1
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
2
|
Jillani SMS, Tanimu A, Ibrahim A, Alhooshani K, Ganiyu SA. Development of Nickel-Impregnated Nitrogen-Doped Activated Carbon for Micro-solid-phase Extraction of Chlorinated Hydrocarbons from Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Wang Y, Li Y, Luo Y, Zhou K, Qiu X, Guo H. A novel molecularly imprinted polymer material for the recognition of ochratoxin A. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
A novel enrichment and sensitive method for simultaneous determination of 15 phthalate esters in milk powder samples. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Liu Y, Su Z, Wang J, Gong Z, Lyu H, Xie Z. Molecularly imprinted polymer with mixed-mode mechanism for selective extraction and on-line detection of ochratoxin A in beer sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Aguilar-Alvarez ME, Saucedo-Castañeda G, Durand N, Perraud-Gaime I, González-Robles RO, Rodríguez-Serrano GM. The variety, roasting, processing, and type of cultivation determine the low OTA levels of commercialized coffee in Chiapas State, Mexico. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
8
|
Membrane-protected molecularly imprinted polymers: Towards selectivity improvement of liquid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
11
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
12
|
Tanimu A, Muhammad Sajid Jillani S, Ganiyu SA, Chowdhury S, Alhooshani K. Multivariate optimization of chlorinated hydrocarbons’ micro-solid-phase extraction from wastewater using germania-decorated mesoporous alumina-silica sorbent and analysis by GC–MS. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Villa CC, Galus S, Nowacka M, Magri A, Petriccione M, Gutiérrez TJ. Molecular sieves for food applications: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Luci G. A rapid HPLC-FLD method for Ochratoxin A detection in pig muscle, kidney, liver by using enzymatic digestion with MISPE extraction. MethodsX 2020; 7:100873. [PMID: 32300548 PMCID: PMC7153302 DOI: 10.1016/j.mex.2020.100873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by various Aspergillus and Penicillium species with nephrotoxic, carcinogenic, immunotoxic and teratogenic effects. OTA has been found in several food commodities, including cereals, beer, wine and spices. OTA can also be present in animal products (especially in pig derived products) as a result of carryover from contaminated feed. Permitted level of 1 µg/kg OTA in pig meat or pig-derived products was set in Italy, as in other countries. Key parameters which affected MISPE, should be described such as extraction efficiency and were optimized, analyzed by an isocratic HPLC-FLD method. Under the optimized conditions, for all analyzed matrices mean recovery was > 89%. Method can be applied as alternative routine procedure to detect OTA presence in pig products. Points: *Aim of the study was to develop and validate a quantitative HPLC-FLD method based on MISPE with complex solid matrices (edible tissues) followed by chromatographic analysis. *The new method was developed and validated in pig complex matrix and is very sensitive LOD and LOQ respectively 0.001 and 0.003 µg/kg. *This method is relatively simple to use and with good performances. Was possible to reuse MISPE column with a "regeneration" solution, until to 7 times.
Collapse
|
16
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
17
|
Jayasinghe GTM, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1609:460431. [DOI: 10.1016/j.chroma.2019.460431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
|
18
|
Ultrasound-assisted solvent extraction of organochlorine pesticides from porous membrane packed tea samples followed by GC–MS analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Turiel E, Martín-Esteban A. Molecularly imprinted polymers-based microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Alhooshani K. Determination of chlorinated hydrocarbons in milk samples using sol-gel based polymer coated silica sorbent for stir-bar supported micro-solid-phase extraction coupled with gas chromatography mass-spectrometry. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, de Oliveira CAF. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 2019; 123:611-617. [DOI: 10.1016/j.funbio.2019.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
|
22
|
UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: The application of experimental and molecular simulation method. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Using ionic liquid monomer to improve the selective recognition performance of surface imprinted polymer for sulfamonomethoxine in strong polar medium. J Chromatogr A 2019; 1592:38-46. [DOI: 10.1016/j.chroma.2019.01.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
|
24
|
Determination of N-nitrosamines in water resources using Al-AC sorbent for stir-bar supported micro-solid-phase extraction coupled with gas chromatography mass-spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ultrasound-assisted solvent extraction of porous membrane packed solid samples: A new approach for extraction of target analytes from solid samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Jillani SMS, Sajid M, Alhooshani K. Evaluation of carbon foam as an adsorbent in stir-bar supported micro-solid-phase extraction coupled with gas chromatography–mass spectrometry for the determination of polyaromatic hydrocarbons in wastewater samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Zhu G, Cheng G, Wang L, Yu W, Wang P, Fan J. A new ionic liquid surface‐imprinted polymer for selective solid‐phase‐extraction and determination of sulfonamides in environmental samples. J Sep Sci 2018; 42:725-735. [DOI: 10.1002/jssc.201800759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Guifen Zhu
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
| | - Guohao Cheng
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
| | - Li Wang
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
- Taian Hydrographic Office Taian Shandong P. R. China
| | - Wenna Yu
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
| | - Peiyun Wang
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
| | - Jing Fan
- School of EnvironmentHenan Key Laboratory for Environmental Pollution ControlKey Laboratory for Yellow River and Huai River Water Environmental Pollution ControlMinistry of EducationHenan Normal University Xinxiang Henan P. R. China
| |
Collapse
|
28
|
Sánchez-González J, Odoardi S, Bermejo AM, Bermejo-Barrera P, Romolo FS, Moreda-Piñeiro A, Strano-Rossi S. HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine. Drug Test Anal 2018; 11:33-44. [PMID: 29962002 DOI: 10.1002/dta.2448] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022]
Abstract
Synthetic cathinones are a type of drug belonging to group of new psychoactive substances (NPSs). The illicit market for these substances is characterized by the continuous introduction to the market of new analogs to evade legislation and to avoid detection. New screening and confirmation assays are therefore needed, mainly in forensic/clinical samples. In the current development, a porous membrane-protected, micro-solid-phase extraction (μ-SPE) has been developed for the assessment of several cathinones in urine. The μ-SPE device consisted of a cone-shaped polypropylene (PP) porous membrane containing the adsorbent (molecularly imprinted polymers, MIPs, synthesized for the first time for this class of drugs). MIPs were prepared using ethylone and 3-methylmethcathinone (3-MMC) as templates, ethylene glycol dimethacrylate (EGDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, and 2,2´-azobisisobutyronitrile (AIBN) as an initiator. The prepared ethylone-based MIP and 3-MMC-based MIP have been fully characterized and evaluated as new selective adsorbents for μ-SPE. Cathinones separation/determination was performed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Optimum loading conditions (pH 5.0, loading for 4.0 minutes under orbital-horizontal shaking at 200 rpm) and elution conditions [2.0 mL of 75:20:5 heptane/2-propanol/ammonium hydroxide and ultrasounds assistance (37 kHz, 325 W) for 4.0 minutes] were found for ethylone-based MIP. Validation (intra-day and inter-day precision and analytical recovery) showed RSD values lower than 9 and 10% for intra-day and inter-day precision, and within the 88%-101% range for intra-day and inter-day analytical recovery.
Collapse
Affiliation(s)
- Juan Sánchez-González
- Group of Trace Elements, Spectroscopy, and Speciation (GETEE), Health Research Institute of Santiago de Compostela (IDIS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Odoardi
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ana María Bermejo
- Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Group of Trace Elements, Spectroscopy, and Speciation (GETEE), Health Research Institute of Santiago de Compostela (IDIS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francesco Saverio Romolo
- Group of Trace Elements, Spectroscopy, and Speciation (GETEE), Health Research Institute of Santiago de Compostela (IDIS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Rome, Italy
| | - Antonio Moreda-Piñeiro
- Group of Trace Elements, Spectroscopy, and Speciation (GETEE), Health Research Institute of Santiago de Compostela (IDIS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Armutcu C, Uzun L, Denizli A. Determination of Ochratoxin A traces in foodstuffs: Comparison of an automated on-line two-dimensional high-performance liquid chromatography and off-line immunoaffinity-high-performance liquid chromatography system. J Chromatogr A 2018; 1569:139-148. [PMID: 30054130 DOI: 10.1016/j.chroma.2018.07.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
Automated on-line two-dimensional high-performance liquid chromatography method (2D-HPLC) is proposed to determine Ochratoxin A (OTA) in food samples as an alternative to OTA immunoaffinity column (IAC). An on-line 2D-HPLC system is designed for the analysis of OTA using an affinity-based monolithic column in the first dimension and reversed-phase C18 column in the second dimension. Initially, optimal OTA separation efficiency is determined through traditional HPLC system consisting of a P(HEMAPA) monolithic column coupled with HPLC system. Secondly, after providing optimum conditions, OTA determination was investigated through the 2D-HPLC system. According to results, 2D-HPLC system showed good linearity in the range 0.5 to 20 ng/mL with limit of detection (LOD) and limit of quantification (LOQ) values of 21.2 pg/mL and 64.3 pg/mL, respectively. The P(HEMAPA)-4 monolithic column displayed good recovery of OTA ranging from 104.34% to 107.33%. Relative standard deviations (RSD) varied in the range 0.21% to 1.31% thus indicating the efficiency of P(HEMAPA)-4 monolithic column developed for OTA.
Collapse
Affiliation(s)
- Canan Armutcu
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
30
|
Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1355-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Zejli H, Goud KY, Marty JL. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta 2018; 185:513-519. [PMID: 29759234 DOI: 10.1016/j.talanta.2018.03.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
This work demonstrates the development of electrochemical aptasensor using ochratoxin A (OTA) aptamers. Different aptamer coupling strategies were tested using polythiophene-carboxylic acid (PT3C) and polypyrrole-3-carboxylic acid (PP3C). The best sensitivity was recorded by polythiophene-3-carboxylic acid (PT3C) on screen-printed carbon electrode (SPCE) to attain the direct detection of OTA. The quantification of OTA was achieved by using electrochemical impedance spectroscopy. A good dynamic range 0.125-2.5 ng ml-1 was obtained for OTA with limit of detection (LOD) 0.125 ng ml-1 and Limit of quantification (LOQ) 0.3 ng ml-1 respectively. The good reproducibility was recorded with RSD% of 3.68. The obtained straight line equation was y = 0.4061 × + 1.03, r = 0.99. For real sample applications, the developed aptasensors were demonstrated in coffee samples. The aptasensor displayed good recovery values in the range 88-89%, thus exhibited the effectiveness of proposed aptasensor for such complex matrices.
Collapse
Affiliation(s)
- H Zejli
- Team chemistry applied physic, Faculty of Sciences, 8106 Agadir, Morocco
| | - K Yugender Goud
- Department of Chemistry, National Institute of Technology, Warangal, Telangana 506004, India
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France
| |
Collapse
|
32
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
33
|
Díaz-Álvarez M, Martín-Esteban A. Hollow fiber membrane-protected molecularly imprinted microspheres for micro solid-phase extraction and clean-up of thiabendazole in citrus samples. J Chromatogr A 2018; 1531:39-45. [DOI: 10.1016/j.chroma.2017.11.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
|
34
|
Determination of ochratoxin A in fruit juice by high-performance liquid chromatography after vortex-assisted emulsification microextraction based on solidification of floating organic drop. Mycotoxin Res 2017; 34:15-20. [DOI: 10.1007/s12550-017-0294-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 01/17/2023]
|
35
|
Asadi M. Syringe-to-syringe dispersive liquid-phase microextraction solidified floating organic drop combined with high-performance liquid chromatography for the separation and quantification of ochratoxin A in food samples. J Sep Sci 2017; 40:3094-3099. [DOI: 10.1002/jssc.201700307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/11/2022]
|
36
|
Sajid M. Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Anal Chim Acta 2017; 965:36-53. [PMID: 28366211 DOI: 10.1016/j.aca.2017.02.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/06/2023]
Abstract
Membrane protected micro-solid-phase extraction (μ-SPE) was introduced in 2006 as an alternative to multistep SPE. μ-SPE is based on packing of very small amount of sorbent inside the porous membrane sheet whose edges are heat sealed to fabricate a μ-SPE device. This device performs clean up, extraction, and pre-concentration in a single step. It suits best for extraction of complex samples as sorbent is effectively protected inside the membrane and extraneous matter cannot adsorb over it. This review summarizes most important aspects of μ-SPE including basic principles, extraction procedure, different formats, sorbents employed and affecting parameters. The article also provides a brief account on modified μ-SPE procedures where μ-SPE was either combined with other techniques or some major changes were introduced in original procedure. Finally, the applications of μ-SPE in environmental, food and biological analysis are described. At the end, advantages and pitfalls of μ-SPE are critically appraised.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water (CEW), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
37
|
Filippou O, Bitas D, Samanidou V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1043:44-62. [DOI: 10.1016/j.jchromb.2016.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/21/2016] [Accepted: 08/27/2016] [Indexed: 01/07/2023]
|
38
|
Sánchez-González J, Salgueiro-Fernández R, Cabarcos P, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Cannabinoids assessment in plasma and urine by high performance liquid chromatography–tandem mass spectrometry after molecularly imprinted polymer microsolid-phase extraction. Anal Bioanal Chem 2016; 409:1207-1220. [DOI: 10.1007/s00216-016-0046-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/15/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023]
|
39
|
Selective tools for the solid-phase extraction of Ochratoxin A from various complex samples: immunosorbents, oligosorbents, and molecularly imprinted polymers. Anal Bioanal Chem 2016; 408:6983-99. [PMID: 27585915 DOI: 10.1007/s00216-016-9886-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
The evolution of instrumentation in terms of separation and detection has allowed a real improvement of the sensitivity and the analysis time. However, the analysis of ultra-traces of toxins such as ochratoxin A (OTA) from complex samples (foodstuffs, biological fluids…) still requires a step of purification and of preconcentration before chromatographic determination. In this context, extraction sorbents leading to a molecular recognition mechanism appear as powerful tools for the selective extraction of OTA and of its structural analogs in order to obtain more reliable and sensitive quantitative analyses of these compounds in complex media. Indeed, immunosorbents and oligosorbents that are based on the use of immobilized antibodies and of aptamers, respectively, and that are specific to OTA allow its selective clean-up from complex samples with high enrichment factors. Similar molecular recognition mechanisms can also be obtained by developing molecularly imprinted polymers, the synthesis of which leads to the formation of cavities that are specific to OTA, thus mimicking the recognition site of the biomolecules. Therefore, the principle, the advantages, the limits of these different types of extraction tools, and their complementary behaviors will be presented. The introduction of these selective tools in miniaturized devices will also be discussed.
Collapse
|
40
|
Habibi-Khorasani M, Mohammadpour AH, Mohajeri SA. Development of solid-phase microextraction coupled with liquid chromatography for analysis of tramadol in brain tissue using its molecularly imprinted polymer. Biomed Chromatogr 2016; 31. [PMID: 27386837 DOI: 10.1002/bmc.3787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid-phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid-phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL-1 ) and 10 ppm (10 μg mL-1 ) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12-107.54% in aqueous solution and 76.16-91.20% in rabbit brain tissue. The inter- and intra-day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost-effective sample analysis.
Collapse
Affiliation(s)
- Monireh Habibi-Khorasani
- Pharmaceutical Research Center, School of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, Pharmaceutical Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, School of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
42
|
Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography—tandem mass spectrometry. J Chromatogr A 2016; 1451:15-22. [DOI: 10.1016/j.chroma.2016.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/22/2016] [Accepted: 05/02/2016] [Indexed: 11/17/2022]
|
43
|
Soto JB, Ruiz MJ, Manyes L, Juan-García A. Blood, breast milk and urine: potential biomarkers of exposure and estimated daily intake of ochratoxin A: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:313-28. [PMID: 26565760 DOI: 10.1080/19440049.2015.1118160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purposes of this review are to study potential biomarkers of exposure for ochratoxin A (OTA) in biological fluids (blood, urine and breast milk) for the period 2005-14, calculate the estimated daily intake (EDI) of OTA by using database consumption for the Spanish population, and, finally, to correlate OTA levels detected in blood and EDI values calculated from food products. The values of OTA detected in potential biomarkers of exposure for blood, breast milk and urine ranged from 0.15 to 18.0, from 0.002 to 13.1, and from 0.013 to 0.2 ng ml(-1), respectively. The calculated EDI for OTA in plasma ranged from 0.15 to 26 ng kg(-1) bw day(-1), higher than that obtained in urine (0.017-0.4 ng kg(-1) bw day(-1)). All these values are correlated with the range of EDI for OTA calculated from food products: 0.0001-25.2 ng kg(-1) bw day(-1).
Collapse
Affiliation(s)
| | - María-José Ruiz
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| | - Lara Manyes
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| | - Ana Juan-García
- b Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| |
Collapse
|
44
|
|
45
|
Man-Made Synthetic Receptors for Capture and Analysis of Ochratoxin A. Toxins (Basel) 2015; 7:4083-98. [PMID: 26473924 PMCID: PMC4626722 DOI: 10.3390/toxins7104083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Contemporary analytical methods have the sensitivity required for Ochratoxin A detection and quantification, but direct application of these methods on real samples can be rarely performed because of matrix complexity. Thus, efficient sample pre-treatment methods are needed. Recent years have seen the increasing use of artificial recognition systems as a viable alternative to natural receptors, because these materials seem to be particularly suitable for applications where selectivity for Ochratoxin A is essential. In this review, molecularly imprinted polymers, aptamers and tailor-made peptides for Ochratoxin A capture and analysis with particular attention to solid phase extraction applications will be discussed.
Collapse
|
46
|
Sánchez-González J, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction for analysis of urinary cocaine and its metabolites using liquid chromatography – Tandem mass spectrometry. Anal Chim Acta 2015; 898:50-9. [DOI: 10.1016/j.aca.2015.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/27/2022]
|
47
|
Determination of Ochratoxin A in Wheat and Maize by Solid Bar Microextraction with Liquid Chromatography and Fluorescence Detection. Toxins (Basel) 2015; 7:3000-11. [PMID: 26251923 PMCID: PMC4549736 DOI: 10.3390/toxins7083000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 11/21/2022] Open
Abstract
Solid bar microextraction (SBME), followed by liquid chromatography with fluorescence detection (HPLC-FLD), for the quantification of ochratoxin A in wheat and maize was developed. Ground wheat and maize grains were extracted with acetonitrile-water-acetic acid (79:20:1, v/v/v), followed by defatting with cyclohexane, and subjected to SBME-LC-FLD analysis. SBME devices were constructed by packing 2 mg sorbent (C18) into porous polypropylene micro-tubes (2.5 cm length, 600 μm i.d., and 0.2 μm pore size). SBME devices were conditioned with methanol and placed into 5 mL stirred sample solutions for 70 min. After extraction, OTA was desorbed into 200 μL of methanol for 15 min, the solution was removed in vacuum, the residue was dissolved in 50 μL of methanol-water (1:1, v/v) and ochratoxin A content was determined by HPLC-FLD. Under optimized extraction conditions, the limit of detection of 0.9 μg·kg−1 and 2.5 μg·kg−1 and the precision of 3.4% and 5.0% over a concentration range of 1 to 100 μg·kg−1 in wheat and maize flour, respectively, were obtained.
Collapse
|
48
|
Es-haghi A, Zare M, Piri-Moghadam H, Bagheri H. Resorcinol-formaldehyde xerogel as a micro-solid-phase extraction sorbent for the determination of herbicides in aquatic environmental samples. J Sep Sci 2015; 38:2305-11. [DOI: 10.1002/jssc.201500212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ali Es-haghi
- Department of Physico Chemistry; Razi Vaccine & Serum Research Institute; Karaj Iran
| | - Maryam Zare
- Environmental and Bio-Analytical Laboratories, Department of Chemistry; Sharif University of Technology; Tehran Iran
| | - Hamed Piri-Moghadam
- Environmental and Bio-Analytical Laboratories, Department of Chemistry; Sharif University of Technology; Tehran Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry; Sharif University of Technology; Tehran Iran
| |
Collapse
|
49
|
Xie L, Sheng P, Kong W, Zhao X, Ou-Yang Z, Yang M. Solid-phase extraction using molecularly imprinted polymer for determination of ochratoxin A in human urine. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2013.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A rapid, selective and reliable sample preparation technique employing solid-phase extraction (SPE) based on molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) in human urine was described. After sample adjustment to pH 2.5 with 0.1 M HCl, the urine sample was loaded onto the MIP-SPE column, and after a wash step, OTA was eluted for measurement by ultra-high performance liquid chromatography coupled with fluorescence detection. Key parameters which affected the MIP-SPE extraction efficiency were optimized as was the detection method. Under the optimised conditions, the limits of detection and quantification for OTA in urine were 0.2 ng/ml and 0.6 ng/ml, respectively. The recoveries for OTA in urine, spiked at the 0.6, 6.0 and 60 ng/ml levels, ranged from 92.0 to 98.9%. Sixty urine samples were analysed, of which four were found to contain OTA at concentrations ranging from 0.022 to 0.083 ng/ml; the positive results were confirmed by liquid chromatography coupled with tandem mass spectrometry. OTA determination in urine is a good indicator for human exposure to the mycotoxin, and this is the first report on OTA contamination in Chinese people.
Collapse
Affiliation(s)
- L. Xie
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Malianwa North Road 151, Beijing 100193, China P.R
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China P.R
| | - P. Sheng
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, China P.R
| | - W. Kong
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Malianwa North Road 151, Beijing 100193, China P.R
| | - X. Zhao
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Malianwa North Road 151, Beijing 100193, China P.R
- Chinese Academy of Medicinal Sciences & Peking Union Medical College, Hainan Branch Institute of Medicinal Plant Development, Wanning 571533, China P.R
| | - Z. Ou-Yang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China P.R
| | - M. Yang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Malianwa North Road 151, Beijing 100193, China P.R
- Chinese Academy of Medicinal Sciences & Peking Union Medical College, Hainan Branch Institute of Medicinal Plant Development, Wanning 571533, China P.R
| |
Collapse
|
50
|
Zarejousheghani M, Fiedler P, Möder M, Borsdorf H. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer. Talanta 2014; 129:132-8. [DOI: 10.1016/j.talanta.2014.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
|