1
|
Jha R, Gorai P, Shrivastav A, Pathak A. Label-Free Biochemical Sensing Using Processed Optical Fiber Interferometry: A Review. ACS OMEGA 2024; 9:3037-3069. [PMID: 38284054 PMCID: PMC10809379 DOI: 10.1021/acsomega.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Over the last 20 years, optical fiber-based devices have been exploited extensively in the field of biochemical sensing, with applications in many specific areas such as the food processing industry, environmental monitoring, health diagnosis, bioengineering, disease diagnosis, and the drug industry due to their compact, label-free, and highly sensitive detection. The selective and accurate detection of biochemicals is an essential part of biosensing devices, which is to be done through effective functionalization of highly specific recognition agents, such as enzymes, DNA, receptors, etc., over the transducing surface. Among many optical fiber-based sensing technologies, optical fiber interferometry-based biosensors are one of the broadly used methods with the advantages of biocompatibility, compact size, high sensitivity, high-resolution sensing, lower detection limits, operating wavelength tunability, etc. This Review provides a comprehensive review of the fundamentals as well as the current advances in developing optical fiber interferometry-based biochemical sensors. In the beginning, a generic biosensor and its several components are introduced, followed by the fundamentals and state-of-art technology behind developing a variety of interferometry-based fiber optic sensors. These include the Mach-Zehnder interferometer, the Michelson interferometer, the Fabry-Perot interferometer, the Sagnac interferometer, and biolayer interferometry (BLI). Further, several technical reports are comprehensively reviewed and compared in a tabulated form for better comparison along with their advantages and disadvantages. Further, the limitations and possible solutions for these sensors are discussed to transform these in-lab devices into commercial industry applications. At the end, in conclusion, comments on the prospects of field development toward the commercialization of sensor technology are also provided. The Review targets a broad range of audiences including beginners and also motivates the experts helping to solve the real issues for developing an industry-oriented sensing device.
Collapse
Affiliation(s)
- Rajan Jha
- Nanophotonics
and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India
| | - Pintu Gorai
- Nanophotonics
and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India
| | - Anand Shrivastav
- Department
of Physics and Nanotechnology, SRM Institute
of Science and Technology, Kattankulthar, Tamil Nadu 603203, India
| | - Anand Pathak
- School
of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Celik C, Kalin G, Cetinkaya Z, Ildiz N, Ocsoy I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics (Basel) 2023; 13:2427. [PMID: 37510171 PMCID: PMC10377832 DOI: 10.3390/diagnostics13142427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Diagnosis of infection-causing microorganisms with sensitive, rapid, selective and economical diagnostic tests is critical to start the right treatment. With these tests, the spread of infections can be prevented. In addition to that, the detection of antimicrobial resistance also makes a significant contribution to public health. In recent years, different types of diagnostic tests have been developed as alternatives to traditional diagnostic tests used in clinics. In particular, colorimetric tests, which minimize the need for an instrument, have advantages owing to their cost effectiveness, rapid response and naked-eye detection and practical use. In this review, we especially focused on pH indicators and nanomaterial-based colorimetric tests in detection of infection-causing microorganisms and antimicrobial resistance.
Collapse
Affiliation(s)
- Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey
| | - Gamze Kalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | | | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, Bandirma 10200, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
3
|
Seymour E, Ekiz Kanik F, Diken Gür S, Bakhshpour-Yucel M, Araz A, Lortlar Ünlü N, Ünlü MS. Solid-Phase Optical Sensing Techniques for Sensitive Virus Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:5018. [PMID: 37299745 PMCID: PMC10255700 DOI: 10.3390/s23115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.
Collapse
Affiliation(s)
- Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M4P 1R2, Canada;
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Fulya Ekiz Kanik
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| | - Sinem Diken Gür
- Department of Biology, Hacettepe University, Ankara 06800, Türkiye;
| | - Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
- Department of Chemistry, Bursa Uludag University, Bursa 16059, Türkiye
| | - Ali Araz
- Department of Chemistry, Dokuz Eylül University, Izmir 35390, Türkiye;
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - M. Selim Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| |
Collapse
|
4
|
Guo Y, Su X, Wu K, Yong KT. Numerical Analysis of Three-dimensional Nanodisk Array-based Surface Plasmon Resonance Biosensors for SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:769-779. [PMID: 36852386 PMCID: PMC9947906 DOI: 10.1007/s11468-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED With continuous mutations of SARS-CoV-2 virus, new highly contagious and fast-spreading variants have emerged, including Delta and Omicron. The popular label-free immunosensor based on surface plasmon resonance (SPR) technique can be used for real-time monitoring of the ligand-analyte or antibody-antigen interactions occurring on the sensor surface. In this work, an SPR-based biosensor combined with a nanodisk array was presented to enhance the sensitivity toward virus detection. The nanodisk arrays were employed to enhance the adsorption of molecules for better detection by increasing the SPR field. Four optimal sensing configurations of silver or gold nanodisks on gold thin films with different aspect ratios were achieved through systematic optimization of all parameters to yield the best sensor performance. The resonance angle can be modulated simply by the aspect ratio of nanodisk array. The sensitivity of the optimized sensors has been improved, and the detection limit is smaller than that of bare gold-based sensor. The multi-jump resonance angle curves at tiny refractive index can clearly distinguish the difference of trace concentrations, which is very important for the accurate detection of trace substances. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11468-023-01802-3.
Collapse
Affiliation(s)
- Yan Guo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Xianglong Su
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Kaihua Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
6
|
Abstract
Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted.
Collapse
|
7
|
Sohrabi F, Saeidifard S, Ghasemi M, Asadishad T, Hamidi SM, Hosseini SM. Role of plasmonics in detection of deadliest viruses: a review. EUROPEAN PHYSICAL JOURNAL PLUS 2021; 136:675. [PMID: 34178567 PMCID: PMC8214556 DOI: 10.1140/epjp/s13360-021-01657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 05/09/2023]
Abstract
Viruses have threatened animal and human lives since a long time ago all over the world. Some of these tiny particles have caused disastrous pandemics that killed a large number of people with subsequent economic downturns. In addition, the quarantine situation itself encounters the challenges like the deficiency in the online educational system, psychiatric problems and poor international relations. Although viruses have a rather simple protein structure, they have structural heterogeneity with a high tendency to mutation that impedes their study. On top of the breadth of such worldwide worrying issues, there are profound scientific gaps, and several unanswered questions, like lack of vaccines or antivirals to combat these pathogens. Various detection techniques like the nucleic acid test, immunoassay, and microscopy have been developed; however, there is a tradeoff between their advantages and disadvantages like safety in sample collecting, invasiveness, sensitivity, response time, etc. One of the highly resolved techniques that can provide early-stage detection with fast experiment duration is plasmonics. This optical technique has the capability to detect viral proteins and genomes at the early stage via highly sensitive interaction between the biological target and the plasmonic chip. The efficiency of this technique could be proved using commercialized techniques like reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques. In this study, we aim to review the role of plasmonic technique in the detection of 11 deadliest viruses besides 2 common genital viruses for the human being. This is a rapidly moving topic of research, and a review article that encompasses the current findings may be useful for guiding strategies to deal with the pandemics. By investigating the potential aspects of this technique, we hope that this study could open new avenues toward the application of point-of-care techniques for virus detection at early stage that may inhibit the progressively hygienic threats.
Collapse
Affiliation(s)
- Foozieh Sohrabi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Sajede Saeidifard
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Masih Ghasemi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Tannaz Asadishad
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyedeh Mehri Hamidi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran
| |
Collapse
|
8
|
Shi Y, Li Z, Liu PY, Nguyen BTT, Wu W, Zhao Q, Chin LK, Wei M, Yap PH, Zhou X, Zhao H, Yu D, Tsai DP, Liu AQ. On-Chip Optical Detection of Viruses: A Review. ADVANCED PHOTONICS RESEARCH 2021; 2:2000150. [PMID: 33786535 PMCID: PMC7994989 DOI: 10.1002/adpr.202000150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Indexed: 05/17/2023]
Abstract
The current outbreak of the coronavirus disease-19 (COVID-19) pandemic worldwide has caused millions of fatalities and imposed a severe impact on our daily lives. Thus, the global healthcare system urgently calls for rapid, affordable, and reliable detection toolkits. Although the gold-standard nucleic acid amplification tests have been widely accepted and utilized, they are time-consuming and labor-intensive, which exceedingly hinder the mass detection in low-income populations, especially in developing countries. Recently, due to the blooming development of photonics, various optical chips have been developed to detect single viruses with the advantages of fast, label-free, affordable, and point of care deployment. Herein, optical approaches especially in three perspectives, e.g., flow-free optical methods, optofluidics, and surface-modification-assisted approaches, are summarized. The future development of on-chip optical-detection methods in the wave of emerging new ideas in nanophotonics is also briefly discussed.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Zhenyu Li
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- National Key Laboratory of Science and Technology on Micro/Nano FabricationInstitute of MicroelectronicsPeking UniversityBeijing100871China
| | - Patricia Yang Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Binh Thi Thanh Nguyen
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Wenshuai Wu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Qianbin Zhao
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- Center for Systems BiologyMassachusetts General HospitalBostonMA02141USA
| | - Minggui Wei
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPCSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization of South China SeaHainan UniversityHaikou570228China
| | - Dan Yu
- Beijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing100045China
| | - Din Ping Tsai
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Ai Qun Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
9
|
Das Mukhopadhyay C, Sharma P, Sinha K, Rajarshi K. Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem 2021; 270:106538. [PMID: 33418105 PMCID: PMC7768211 DOI: 10.1016/j.bpc.2020.106538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022]
Abstract
The current global outbreak of COVID-19 due to SARS-CoV-2 is an unprecedented humanitarian crisis. Considering the gravity of its impact there is an immediate need to develop a detection technique that is sensitive, specific, fast, and affordable for the clinical diagnosis of the disease. Real time Polymerase Chain Reaction (RT-PCR)-based detection platforms are contemplated to be the gold standard to detect viral RNA. However, that may be susceptible to errors, and there is a risk of obtaining false results, which ultimately compromises the strategy of efficient disease management. Several modern techniques exhibiting assured results with enhanced sensitivity and specificity against the SARS-CoV-2 associated viral components or immune response against it have been developed and may be implemented. The review deals with the conventional RT-PCR detection techniques and compares them to other detection platforms viz., biosensor based detection of antigens, fluorescent or colorimetric detection systems including CRISPR-Cas 13 based SHERLOCK kit, CRISPR Cas-9 based FELUDA test kit, CRISPR DETECTR kit, Next Generation Sequencing or microarray-based kits. These modern techniques are great as a point of care detection methods but should be followed by RT PCR based detection for the confirmation of COVID-19 status.
Collapse
Affiliation(s)
- Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India.
| | - Pramita Sharma
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Koel Sinha
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Keshav Rajarshi
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
10
|
Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 2021; 4:70. [PMID: 33452375 PMCID: PMC7810758 DOI: 10.1038/s42003-020-01615-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The proliferation and transmission of viruses has become a threat to worldwide biosecurity, as exemplified by the current COVID-19 pandemic. Early diagnosis of viral infection and disease control have always been critical. Virus detection can be achieved based on various plasmonic phenomena, including propagating surface plasmon resonance (SPR), localized SPR, surface-enhanced Raman scattering, surface-enhanced fluorescence and surface-enhanced infrared absorption spectroscopy. The present review covers all available information on plasmonic-based virus detection, and collected data on these sensors based on several parameters. These data will assist the audience in advancing research and development of a new generation of versatile virus biosensors.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 30, SI-1000, Ljubljana, Slovenia.
| | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
11
|
Mehta N, Sahu SP, Shaik S, Devireddy R, Gartia MR. Dark-field hyperspectral imaging for label free detection of nano-bio-materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1661. [PMID: 32755036 DOI: 10.1002/wnan.1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shahensha Shaik
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
12
|
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 2019; 37:107440. [PMID: 31476421 DOI: 10.1016/j.biotechadv.2019.107440] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Infectious diseases such as HIV-1/AIDS, tuberculosis (TB), hepatitis B (HBV), and malaria still exert a tremendous health burden on the developing world, requiring rapid, simple and inexpensive diagnostics for on-site diagnosis and treatment monitoring. However, traditional diagnostic methods such as nucleic acid tests (NATs) and enzyme linked immunosorbent assays (ELISA) cannot be readily implemented in point-of-care (POC) settings. Recently, plasmonic-based biosensors have emerged, offering an attractive solution to manage infectious diseases in the developing world since they can achieve rapid, real-time and label-free detection of various pathogenic biomarkers. Via the principle of plasmonic-based optical detection, a variety of biosensing technologies such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), colorimetric plasmonic assays, and surface enhanced Raman spectroscopy (SERS) have emerged for early diagnosis of HIV-1, TB, HBV and malaria. Similarly, plasmonic-based colorimetric assays have also been developed with the capability of multiplexing and cellphone integration, which is well suited for POC testing in the developing world. Herein, we present a comprehensive review on recent advances in surface chemistry, substrate fabrication, and microfluidic integration for the development of plasmonic-based biosensors, aiming at rapid management of infectious diseases at the POC, and thus improving global health.
Collapse
|
13
|
Hassanpour S, Baradaran B, de la Guardia M, Baghbanzadeh A, Mosafer J, Hejazi M, Mokhtarzadeh A, Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim Acta 2018; 185:568. [DOI: 10.1007/s00604-018-3088-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
|
14
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Nanomaterials based optical biosensing of hepatitis: Recent analytical advancements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Venkatesh AG, Brickner H, Looney D, Hall DA, Aronoff-Spencer E. Clinical detection of Hepatitis C viral infection by yeast-secreted HCV-core:Gold-binding-peptide. Biosens Bioelectron 2018; 119:230-236. [PMID: 30144754 DOI: 10.1016/j.bios.2018.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Access to affordable and field deployable diagnostics are key barriers to the control and eradication of many endemic and emerging infectious diseases. While cost, accuracy, and usability have all improved in recent years, there remains a pressing need for even less expensive and more scalable technologies. To that end, we explored new methods to inexpensively produce and couple protein-based biosensing molecules (affinity reagents) with scalable electrochemical sensors. Previous whole-cell constructs resulted in confounding measurements in clinical testing due to significant cross-reactivity when probing for host-immune (antibody) response to infection. To address this, we developed two complimentary strategies based on either the release of surface displayed or secretion of fusion proteins. These dual affinity biosensing elements couple antibody recognition (using antigen) and sensor surface adhesion (using gold-binding peptide-GBP) to allow single-step reagent production, purification, and biosensor assembly. As a proof-of-concept, we developed Hepatitis C virus (HCV)-core antigen-GBP fusion proteins. These constructs were first tested and optimized for consistent surface adhesion then the assembled immunosensors were tested for cross-reactivity and evaluated for performance in vitro. We observed loss of function of the released reagents while secreted constructs performed well in in vitro testing with 2 orders of dynamic range, and a limit of detection of 32 nM. Finally, we validated the secreted platform with clinical isolates (n = 3) with statistically significant differentiation of positive vs. non-infected serum (p < 0.0001) demonstrating the ability to clearly distinguish HCV positive and negative clinical samples.
Collapse
Affiliation(s)
- A G Venkatesh
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - H Brickner
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - D Looney
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - D A Hall
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - E Aronoff-Spencer
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Choi Y, Hwang JH, Lee SY. Recent Trends in Nanomaterials-Based Colorimetric Detection of Pathogenic Bacteria and Viruses. SMALL METHODS 2018; 2:1700351. [PMID: 32328530 PMCID: PMC7169612 DOI: 10.1002/smtd.201700351] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 05/15/2023]
Abstract
Rapid, sensitive, selective, convenient, and cost-effective pathogen diagnosis is important to prevent further spread of pandemic diseases, minimize social and economic losses, and to facilitate right clinical therapy. Over the past few years, various sensor-based diagnostic systems outperforming conventional pathogenic diagnostic assays have been developed. Among them, colorimetric biosensors detecting target molecules by the naked eye have attracted much attention due to their simplicity, practicality, and cost-effectiveness. Recently, nanomaterials have been adopted as a versatile signal transduction and amplification tool for rapid and sensitive detection of pathogenic bacteria and viruses. Here, recent trends and advances are reviewed in detecting and diagnosing pathogenic bacteria and viruses using colorimetric biosensors employing various nanomaterials. In addition, it is discussed how nanomaterials and bioreceptors can be better integrated together to develop rapid and sensitive colorimetric detection system in the future.
Collapse
Affiliation(s)
- Yoojin Choi
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ji Hyeon Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
17
|
Sun W, Yuan S, Huang H, Liu N, Tan Y. A label-free biosensor based on localized surface plasmon resonance for diagnosis of tuberculosis. J Microbiol Methods 2017; 142:41-45. [DOI: 10.1016/j.mimet.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 09/10/2017] [Indexed: 11/27/2022]
|
18
|
Ahangar LE, Mehrgardi MA. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochemistry 2017. [DOI: 10.1016/j.bioelechem.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, Lo SC, Tan JS, Hani H, Rasedee A. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol Appl Biochem 2017; 64:735-744. [PMID: 27506960 DOI: 10.1002/bab.1528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
Collapse
Affiliation(s)
- Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazariah Allaudin Zeenathul
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Morvarid Akhavan Rezaei
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nor Hidayah Mustafa
- Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Lila Mohd Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sewn Cen Lo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Label-free detection of hepatitis B virus using solution immersed silicon sensors. Biointerphases 2017; 12:01A402. [PMID: 28231713 DOI: 10.1116/1.4977075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Highly sensitive solution immersed silicon (SIS) biosensors were developed for detection of hepatitis B virus (HBV) infection in the early stage. The ultrasensitivity for overlayer thickness at the nonreflecting condition for the p-polarized wave is the basis of SIS sensing technology. The change in thickness due to biomolecular interactions and change in refractive index of the surrounding buffer medium were assessed simultaneously using two separate ellipsometric parameters (Ψ and Δ), respectively, from a single sensing spot. A direct antigen-antibody affinity assay was used to detect and quantify hepatitis B surface antigen (HBsAg), which is the early stage biomarker for HBV infection. The detection limit of 10 pg/ml was achieved for HBsAg in the human blood serum, which is comparable with the results of enzyme-linked immunosorbent assay and other hybrid assays. The SIS sensor's response time was less than 10 min. The SIS sensors exhibit excellent stability and high signal-to-noise ratio, and are cost-effective, which makes them a suitable candidate for point-of-care applications.
Collapse
|
21
|
Riedel T, Hageneder S, Surman F, Pop-Georgievski O, Noehammer C, Hofner M, Brynda E, Rodriguez-Emmenegger C, Dostálek J. Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva. Anal Chem 2017; 89:2972-2977. [PMID: 28192973 PMCID: PMC5343552 DOI: 10.1021/acs.analchem.6b04432] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A biosensor
for the detection of hepatitis B antibodies in clinical
saliva was developed. Compared to conventional analysis of blood serum,
it offers the advantage of noninvasive collection of samples. Detection
of biomarkers in saliva imposes two major challenges associated with
the low analyte concentration and increased surface fouling. The detection
of minute amounts of hepatitis B antibodies was performed by plasmonically
amplified fluorescence sandwich immunoassay. To have access to specific
detection, we prevented the nonspecific adsorption of biomolecules
present in saliva by brushes of poly[(N-(2-hydroxypropyl)
methacrylamide)-co-(carboxybetaine methacrylamide)]
grafted from the gold sensor surface and post modified with hepatitis
B surface antigen. Obtained results were validated against the response
measured with ELISA at a certified laboratory using serum from the
same patients.
Collapse
Affiliation(s)
- Tomáš Riedel
- Institute of Macromolecular Chemistry AS CR v.v.i. , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| | - František Surman
- Institute of Macromolecular Chemistry AS CR v.v.i. , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry AS CR v.v.i. , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Christa Noehammer
- Molecular Diagnostics, Health and Environment Department, AIT-Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| | - Manuela Hofner
- Molecular Diagnostics, Health and Environment Department, AIT-Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| | - Eduard Brynda
- Institute of Macromolecular Chemistry AS CR v.v.i. , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry AS CR v.v.i. , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.,DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Jakub Dostálek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
22
|
Hepatitis B plasmonic biosensor for the analysis of clinical serum samples. Biosens Bioelectron 2016; 85:272-279. [PMID: 27179568 DOI: 10.1016/j.bios.2016.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A plasmonic biosensor for rapid detection of protein biomarkers in complex media is reported. Clinical serum samples were analyzed by using a novel biointerface architecture based on poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brushes functionalized with bioreceptors. This biointerface provided an excellent resistance to fouling even after the functionalization and allowed for the first time the direct detection of antibodies against hepatitis B surface antigen (anti-HBs) in clinical serum samples using surface plasmon resonance (SPR). The fabricated SPR biosensor allowed discrimination of anti-HBs positive and negative clinical samples in 10min. Results are validated by enzyme-linked immunoassays of the sera in a certified laboratory. The sensor could be regenerated by simple treatment with glycine buffer.
Collapse
|
23
|
Woo MA, Park JH, Cho D, Sim SJ, Kim MI, Park HG. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease. Anal Chem 2016; 88:2871-6. [DOI: 10.1021/acs.analchem.5b04648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min-Ah Woo
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Food
Safety Research Group, Korea Food Research Institute, Baekhyun-dong, Bundang-gu,
Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - Jung Hun Park
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daeyeon Cho
- LabGenomics Co., Ltd., 1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea
| | - Sang Jun Sim
- Department
of Chemical and Biological Engineering, Korea University, Anam-Dong
5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Moon Il Kim
- Department
of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Hyun Gyu Park
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. SENSORS 2015; 15:15684-716. [PMID: 26147727 PMCID: PMC4541850 DOI: 10.3390/s150715684] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022]
Abstract
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed.
Collapse
|
25
|
Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS). PLoS One 2014; 9:e108225. [PMID: 25303314 PMCID: PMC4193741 DOI: 10.1371/journal.pone.0108225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Hyun Bae Bang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Young Hwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Yong Jae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Gu Min Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
- Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Guerreiro JRL, Frederiksen M, Bochenkov VE, De Freitas V, Sales MGF, Sutherland DS. Multifunctional biosensor based on localized surface plasmon resonance for monitoring small molecule-protein interaction. ACS NANO 2014; 8:7958-7967. [PMID: 25003494 DOI: 10.1021/nn501962y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report an optical sensor based on localized surface plasmon resonance (LSPR) to study small-molecule protein interaction combining high sensitivity refractive index sensing for quantitative binding information and subsequent conformation-sensitive plasmon-activated circular dichroism spectroscopy. The interaction of α-amylase and a small-size molecule (PGG, pentagalloyl glucose) was log concentration-dependent from 0.5 to 154 μM. In situ tests were additionally successfully applied to the analysis of real wine samples. These studies demonstrate that LSPR sensors to monitor small molecule–protein interactions in real time and in situ, which is a great advance within technological platforms for drug discovery.
Collapse
|
27
|
Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 2014; 825:51-6. [DOI: 10.1016/j.aca.2014.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/22/2022]
|
28
|
Ahmad M, Ali S, Mehmood MS, Ali H, Khurshid A, Firdous S, Muhammad S, Ikram M. Ex vivo assessment of carbon tetrachloride (CCl(4))-induced chronic injury using polarized light spectroscopy. APPLIED SPECTROSCOPY 2013; 67:1382-1389. [PMID: 24359651 DOI: 10.1366/13-07090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The liver performs various functions, such as the production and detoxification of chemicals; therefore, it is susceptible to hepatotoxins such as carbon tetrachloride (CCl4), which causes chronic injury. Thus, assessment of injury and its status of severity are of prime importance. Current work reports an ex vivo study for probing the severance of hepatic injury induced by CCl4 with polarized light over the spectral range 400-800 nm. Different concentrations of CCl4 were used to induce varying severity of hepatic injury in a rat model. Linear retardance, depolarization rates, and diagonal Mueller matrix elements (m22, m33, and m44), were successfully used as the distinguishing criterion for normal and different liver injuries. Our results show that linear retardance for injured liver samples with lower doses of CCl4 tends to increase when compared with normal liver samples, while samples injured at higher doses of CCl4 offer almost no retardance. Total, linear, and circular depolarizations follow decreasing trends with increased liver injury severity over the entire investigated wavelength range. Linear polarization states were observed to be better maintained as compared to circular polarization states for all samples. Furthermore, numerical values of diagonal elements of the experimentally measured Mueller matrix also increase with increasing doses of CCl4. Liver fibroses, change in transport albedo, and the relative refractive index of the extracellular matrix caused by CCl4 are responsible for the observed differences. These results will provide a pathway to gauge the severity of injury caused by toxic chemicals.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 2013; 806:55-73. [PMID: 24331040 DOI: 10.1016/j.aca.2013.10.048] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 01/28/2023]
Abstract
Motivated by potential benefits such as sensor miniaturization, multiplexing opportunities and higher sensitivities, refractometric nanoplasmonic biosensing has profiled itself in a short time span as an interesting alternative to conventional Surface Plasmon Resonance (SPR) biosensors. This latter conventional sensing concept has been subjected during the last decades to strong commercialization, thereby strongly leaning on well-developed thin-film surface chemistry protocols. Not surprisingly, the examples found in literature based on this sensing concept are generally characterized by extensive analytical studies of relevant clinical and diagnostic problems. In contrast, the more novel Localized Surface Plasmon Resonance (LSPR) alternative finds itself in a much earlier, and especially, more fundamental stage of development. Driven by new fabrication methodologies to create nanostructured substrates, published work typically focuses on the novelty of the presented material, its optical properties and its use - generally limited to a proof-of-concept - as a label-free biosensing scheme. Given the different stages of development both SPR and LSPR sensors find themselves in, it becomes apparent that providing a comparative analysis of both concepts is not a trivial task. Nevertheless, in this review we make an effort to provide an overview that illustrates the progress booked in both fields during the last five years. First, we discuss the most relevant advances in SPR biosensing, including interesting analytical applications, together with different strategies that assure improvements in performance, throughput and/or integration. Subsequently, the remaining part of this work focuses on the use of nanoplasmonic sensors for real label-free biosensing applications. First, we discuss the motivation that serves as a driving force behind this research topic, together with a brief summary that comprises the main fabrication methodologies used in this field. Next, the sensing performance of LSPR sensors is examined by analyzing different parameters that can be invoked in order to quantitatively assess their overall sensing performance. Two aspects are highlighted that turn out to be especially important when trying to maximize their sensing performance, being (1) the targeted functionalization of the electromagnetic hotspots of the nanostructures, and (2) overcoming inherent negative influence that stem from the presence of a high refractive index substrate that supports the nanostructures. Next, although few in numbers, an overview is given of the most exhaustive and diagnostically relevant LSPR sensing assays that have been recently reported in literature, followed by examples that exploit inherent LSPR characteristics in order to create highly integrated and high-throughput optical biosensors. Finally, we discuss a series of considerations that, in our opinion, should be addressed in order to bring the realization of a stand-alone LSPR biosensor with competitive levels of sensitivity, robustness and integration (when compared to a conventional SPR sensor) much closer to reality.
Collapse
Affiliation(s)
- M-Carmen Estevez
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marinus A Otte
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Borja Sepulveda
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC & CIBER-BBN, ICN2 Building Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
30
|
Cheng MS, Toh CS. Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst 2013; 138:6219-29. [DOI: 10.1039/c3an01394d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
A SPR aptasensor for detection of avian influenza virus H5N1. SENSORS 2012; 12:12506-18. [PMID: 23112728 PMCID: PMC3478855 DOI: 10.3390/s120912506] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022]
Abstract
Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R2 = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.
Collapse
|
32
|
Lee KG, Lee TJ, Jeong SW, Choi HW, Heo NS, Park JY, Park TJ, Lee SJ. Development of a plastic-based microfluidic immunosensor chip for detection of H1N1 influenza. SENSORS 2012; 12:10810-9. [PMID: 23112630 PMCID: PMC3472858 DOI: 10.3390/s120810810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 02/04/2023]
Abstract
Lab-on-a-chip can provide convenient and accurate diagnosis tools. In this paper, a plastic-based microfluidic immunosensor chip for the diagnosis of swine flu (H1N1) was developed by immobilizing hemagglutinin antigen on a gold surface using a genetically engineered polypeptide. A fluorescent dye-labeled antibody (Ab) was used for quantifying the concentration of Ab in the immunosensor chip using a fluorescent technique. For increasing the detection efficiency and reducing the errors, three chambers and three microchannels were designed in one microfluidic chip. This protocol could be applied to the diagnosis of other infectious diseases in a microfluidic device.
Collapse
Affiliation(s)
- Kyoung G. Lee
- Center for Nanobio Integration & Convergence Engineering (NICE), National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: (K.G.L.); (T.J.L.); (S.W.J.); (H.W.C.)
| | - Tae Jae Lee
- Center for Nanobio Integration & Convergence Engineering (NICE), National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: (K.G.L.); (T.J.L.); (S.W.J.); (H.W.C.)
| | - Soon Woo Jeong
- Center for Nanobio Integration & Convergence Engineering (NICE), National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: (K.G.L.); (T.J.L.); (S.W.J.); (H.W.C.)
| | - Ho Woon Choi
- Center for Nanobio Integration & Convergence Engineering (NICE), National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: (K.G.L.); (T.J.L.); (S.W.J.); (H.W.C.)
| | - Nam Su Heo
- Bioprocess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea; E-Mail:
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research & Development Institute (NFRDI), 408-1 Sirang-ri, Gijang, Busan 619-705, Korea; E-Mail:
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea
- Authors to whom correspondence should be addressed; E-Mails: (T.J.P.); (S.J.L.); Tel.: +82-42-879-9683; Fax: +82-42-879-9609
| | - Seok Jae Lee
- Center for Nanobio Integration & Convergence Engineering (NICE), National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea; E-Mails: (K.G.L.); (T.J.L.); (S.W.J.); (H.W.C.)
- Authors to whom correspondence should be addressed; E-Mails: (T.J.P.); (S.J.L.); Tel.: +82-42-879-9683; Fax: +82-42-879-9609
| |
Collapse
|
33
|
Hnilova M, Liu X, Yuca E, Jia C, Wilson B, Karatas AY, Gresswell C, Ohuchi F, Kitamura K, Tamerler C. Multifunctional protein-enabled patterning on arrayed ferroelectric materials. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1865-71. [PMID: 22458431 DOI: 10.1021/am300177t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study demonstrates a biological route to programming well-defined protein-inorganic interfaces with an arrayed geometry via modular peptide tag technology. To illustrate this concept, we designed a model multifunctional fusion protein, which simultaneously displays a maltose-binding protein (MBP), a green fluorescence protein (GFPuv) and an inorganic-binding peptide (AgBP2C). The fused combinatorially selected AgBP2C tag controls and site-directs the multifunctional fusion protein to immobilize on silver nanoparticle arrays that are fabricated on specific domain surfaces of ferroelectric LiNbO(3) via photochemical deposition and in situ synthesis. Our combined peptide-assisted biological and ferroelectric lithography approach offers modular design and versatility in tailoring surface reactivity for fabrication of nanoscale devices in environmentally benign conditions.
Collapse
|
34
|
Park TJ, Lee SJ, Kim DK, Heo NS, Park JY, Lee SY. Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein. Talanta 2011; 89:246-52. [PMID: 22284487 DOI: 10.1016/j.talanta.2011.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
Abstract
An active immobilization method utilizing the metal-binding property was developed and examined for its ability to facilitate the biosensing of avian influenza virus. The special biosensing performance with optical plasmonic analysis, including surface plasmon resonance (SPR) was evaluated on gold substrate and also by SPR imaging (SPRi) and localized SPR (LSPR) system where antigen-antibody interaction occurs. A complete optical analytical system was developed by integrating microarray and fabricating nanoparticles onto a single glass chip, thus allowing specific and sensitive diagnosis with subsequent binding. Reaction condition for the maximum reactivity was optimized by SPR analysis and more sensitive interaction was performed by SPRi analysis. Furthermore, ultra-sensitive detection was successfully developed up to the target molecules of 1 pg mL(-1) by LSPR analysis. The advanced phase-in of enhanced plasmonic sensing system allows more efficient and sensitive detection by switching fabrication processes, which were prepared on the gold surface using the nanoparticles. This inflow contains the gold binding polypeptide (GBP)-fusion protein, which was expressed in recombinant Escherichia coli cells, was bound onto the gold substrates by means of specific interaction. The GBP-fusion method allows immobilization of proteins in bioactive forms onto the gold surface without surface modification suitable for studying antigen-antibody interaction. It was used for the detection of influenza virus, an infectious viral disease, as an example case.
Collapse
Affiliation(s)
- Tae Jung Park
- BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Hnilova M, Karaca BT, Park J, Jia C, Wilson BR, Sarikaya M, Tamerler C. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol Bioeng 2011; 109:1120-30. [PMID: 22170333 DOI: 10.1002/bit.24405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/15/2011] [Accepted: 11/28/2011] [Indexed: 11/12/2022]
Abstract
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture.
Collapse
Affiliation(s)
- Marketa Hnilova
- Department of Material Science and Engineering, Genetically Engineered Materials Science and Engineering Center (GEMSEC), University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang M, Choi BG, Park TJ, Heo NS, Hong WH, Lee SY. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application. NANOSCALE 2011; 3:2950-6. [PMID: 21643572 DOI: 10.1039/c1nr10197h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effective and strong immobilization of enzymes on solid surfaces is required for current biological applications, such as microchips, biofuel cells, and biosensors. Gold-binding polypeptide (GBP), a genetically designed peptide, possesses unique and specific interactions with a gold surface, resulting in improved enzyme stability and activity. Herein we demonstrated an immobilization method for biosensor applications through site-specific interactions between GBP-fused organophosphorus hydrolase (GBP-OPH) and gold nanoparticle-coated chemically modified graphene (Au-CMG), showing enhanced sensing capability. A flow injection biosensor was fabricated by using GBP-OPH/Au-CMG to detect paraoxons, a model pesticide, showing higher sensitivity, lower detection limit and better operating stability compared that of OPH/Au-CMG. This strategy, which integrates biotic and abiotic moieties through site-specific interactions, has a great potential for use in biosensing and bioconversion process.
Collapse
Affiliation(s)
- MinHo Yang
- Department of Chemical & Biomolecular Engineering, BK21 program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Seker UOS, Zengin G, Tamerler C, Sarikaya M, Demir HV. Assembly kinetics of nanocrystals via peptide hybridization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4867-4872. [PMID: 21410195 DOI: 10.1021/la104942t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in three different cases: first, QD adsorption with no functionalization of substrate or QD surface; second, QD adsorption on QBP1-modified surface; and, finally, adsorption of QBP1-functionalized QD on silica surface. The surface modification of QDs with QBP1 enabled 79.3-fold enhancement in QD binding affinity, while modification of a silica surface with QBP1 led to only 3.3-fold enhancement. The fluorescence microscopy images also supported a coherent assembly with correspondingly increased binding affinity. Decoration of QDs with inorganic peptides was shown to increase the amount of surface-bound QDs dramatically compared to the conventional methods. These results offer new opportunities for the assembly of QDs on solid surfaces for future device applications.
Collapse
Affiliation(s)
- Urartu Ozgur Safak Seker
- Department of Electrical and Electronics Engineering, Department of Physics and UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| | | | | | | | | |
Collapse
|
38
|
Zhou X, Liu L, Hu M, Wang L, Hu J. Detection of hepatitis B virus by piezoelectric biosensor. J Pharm Biomed Anal 2002; 681:8-15. [PMID: 11682242 DOI: 10.1016/j.aca.2010.09.038] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/16/2023]
Abstract
A highly sensitive piezoelectric HBV DNA biosensor has been developed based on the sensitive mass-transducing function of the quartz crystal microbalance and the speciality of nucleic acid hybridization reaction. HBV nucleic acid probe was immobilized onto the gold electrodes of a 9 MHz AT-cut piezoelectric quartz crystal with the polyethyleneimine adhesion, glutaraldehyde cross-linking (PEI-Glu) method or the physical adsorption method. The coated crystal with the PEI-Glu method to immobilized HBV nucleic acid probe showed the better results than the physical adsorption method with respect to sensitivity reproducibility and stability. The frequency shifts of hybridization have better linear relationship with the amount of HBV DNA, when the amount was in range 0.02-0.14 microg/ml. The crystal could be regenerated nearly five times without perceptible decrease of sensitivity.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Department of Analysis-Measurement Science, Wuhan University, 430072, Wuhan, PR China
| | | | | | | | | |
Collapse
|