several unfolded protein response (UPR) and neuroinflammation markers in MANF KO mice in a sex-specific manner. The expression of MANF interacting proteins neuroplastin, PDIA1, and PDIA6 was increased in MANF KO mice, and was further induced by alcohol. In conclusion, alcohol exposure and neuronal MANF deficiency interacted to alter neurobehavioral outcomes, ER homeostasis and neuroinflammation in a sex-specific manner.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Marisol Lauffer
- Neural Circuits and Behavior Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mariah Leidinger
- Comparative Pathology Laboratory, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
4
|
Yang B, Zhang R, Leong Bin Abdullah MFI. The association between neuropsychiatric effects of substance use and occurrence of endoplasmic reticulum and unfolded protein response: A systematic review. Toxicol Lett 2024; 391:71-85. [PMID: 38101493 DOI: 10.1016/j.toxlet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION This systematic review aimed to assess the association between neuropsychiatric effects of substance use and occurrence of ER stress and unfolded protein response (UPR) through comprehensive electronic search of existing literature and review of their findings. METHODS A comprehensive electronic literature search was carried out on research articles published between 1950 to July 2023 through major databases, such as Scopus, Web of Science, Google Scholar, PubMed, PsycINFO, EMBASE, Medline and Cochrane Library. RESULTS A total of 21 research articles were selected for review, which were comprised of sixteen animal studies, four human studies and one study on postmortem human brain samples. The selected studies revealed that alcohol, methamphetamine, cocaine, opioid and kratom exposures contributed to neuropsychiatric effects: such as decline in learning and memory function, executive dysfunction, alcohol, methamphetamine, opioid, and kratom dependence. These effects were associated with activation and persistent of ER stress and UPR with elevation of BiP and CHOP expression and the direction of ER stress is progressing towards the PERK-eIF2α-ATF4-CHOP pathway and neuronal apoptosis and neurodegeneration at various regions of the brain. In addition, regular kratom use in humans also contributed to elevation of p-JNK expression, denoting progress of ER stress towards the IRE1-ASK1-JNK-p-JNK pathway which was linked to kratom use disorder. However, treatment with certain compounds or biological agents could reverse the activation of ER stress. CONCLUSIONS The neuropsychiatric effects of alcohol, methamphetamine, cocaine, opioid and kratom use may be associated with persistent ER stress and UPR.
Collapse
Affiliation(s)
- Bin Yang
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas, Pulau Pinang, Malaysia; 2nd Affiliated Hospital, Xinxiang Medical University, Henan, China
| | - Ruiling Zhang
- 2nd Affiliated Hospital, Xinxiang Medical University, Henan, China
| | | |
Collapse
|
5
|
Sides TR, Nelson JC, Nwachukwu KN, Boston J, Marshall SA. The Influence of Arsenic Co-Exposure in a Model of Alcohol-Induced Neurodegeneration in C57BL/6J Mice. Brain Sci 2023; 13:1633. [PMID: 38137081 PMCID: PMC10741530 DOI: 10.3390/brainsci13121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Both excessive alcohol consumption and exposure to high levels of arsenic can lead to neurodegeneration, especially in the hippocampus. Co-exposure to arsenic and alcohol can occur because an individual with an Alcohol Use Disorder (AUD) is exposed to arsenic in their drinking water or food or because of arsenic found directly in alcoholic beverages. This study aims to determine if co-exposure to alcohol and arsenic leads to worse outcomes in neurodegeneration and associated mechanisms that could lead to cell death. To study this, mice were exposed to a 10-day gavage model of alcohol-induced neurodegeneration with varying doses of arsenic (0, 0.005, 2.5, or 10 mg/kg). The following were examined after the last dose of ethanol: (1) microglia activation assessed via immunohistochemical detection of Iba-1, (2) reactive oxygen and nitrogen species (ROS/RNS) using a colorimetric assay, (3) neurodegeneration using Fluoro-Jade® C staining (FJC), and 4) arsenic absorption using ICP-MS. After exposure, there was an additive effect of the highest dose of arsenic (10 mg/kg) in the dentate gyrus of alcohol-induced FJC+ cells. This additional cell loss may have been due to the observed increase in microglial reactivity or increased arsenic absorption following co-exposure to ethanol and arsenic. The data also showed that arsenic caused an increase in CYP2E1 expression and ROS/RNS production in the hippocampus which could have independently contributed to increased neurodegeneration. Altogether, these findings suggest a potential cyclical impact of co-exposure to arsenic and ethanol as ethanol increases arsenic absorption but arsenic also enhances alcohol's deleterious effects in the CNS.
Collapse
Affiliation(s)
- Tori R. Sides
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - James C. Nelson
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - Kala N. Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Jhana Boston
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - S. Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| |
Collapse
|
6
|
Wen W, Wang Y, Li H, Hu D, Zhang Z, Lin H, Luo J. Upregulation of mesencephalic astrocyte-derived neurotrophic factor (MANF) expression offers protection against alcohol neurotoxicity. J Neurochem 2023; 166:943-959. [PMID: 37507360 PMCID: PMC10906989 DOI: 10.1111/jnc.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Alcohol exposure has detrimental effects on both the developing and mature brain. Endoplasmic reticulum (ER) stress is one of the mechanisms that contributes to alcohol-induced neuronal damages. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-responsive protein and is neuroprotective in multiple neuronal injury and neurodegenerative disease models. MANF deficiency has been shown to exacerbate alcohol-induced ER stress and neurodegeneration. However, it is unknown whether MANF supplement is sufficient to protect against alcohol neurotoxicity. Alcohol alters MANF expression in the brain, but the mechanisms underlying alcohol modulation of MANF expression remain unclear. This study was designed to determine how alcohol alters MANF expression in neuronal cells and whether exogeneous MANF can alleviate alcohol neurotoxicity. We showed that alcohol increased MANF transcription and secretion without affecting MANF mRNA stability and protein degradation. ER stress was necessary for alcohol-induced MANF upregulation, as pharmacological inhibition of ER stress by 4-PBA diminished alcohol-induced MANF expression. In addition, the presence of ER stress response element II (ERSE-II) was required for alcohol-stimulated MANF transcription. Mutations or deletion of this sequence abolished alcohol-regulated transcriptional activity. We generated MANF knockout (KO) neuronal cells using CRISPR/Cas9. MANF KO cells exhibited increased unfolded protein response (UPR) and were more susceptible to alcohol-induced cell death. On the other hand, MANF upregulation by the addition of recombinant MANF protein or adenovirus gene transduction protected neuronal cells against alcohol-induced cell death. Further studies using early postnatal mouse pups demonstrated that enhanced MANF expression in the brain by intracerebroventricular (ICV) injection of MANF adeno-associated viruses ameliorated alcohol-induced cell death. Thus, alcohol increased MANF expression through inducing ER stress, which could be a protective response. Exogenous MANF was able to protect against alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37372, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- VA Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
7
|
Guo D, Park C, Li Y, Li B, Yang Q, Deng Y, Gao NL, Li R, Wang X, Yi L, Liu Z. Akkermansia muciniphila ameliorates depressive disorders in a murine alcohol-LPS (mALPS) model. Food Funct 2022; 13:12766-12776. [PMID: 36416490 DOI: 10.1039/d2fo01478e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Depression is the most common mental disorder in the world. Recently, an increasing number of studies have reported alcohol-related depression. However, there is no simple, efficient, and time-saving alcohol-related depression animal model yet. Based on the fact that people with alcohol addiction often have impaired gastrointestinal (GI) tract health like dysbiosis, which serves as a primary factor to augment lipopolysaccharides (LPS), we first developed a murine alcohol-LPS model (mALPS), with oral gavage of LPS in acute alcohol treated mice, and successfully observed depression-like symptoms. We found that acute alcohol treatment damaged the intestinal barrier and caused dysbiosis, which further increased the translocation of LPS and neuroinflammatory responses (TNF-α and IL-1β) and led to abnormal expression of the depression-related genes, i.e. BDND and IDO, reduced the levels of 5-HT and caused depressive behaviors in mice. Probiotic intervention could improve depressive symptoms without notable adverse effects. Akkermansia muciniphila (AKK), one of the next-generation probiotics, has been widely used for the restoration of the intestinal barrier and reduction of inflammation. Here, we found that AKK significantly ameliorated alcohol-related depressive behaviors in a mALPS model, through enhancing the intestinal barrier and maintaining the homeostasis of the gut microbiota. Furthermore, AKK reduced serum LPS, ameliorated neuroinflammation (TNF-α and IL-1β), normalized the expression of depression-related genes and increased the 5-HT levels in the hippocampus. Our study suggests that AKK supplements will be a promising therapeutic regime for alcohol-associated depression in the future.
Collapse
Affiliation(s)
- Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Yun Deng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Xiangfeng Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Liwen Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu road, Hongshan district, Wuhan, China.
| |
Collapse
|
8
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
9
|
Charlton AJ, Perry CJ. The Effect of Chronic Alcohol on Cognitive Decline: Do Variations in Methodology Impact Study Outcome? An Overview of Research From the Past 5 Years. Front Neurosci 2022; 16:836827. [PMID: 35360176 PMCID: PMC8960615 DOI: 10.3389/fnins.2022.836827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive alcohol use is often associated with accelerated cognitive decline, and extensive research using animal models of human alcohol consumption has been conducted into potential mechanisms for this relationship. Within this literature there is considerable variability in the types of models used. For example, alcohol administration style (voluntary/forced), length and schedule of exposure and abstinence period are often substantially different between studies. In this review, we evaluate recent research into alcohol-induced cognitive decline according to methodology of alcohol access, as well as cognitive behavioral task employed. Our aim was to query whether the nature and severity of deficits observed may be impacted by the schedule and type of alcohol administration. We furthermore examined whether there is any apparent relationship between the amount of alcohol consumed and the severity of the deficit, as well as the potential impact of abstinence length, and other factors such as age of administration, and sex of subject. Over the past five years, researchers have overwhelmingly used non-voluntary methods of intake, however deficits are still found where intake is voluntary. Magnitude of intake and type of task seem most closely related to the likelihood of producing a deficit, however even this did not follow a consistent pattern. We highlight the importance of using systematic and clear reporting styles to facilitate consistency across the literature in this regard. We hope that this analysis will provide important insights into how experimental protocols might influence findings, and how different patterns of consumption are more or less likely to produce an addiction-vulnerable cognitive phenotype in animal models.
Collapse
Affiliation(s)
- Annai J. Charlton
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christina J. Perry
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Psychological Sciences, Centre for Emotional Health, Macquarie University, North Ryde, NSW, Australia
- *Correspondence: Christina J. Perry,
| |
Collapse
|
10
|
Amirshahrokhi K, Niapour A. Methylsulfonylmethane protects against ethanol-induced brain injury in mice through the inhibition of oxidative stress, proinflammatory mediators and apoptotic cell death. Int Immunopharmacol 2022; 106:108638. [PMID: 35203043 DOI: 10.1016/j.intimp.2022.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Excessive ethanol consumption causes brain injury through oxidative stress, inflammation and apoptotic cell death. Methylsulfonylmethane (MSM) is a natural compound that has therapeutic effects on oxidative and inflammatory disorders. The aim of this study was to investigate the protective effect and underlying mechanisms of MSM on ethanol-induced brain injury in an experimental model. Male C57BL/6 mice were exposed to binge ethanol (5 g/kg/day, orally) and treated with MSM (200 and 400 mg/kg/day) concomitantly for 12 days. At the end of the experiment brain tissues were removed for histological and biochemical analysis. The results showed that MSM reduced ethanol-mediated oxidative stress by decreasing the levels of malondialdehyde (MDA) and carbonyl protein. The Nrf2/HO-1 pathway and the levels of cytoprotective antioxidants superoxide dismutase (SOD), catalase and glutathione (GSH) were increased by MSM in the brain tissue. MSM treatment reduced the ethanol-induced inflammatory factors including myeloperoxidase (MPO), iNOS/NO, cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), NLRP3 inflammasome and proinflammatory cytokines including TNF-α, IL-1β, IL-6 and MCP-1. MSM also decreased the levels of pro-apoptotic caspase-3 and TUNEL positive cells while increased the level of anti-apoptotic Bcl-2 in the brain tissue. Our findings demonstrated that MSM protects against ethanol-induced brain injury by improving anti-oxidant defense mechanism and reducing ethanol-mediated inflammation and apoptosis. Therefore, MSM may be a potential protective approach for brain damage caused by high levels of alcohol.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Araujo I, Henriksen A, Gamsby J, Gulick D. Impact of Alcohol Abuse on Susceptibility to Rare Neurodegenerative Diseases. Front Mol Biosci 2021; 8:643273. [PMID: 34179073 PMCID: PMC8220155 DOI: 10.3389/fmolb.2021.643273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the prevalence and well-recognized adverse effects of prenatal alcohol exposure and alcohol use disorder in the causation of numerous diseases, their potential roles in the etiology of neurodegenerative diseases remain poorly characterized. This is especially true of the rare neurodegenerative diseases, for which small population sizes make it difficult to conduct broad studies of specific etiological factors. Nonetheless, alcohol has potent and long-lasting effects on neurodegenerative substrates, at both the cellular and systems levels. This review highlights the general effects of alcohol in the brain that contribute to neurodegeneration across diseases, and then focuses on specific diseases in which alcohol exposure is likely to play a major role. These specific diseases include dementias (alcohol-induced, frontotemporal, and Korsakoff syndrome), ataxias (cerebellar and frontal), and Niemann-Pick disease (primarily a Type B variant and Type C). We conclude that there is ample evidence to support a role of alcohol abuse in the etiology of these diseases, but more work is needed to identify the primary mechanisms of alcohol's effects.
Collapse
Affiliation(s)
- Iskra Araujo
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Amy Henriksen
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Joshua Gamsby
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| | - Danielle Gulick
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| |
Collapse
|
12
|
Fujii C, Zorumski CF, Izumi Y. Ethanol, neurosteroids and cellular stress responses: Impact on central nervous system toxicity, inflammation and autophagy. Neurosci Biobehav Rev 2021; 124:168-178. [PMID: 33561510 DOI: 10.1016/j.neubiorev.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
Alcohol intake can impair brain function, in addition to other organs such as the liver and kidney. In the brain ethanol can be detrimental to memory formation, through inducing the integrated stress response/endoplasmic reticulum stress/unfolded protein response and the molecular mechanisms linking stress to other events such as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammation and autophagy. This literature review aims to provide an overview of our current understanding of the molecular mechanisms involved in ethanol-induced damage with endoplasmic reticulum stress, integrated stress response, NLRP3 inflammation and autophagy, while discussing the impact of neurosteroids and oxysterols, including allopregnanolone, 25-hydroxycholesterol and 24S-hydroxycholesterol, on the central nervous system.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
13
|
Wang Y, Wen W, Li H, Clementino M, Xu H, Xu M, Ma M, Frank J, Luo J. MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis 2021; 148:105216. [PMID: 33296727 PMCID: PMC7856049 DOI: 10.1016/j.nbd.2020.105216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a spectrum of developmental disorders caused by prenatal alcohol exposure. Neuronal loss or neurodegeneration in the central nervous system (CNS) is one of the most devastating features in FASD. It is imperative to delineate the underlying mechanisms to facilitate the treatment of FASD. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases, including ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in response to ethanol exposure during the brain development. To investigate the role of MANF in ethanol-induced neurodegeneration and its association with ER stress regulation, we established a CNS-specific Manf knockout mouse model and examined the effects of MANF deficiency on ethanol-induced neuronal apoptosis and ER stress using a third-trimester equivalent mouse model. We found MANF deficiency exacerbated ethanol-induced neuronal apoptosis and ER stress and that blocking ER stress abrogated the harmful effects of MANF deficiency on ethanol-induced neuronal apoptosis. Moreover, using an animal model of ER-stress-induced neurodegeneration, we demonstrated that MANF deficiency potentiated tunicamycin (TM)-induced ER stress and neurodegeneration. A whole transcriptome RNA sequencing also supported the functionality of MANF in ER stress modulation and revealed targets that may mediate the ER stress-buffering capacity of MANF. Collectively, these results suggest that MANF is a neurotrophic factor that can protect neurons against ethanol-induced neurodegeneration by ameliorating ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States of America
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jacqueline Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America; Iowa City VA Health Care System, Iowa City, IA 52246, United States of America.
| |
Collapse
|
14
|
Arzua T, Yan Y, Jiang C, Logan S, Allison RL, Wells C, Kumar SN, Schäfer R, Bai X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry 2020; 10:347. [PMID: 33051447 PMCID: PMC7553959 DOI: 10.1038/s41398-020-01029-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal alcohol exposure during pregnancy can substantially impact the development of the fetus, causing a range of symptoms, known as fetal alcohol spectrum disorders (FASDs), such as cognitive dysfunction and psychiatric disorders, with the pathophysiology and mechanisms largely unknown. Recently developed human cerebral organoids from induced pluripotent stem cells are similar to fetal brains in the aspects of development and structure. These models allow more relevant in vitro systems to be developed for studying FASDs than animal models. Modeling binge drinking using human cerebral organoids, we sought to quantify the downstream toxic effects of alcohol (ethanol) on neural pathology phenotypes and signaling pathways within the organoids. The results revealed that alcohol exposure resulted in unhealthy organoids at cellular, subcellular, bioenergetic metabolism, and gene expression levels. Alcohol induced apoptosis on organoids. The apoptotic effects of alcohol on the organoids depended on the alcohol concentration and varied between cell types. Specifically, neurons were more vulnerable to alcohol-induced apoptosis than astrocytes. The alcohol-treated organoids exhibit ultrastructural changes such as disruption of mitochondria cristae, decreased intensity of mitochondrial matrix, and disorganized cytoskeleton. Alcohol exposure also resulted in mitochondrial dysfunction and metabolic stress in the organoids as evidenced by (1) decreased mitochondrial oxygen consumption rates being linked to basal respiration, ATP production, proton leak, maximal respiration and spare respiratory capacity, and (2) increase of non-mitochondrial respiration in alcohol-treated organoids compared with control groups. Furthermore, we found that alcohol treatment affected the expression of 199 genes out of 17,195 genes analyzed. Bioinformatic analyses showed the association of these dysregulated genes with 37 pathways related to clinically relevant pathologies such as psychiatric disorders, behavior, nervous system development and function, organismal injury and abnormalities, and cellular development. Notably, 187 of these genes are critically involved in neurodevelopment, and/or implicated in nervous system physiology and neurodegeneration. Furthermore, the identified genes are key regulators of multiple pathways linked in networks. This study extends for the first time animal models of binge drinking-related FASDs to a human model, allowing in-depth analyses of neurotoxicity at tissue, cellular, subcellular, metabolism, and gene levels. Hereby, we provide novel insights into alcohol-induced pathologic phenotypes, cell type-specific vulnerability, and affected signaling pathways and molecular networks, that can contribute to a better understanding of the developmental neurotoxic effects of binge drinking during pregnancy.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Reilly L Allison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Clive Wells
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Suresh N Kumar
- Department of Pathology, Children's Research Institute Imaging Core, Neuroscience Imaging Facility, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, 60438, Frankfurt am Main, Germany
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| |
Collapse
|
15
|
Sharma A, Brenner M, Wang P. Potential Role of Extracellular CIRP in Alcohol-Induced Alzheimer's Disease. Mol Neurobiol 2020; 57:5000-5010. [PMID: 32827106 DOI: 10.1007/s12035-020-02075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA and the most common form of neurodegenerative dementia. In AD, microtubule-associated protein tau becomes pathologically phosphorylated and aggregated, leading to neurodegeneration and the cognitive deficits that characterize the disease. Prospective studies have shown that frequent and heavy alcohol drinking is linked to early onset and increased severity of AD. The precise mechanisms of how alcohol leads to AD, however, remain poorly understood. We have shown that extracellular cold-inducible RNA-binding protein (eCIRP) is a critical mediator of memory impairment induced by exposure to binge-drinking levels of alcohol, leading us to reason that eCIRP may be a key player in the relationship between alcohol and AD. In this review, we first discuss the mechanisms by which alcohol promotes AD. We then review eCIRP's role as a critical mediator of acute alcohol intoxication-induced neuroinflammation and cognitive impairment. Next, we explore the potential contribution of eCIRP to the development of alcohol-induced AD by targeting tau phosphorylation. We also consider the effects of eCIRP on neuronal death and neurogenesis linking alcohol with AD. Finally, we highlight the importance of further studying eCIRP as a critical molecular mechanism connecting acute alcohol intoxication, neuroinflammation, and tau phosphorylation in AD along with the potential of therapeutically targeting eCIRP as a new strategy to attenuate alcohol-induced AD.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA. .,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
16
|
Lee J, Lunde-Young R, Naik V, Ramirez J, Orzabal M, Ramadoss J. Chronic Binge Alcohol Exposure During Pregnancy Alters mTOR System in Rat Fetal Hippocampus. Alcohol Clin Exp Res 2020; 44:1329-1336. [PMID: 32333810 DOI: 10.1111/acer.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gestational alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), an array of cognitive, behavioral, and physical developmental impairments. Mammalian target of rapamycin (mTOR) plays a key role in regulating protein synthesis in response to neuronal activity, thereby modulating synaptic plasticity and long-term memory formation in the brain. Based on our previous quantitative mass spectrometry proteomic studies, we hypothesized that gestational chronic binge alcohol exposure alters mTOR signaling and downstream pathways in the fetal hippocampus. METHODS Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol (peak BAC, 216 mg/dl) from GD 5-10 and progressed to 6 g/kg alcohol (peak BAC, 289 mg/dl) from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. RESULTS In the Alcohol group, following this exposure paradigm, fetal body weight and crown-rump length were decreased. The phosphorylation level of mTOR (P-mTOR) in the fetal hippocampus was decreased in the Alcohol group compared with controls. Alcohol exposure resulted in dysregulation of fetal hippocampal mTORC1 signaling, as evidenced by an increase in total 4E-BP1 expression. Phosphorylation levels of 4E-BP1 and p70 S6K were also increased following alcohol exposure. P-mTOR and P-4E-BP1 were exclusively detected in the dentate gyrus and oriens layer of the fetal hippocampus, respectively. DEPTOR and RICTOR expression levels in the fetal hippocampus were increased; however, RAPTOR was not altered by chronic binge alcohol exposure. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy alters mTORC1 signaling pathway in the fetal hippocampus. We conjecture that this dysregulation of mTOR protein expression, its activity, and downstream proteins may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Raine Lunde-Young
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vishal Naik
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Josue Ramirez
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Marcus Orzabal
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|