1
|
Shi Q, Wang Y, Zhang Q, Dai Y, Liu F, Jing W. Cu 2Cl(OH) 3 nanozyme-based colorimetric sensor array for phosphates discrimination and disease identification. Talanta 2024; 280:126724. [PMID: 39167938 DOI: 10.1016/j.talanta.2024.126724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The identification of phosphates holds significant importance in many physiological processes and disease diagnosis, and traditional detection techniques struggle to simultaneously detect and distinguish phosphates. The complexity of synthesizing sensing units restricts the construction of sensor arrays as well. In this study, a bifunctional dicopper chloride trihydroxide (Cu2Cl(OH)3) nanozyme with conspicuous laccase- and peroxidase-like activities has been synthesized in basic deep eutectic solvents (DES). Exploiting the various regulatory impacts of multiple phosphates on the dual-enzyme mimicking activities, the sensor array based on the laccase mimic and peroxidase mimic properties of Cu2Cl(OH)3 was designed, which has been successfully harnessed for the identification of eight phosphates (ATP, ADP, AMP, PPi, Pi, GTP, GDP, and GMP). This approach streamlines the creation of sensor arrays. Besides, the three simulated actual samples (healthy individuals, moderately ill patients, and severely ill patients) have been accurately distinguished. This work makes a substantial contribution to enhancing the highly effective construction of array channels and promoting discrimination of phosphates in intricate samples.
Collapse
Affiliation(s)
- Qihao Shi
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yu Wang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Qingfu Zhang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| |
Collapse
|
2
|
Lee DG, Min YH, Byun JY, Shin YB. Small Molecule Detection with Ligation-Dependent Light-Up Aptamer Transcriptional Amplification. ACS APPLIED BIO MATERIALS 2024; 7:6865-6872. [PMID: 39315418 DOI: 10.1021/acsabm.4c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ATP and NAD+ are small biomolecules that participate in a variety of physiological functions and are considered as potential biomarkers for disease diagnosis. In this study, we developed a ligation-dependent light-up aptamer transcriptional amplification assay for the sensitive and selective detection of ATP and NAD+. This assay relies on a specific DNA ligase that catalyzes the ligation of a nicked DNA template in the presence of a specific small molecule. We prepared a nicked template consisting of a duplex fragment with an overhang for the T7 promoter region and a single-stranded DNA with a complementary overhang sequence for the Broccoli aptamer. The nicked template was connected using a DNA ligase in the presence of a specific small molecule. The ligation product was subjected to in vitro transcription to amplify the light-up aptamer-mediated fluorescence signals. By integrating the target-dependent ligation and transcription amplification, significant signal amplification was achieved with 5.9 and 142 pM detection limits for ATP and NAD+, respectively. Moreover, good selectivity to discriminate between the target and its analogues was also realized. The application of this method to biological samples was evaluated using human serum and exhibited excellent recovery values.
Collapse
Affiliation(s)
- Deok-Gyu Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Nishitsuji R, Nakashima T, Hisamoto H, Endo T. Simultaneous Recognition and Detection of Adenosine Phosphates by Machine Learning Analysis for Surface-Enhanced Raman Scattering Spectral Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:6648. [PMID: 39460128 PMCID: PMC11511347 DOI: 10.3390/s24206648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Adenosine phosphates (adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP)) play important roles in energy storage and signal transduction in the human body. Thus, a measurement method that simultaneously recognizes and detects adenosine phosphates is necessary to gain insight into complex energy-relevant biological processes. Surface-enhanced Raman scattering (SERS) is a powerful technique for this purpose. However, the similarities in size, charge, and structure of adenosine phosphates (APs) make their simultaneous recognition and detection difficult. Although approaches that combine SERS and machine learning have been studied, they require massive quantities of training data. In this study, limited AP spectral data were obtained using fabricated gold nanostructures for SERS measurements. The training data were created by feature selection and data augmentation after preprocessing the small amount of acquired spectral data. The performances of several machine learning models trained on these generated training data were compared. Multilayer perceptron model successfully detected the presence of AMP, ADP, and ATP with an accuracy of 0.914. Consequently, this study establishes a new measurement system that enables the highly accurate recognition and detection of adenosine phosphates from limited SERS spectral data.
Collapse
Affiliation(s)
- Ryosuke Nishitsuji
- Department of Information Networking, Graduate School of Information Science and Technology, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Tomoharu Nakashima
- Department of Interdisciplinary Informatics, Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Tatsuro Endo
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| |
Collapse
|
4
|
Xiao Y, Zhu X, Zheng H, Tang Q, Qiu R. Preparation of phosphorylated rice husk for cadmium adsorption: Crucial role of phosphonyl group. BIORESOURCE TECHNOLOGY 2024; 408:131159. [PMID: 39067711 DOI: 10.1016/j.biortech.2024.131159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rice husk is a locally available biomass for preparation of adsorbents to deal with cadmium (Cd) contamination in paddy system. In this study, phosphorylation of rice husk using H3PO4 and NH4H2PO4 was carried out in the presence of urea at 165℃ to obtain APB-C and NPB-C, respectively. According to the material characterizations, phosphonyl groups were successfully grafted on the rice husk. Both APB-C and NPB-C had high performance for Cd(II) adsorption with the capacities of 146 and 129 mg/g, respectively. The main mechanism of Cd(II) adsorption was ion exchange with NH4+. The adsorption capacity was linearly corelated with phosphorus content (R2 = 0.9997), while the Langmuir constant had high correlation efficient (R2 = 0.996) with phosphonyl group percentage. Further quantum chemical calculation showed higher interaction energy between Cd(II) and phosphonyl group than other groups. These results indicated that phosphonyl group governed Cd(II) adsorption on phosphorylated biomass.
Collapse
Affiliation(s)
- Ye Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaomin Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, PR China
| | - Huihui Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, PR China
| | - Qin Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, PR China
| |
Collapse
|
5
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
6
|
Niu M, Liang X, Zhao H, Li H, Fu X, Liu C. Bipolar hemicyanine cationic probe for simultaneous sensing of ATP and GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123249. [PMID: 37579665 DOI: 10.1016/j.saa.2023.123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Adenosine 5'-triphosphate (ATP) and guanosine 5'-triphosphate (GTP) are the most essential energy source in enormous biological processes. Various probes for ATP or GTP sensing, have been widely established, but the probe that could simultaneously monitor ATP and GTP is still rarely reported. Herein, we report a bipolar hemicyanine cationic probe for simultaneous sensing of ATP and GTP via a one-step monitoring process. This probe exhibited strong affinity to ATP and GTP through intramolecular electrostatic and π-π stacking interactions, which the binding constant on each step were determined as 6.15 × 107 M-1 and 1.57 × 106 M-1 for ATP, 3.19 × 107 M-1 and 3.81 × 106 M-1 for GTP. The sensitivity and specificity of this probe toward ATP or GTP over other twelve biological analogues (adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), guanosine 5'-diphosphate (GDP), guanosine 5'-monophosphate (GMP), Etc.) have also been successfully demonstrated. Furthermore, due to the rapid response rate (within 10 s), we also proved that this probe could be employed as a monitor tool during the ATP or GTP-related enzymatic reaction process.
Collapse
Affiliation(s)
- Mengxing Niu
- School of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, PR China
| | - Xiaofei Liang
- School of Music, Henan University, Kaifeng 475001, PR China
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, PR China
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, PR China
| | - Xuancheng Fu
- Department of Chemistry, Syracuse University, Syracuse 13244, United States.
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Li J, Peng G, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Cu 2+-mediated turn-on fluorescence biosensor based on DNA-templated silver nanoclusters for label-free and sensitive detection of adenosine triphosphate. Mikrochim Acta 2022; 190:41. [PMID: 36585965 DOI: 10.1007/s00604-022-05617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
A Cu2+-mediated turn-on fluorescence biosensor based on the DNA-templated green-emitting silver nanoclusters (DNA@g-AgNCs) was developed for label-free and sensitive detection of adenosine 5'-triphosphate (ATP). Cu2+ was able to quench the bright green fluorescence of DNA@g-AgNCs because of the coordination and photoinduced electron transfer between DNA@g-AgNCs and Cu2+. Therefore, a unique and effective fluorescence biosensor can be constructed with the formation of DNA@g-AgNCs/Cu2+/ATP ternary-competition system. With the introduction of ATP, the DNA@g-AgNCs/Cu2+ fluorescence sensing system will be disrupted and the fluorescence of DNA@g-AgNCs was recovered due to higher affinity of ATP towards Cu2+. On the basis of this feature, the DNA@g-AgNCs/Cu2+ fluorescence sensing system demonstrated quantitative determination of ATP in the range 0.05 - 3 μM and a detection limit of 16 nM. Moreover, the fluorescence sensing system was successfully applied to the quantitative determination of ATP in human urine and serum samples with recoveries ranging from 98.6 to 106.5%, showing great promise to provide a label-free, cost-efficient, and rapid platform for ATP-related clinical disease diagnosis.
Collapse
Affiliation(s)
- Jingze Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
- School of Materials Engineering, Jiangxi College of Applied Technology, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Guibin Peng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Li Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yumin Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
8
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
9
|
Sun L, Fan Y, Wang Q, Xiang L, Han H, Chen D. Validated quantitative 31P NMR spectroscopy for positional isomeric impurity determination in L-α-glycerylphosphorylcholine (L-α-GPC). J Pharm Biomed Anal 2022; 221:115067. [PMID: 36179504 DOI: 10.1016/j.jpba.2022.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
In this study a quantitative 31P nuclear magnetic resonance (31P NMR) spectroscopy method was described to determine positional isomeric impurity β-GPC in commercial products of L-α-GPC. The samples were dissolved in D2O and trimethyl phosphate (TMP) was selected as an internal calibrant. The measurements were performed on a Bruker 500 MHz spectrometer and the spectra were recorded under optimized process conditions. A good linear relationship was constructed for β-GPC in the range of 62.7-528.0 µg·mL-1, i.e. 0.03-0.25 % (w/w %, in relative to L-α-GPC) with a correlative coefficient of 0.9996. The limit of quantification (LOQ) and limit of detection (LOD) were 62.7 µg·mL-1 and 20.9 µg·mL-1 with signal to noise of 3 and 10, respectively. The spiked recoveries were in the range of 98.17-99.78 % with the relative standard deviation (RSD %) less than 1.0 %. Therefore, it could be supposed that the 31P NMR was a promising alternative method for sensitive determination of β-GPC for strict quality control of L-α-GPC.
Collapse
Affiliation(s)
- Ling Sun
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujuan Fan
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaoqiao Wang
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lili Xiang
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyun Han
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Xie L, Zhao Y, Sheng L, Feng S, Shen A, Chen Y, Zhao C, Song M, Hu Y, Lei W. Determination of Isotope Abundance for Deuterium-labeled Compounds by Quantitative 1 H NMR + 2 H NMR. J Labelled Comp Radiopharm 2022; 65:234-243. [PMID: 35748089 DOI: 10.1002/jlcr.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
Deuterated reagents have been used in many research fields. Isotope abundance, as the feature parameter of deuterated reagents, the precise quantification is of great importance. Based on quantitative nuclear magnetic resonance technology, a novel method that combines 1 H NMR + 2 H NMR was systematically established to determine the isotopic abundance of deuterated reagents. The results showed that the isotopic abundance of partially labeled and fully labeled compounds calculated by this new method was even more accurate than that calculated by classical 1 H NMR and MS methods. In brief, this new method is a robust strategy for the determination of isotope abundance in large-scale deuterated reagents.
Collapse
Affiliation(s)
- Long Xie
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Yameng Zhao
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Liyan Sheng
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Shancheng Feng
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - An Shen
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Yanqiu Chen
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Cheng Zhao
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Mingming Song
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Yucai Hu
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| | - Wen Lei
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, P. R. China
| |
Collapse
|
11
|
White D, Yang Q. Genetically Encoded ATP Biosensors for Direct Monitoring of Cellular ATP Dynamics. Cells 2022; 11:1920. [PMID: 35741049 PMCID: PMC9221525 DOI: 10.3390/cells11121920] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/06/2022] Open
Abstract
Adenosine 5'-triphosphate, or ATP, is the primary molecule for storing and transferring energy in cells. ATP is mainly produced via oxidative phosphorylation in mitochondria, and to a lesser extent, via glycolysis in the cytosol. In general, cytosolic glycolysis is the primary ATP producer in proliferative cells or cells subjected to hypoxia. On the other hand, mitochondria produce over 90% of cellular ATP in differentiated cells under normoxic conditions. Under pathological conditions, ATP demand rises to meet the needs of biosynthesis for cellular repair, signaling transduction for stress responses, and biochemical processes. These changes affect how mitochondria and cytosolic glycolysis function and communicate. Mitochondria undergo remodeling to adapt to the imbalanced demand and supply of ATP. Otherwise, a severe ATP deficit will impair cellular function and eventually cause cell death. It is suggested that ATP from different cellular compartments can dynamically communicate and coordinate to adapt to the needs in each cellular compartment. Thus, a better understanding of ATP dynamics is crucial to revealing the differences in cellular metabolic processes across various cell types and conditions. This requires innovative methodologies to record real-time spatiotemporal ATP changes in subcellular regions of living cells. Over the recent decades, numerous methods have been developed and utilized to accomplish this task. However, this is not an easy feat. This review evaluates innovative genetically encoded biosensors available for visualizing ATP in living cells, their potential use in the setting of human disease, and identifies where we could improve and expand our abilities.
Collapse
Affiliation(s)
- Donnell White
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qinglin Yang
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Pandian GS. Live Cells Extracts of Freshly Cut Chicken and Baby Sprouts of Mung
Beans Detected with UV Absorption and Proton NMR Spectra. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210122091014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
This article discloses information related to a recent patent filed by the
author on extracts of freshly cut farm birds and animals.
Objective:
The objective was to evaluate “Liquid-Protein” extracts obtained from live cells of
protein-rich meat of farm birds or animals as well as from baby plants of pulses.
Method:
Freshly cut meat pieces or sprouts of pulses were put in water and pulse-heated for
30 minutes. The nutritious water extract of these was taken that contained amino-acids/proteins
and some signaling chemicals emitting from the stressed live cells.
Results:
The heat-stressed animal cells (of Chicken) released creatine and many other nutrients in
the extract along with Guanosine triphosphate/Guanosine diphosphate/ Guanosine monophosphate/
Inosine Mono Phosphate (GTP/GDP/ GMP/IMP), showing a UV absorption peak at 249
nm. This paper analyses the UV-Visual Absorption spectra and proton NMR data for the extracts.
It is disclosed that the vegetarian baby plant cells of pulse seeds released (ATP) Adenosine
Tri Phosphate (264 nm peak) along with Resveratrol (306 nm peak) but did not produce creatine,
and such an extract exhibited side effects.
Conclusion:
Cells of birds/animals are similar to those of humans, and the signaling chemicals in
the non-vegetarian extract are non-toxic and 100% compatible with humans as compared to plant
cell extracts with incompatible chemicals.
Since meat cells manage to “live” for longer than 10 hours without blood/oxygen supply, in anaerobic
cell respiration involving creatine and GTP/GDP/GMP/IMP, the extract of these meat
cells plays a key role in metabolic cell repair, inducing anti-aging effects in humans.
Collapse
Affiliation(s)
- G. Soundra Pandian
- Proprietor, Dr. Pandian Farms, Near Bandhuwarpatti Village, Sattur Taluk, Virudhunagar District, Tamil Nadu State
626203, India
| |
Collapse
|
13
|
Huang N, Wen J, Yi D, Wei Z, Long Y, Zheng H. Colorimetric detection of ATP by inhibiting the Peroxidase-like activity of carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120658. [PMID: 34862139 DOI: 10.1016/j.saa.2021.120658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency for cells and an important biomolecule involved in cellular reactions, whose abnormal levels are closely related to physical disease, thus it is extremely important to establish a convenient, fast and simple ATP monitoring method. Toward this end, we developed a facile method for colorimetric detection of ATP on the basis of the inhibiting effect of ATP on the peroxidase-like activity of carbon dots (CDs). The detection principle of this method was utilizing the peroxidase-like activity of CDs, which catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to generate blue products. However, the introduction of ATP in the system can inhibit the generation of blue products, so ATP can be colorimetric detected. This method exhibited high sensitivity with a detection limit of 34 nM and a wide linear range (0.050-2.0 μM). The as-proposed colorimetric ATP sensor was capable of detecting ATP in real samples accurately.
Collapse
Affiliation(s)
- Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Danyang Yi
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Zixuan Wei
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
14
|
Bramham JE, Zalar M, Golovanov AP. Controlled release and characterisation of photocaged molecules using in situ LED illumination in solution NMR spectroscopy. Chem Commun (Camb) 2022; 58:11973-11976. [DOI: 10.1039/d2cc04731d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that photo-uncaging reactions triggered by LED illumination can be conveniently monitored in situ by solution NMR, offering new ways to characterise and optimise photocages.
Collapse
Affiliation(s)
- Jack E. Bramham
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Matja Zalar
- Department of Chemical Engineering, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Alexander P. Golovanov
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
15
|
Ruiz-Muelle AB, Lestón-Cabeo F, Fernández I. Accurate detection of perchlorate in epoxy resins via chlorine-35 quantitative quadrupolar NMR (qQNMR). Analyst 2022; 147:5075-5081. [DOI: 10.1039/d2an00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present herein the application of a qQNMR method that uses a quadrupolar nucleus such as chlorine-35 for the quantification of perchlorate in epoxy resins.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Felipe Lestón-Cabeo
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| |
Collapse
|
16
|
Ruiz-Muelle AB, Díaz Navarro C, Fernández I. Quantitative Quadrupolar NMR (qQNMR) via nitrogen-14 for the accurate control of L-carnitine in food supplements. J Pharm Biomed Anal 2021; 210:114548. [PMID: 34959006 DOI: 10.1016/j.jpba.2021.114548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/26/2023]
Abstract
A qQNMR methodology using nitrogen-14 as the quadrupolar nucleus of choice has been introduced for the first time as a robust and validated method to determine and quantify L-carnitine in food supplements. The quantification has been carried out by the alternative use of a calibration curve or by addition of ammonium chloride as internal standard. The method was validated at seven concentration levels in the range of 5.58-99.26 mM, affording intra- and inter day accuracies lower than 6.84% (expressed in CV), robustness towards temperature and recycle delay, limit of detection (LOD) of 2.48 mM, limit of quantification (LOQ) of 5.58 mM and remarkably with absence of matrix effect.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Concepción Díaz Navarro
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain.
| |
Collapse
|
17
|
DeVience SJ, Walsworth RL, Rosen MS. NMR of 31P nuclear spin singlet states in organic diphosphates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107101. [PMID: 34781233 DOI: 10.1016/j.jmr.2021.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
31P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled 31P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that 31P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T1 and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the 31P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA.
| | - Ronald L Walsworth
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA.
| | - Matthew S Rosen
- Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Engineering, Massachusetts General Hospital, 149(th) Thirteenth St., Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
1H HR-MAS NMR Based Metabolic Profiling of Lung Cancer Cells with Induced and De-Induced Cisplatin Resistance to Reveal Metabolic Resistance Adaptations. Molecules 2021; 26:molecules26226766. [PMID: 34833859 PMCID: PMC8625954 DOI: 10.3390/molecules26226766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cisplatin (cisPt) is an important drug that is used against various cancers, including advanced lung cancer. However, drug resistance is still a major ongoing problem and its investigation is of paramount interest. Here, a high-resolution magic angle spinning (HR-MAS) NMR study is presented deciphering the metabolic profile of non-small cell lung cancer (NSCLC) cells and metabolic adaptations at different levels of induced cisPt-resistance, as well as in their de-induced counterparts (cells cultivated in absence of cisPt). In total, fifty-three metabolites were identified and quantified in the 1H-HR-MAS NMR cell spectra. Metabolic adaptations to cisPt-resistance were detected, which correlated with the degree of resistance. Importantly, de-induced cell lines demonstrated similar metabolic adaptations as the corresponding cisPt-resistant cell lines. Metabolites predominantly changed in cisPt resistant cells and their de-induced counterparts include glutathione and taurine. Characteristic metabolic patterns for cisPt resistance may become relevant as biomarkers in cancer medicine.
Collapse
|
19
|
Baeta T, Giandoreggio-Barranco K, Ayala I, Moura ECCM, Sperandeo P, Polissi A, Simorre JP, Laguri C. The lipopolysaccharide-transporter complex LptB 2FG also displays adenylate kinase activity in vitro dependent on the binding partners LptC/LptA. J Biol Chem 2021; 297:101313. [PMID: 34673027 PMCID: PMC8633020 DOI: 10.1016/j.jbc.2021.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers–LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.
Collapse
Affiliation(s)
- Tiago Baeta
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabel Ayala
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| |
Collapse
|
20
|
Direct quantification of cysteine and glutathione by 1H NMR based on β-cyclodextrin modified silver nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Ruiz-Muelle AB, Moreno PG, Fernández I. Quantitative quadrupolar NMR (qQNMR) using nitrogen-14 for the determination of choline in complex matrixes. Talanta 2021; 230:122344. [PMID: 33934793 DOI: 10.1016/j.talanta.2021.122344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
Abstract
NMR offers the unique potential to selectively excite the chosen nuclei avoiding in an extraordinary way the matrix effect. Quantitative Nitrogen-14 NMR (14N qNMR) spectroscopy has been introduced for the first time as a robust and validated method to determine choline in a variety of matrixes including quinoa grains, instant coffee and food supplements. A study about the ion pairing of choline bitartrate in aqueous solution by means of diffusion PGSE, NOESY and HOESY NMR have been also provided. Validation of the method within eight concentrations levels (from 1.58 to 79.0 mM) afforded a limit of detection of 400 μg/mL (1.58 mM), a quantification limit of 1000 μg/mL (3.95 mM), excellent linearity (R2 higher than 0.999), intra-/inter-day precisions lower than 1.24% (CV), recoveries of 93.5%-102.5%, and complete absence of matrix effect. The fast and reliable quantification of choline together with the accuracy and simplicity of this new approach make it useful in the development of analytical procedures that could dramatically affect traditional analysis.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Paula García Moreno
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
22
|
Qu R, Shan L, Sun Q, Wei Y, Deng P, Hou X. Quantification of 13C, 15N labelled compounds with 13C, 15N edited 1H Nuclear Magnetic Resonance spectroscopy. Talanta 2021; 224:121839. [PMID: 33379057 DOI: 10.1016/j.talanta.2020.121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
It was significant to detect isotope labelled compounds in biology and pharmacy. Based on a novel 1H Nuclear Magnetic Resonance (1H-NMR) technique, a simple, fast and green method has been successfully established to quantitatively detect 13C, 15N isotope labelled compounds. In this protocol, the couples between 1H and 13C, 15N nearby were removed, which greatly simplified the spectrum. At mean time, the multiple peaks led by 13C and 15N were combined into one peak, so the signal intensity was also significantly enhanced. Melamine was selected as the internal standard and five 13C, 15N isotope labelled compounds showed excellent linearity from 0.001 mM to 100 mM. A real polypeptide sample has quantitatively been detected.
Collapse
Affiliation(s)
- Runlian Qu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lu Shan
- Bruker (Beijing) Scientific Technology Co. Ltd., Beijing, 100192, China
| | - Qun Sun
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yao Wei
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China; College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
23
|
Huang Q, Wang T, Xiao N. Selective monitoring ATP using a fluorogenic Al(III)-probe complex in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117946. [PMID: 31862650 DOI: 10.1016/j.saa.2019.117946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
A simple commercially available probe 8-hydroxyjulolidine-9-aldehyde (HJ) has been developed as a turn-on fluorescent probe specifically for Al3+ and characterized systemically. The probe HJ for Al3+ ion exhibits strong green fluorescence under ultraviolet light. The HJ acted as an OFF-ON-OFF type fluorescent probe for Al3+ and ATP in nearly 100% aqueous media. The 1:1 binding stoichiometry between probe and Al3+ has been established from Job's plot and HRMS studies. The limit of detection for Al3+ ion is found to be 5.75 × 10-8 M. The large association constant between HJ and Al3+ ion is 1.05 × 105 M-1. Detailed insights of probe-metal interaction mechanisms have been studied by the density functional theory (DFT) as well as the time dependent-DFT (TDDFT) calculations. Moreover, benefiting from the water solubility and biocompatibility of the probe HJ and its HJ-Al3+ complex, they have also been successfully applied to detect Al3+ and ATP by bioimaging in onion epidermal cells and adult zebrafish respectively.
Collapse
Affiliation(s)
- Qiaoming Huang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tianran Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Aoki K, Osako R, Deng J, Hayashita T, Hashimoto T, Suzuki Y. Phosphate-sensing with (di-(2-picolyl)amino)quinazolines based on a fluorescence on–off system. RSC Adv 2020; 10:15299-15306. [PMID: 35495469 PMCID: PMC9052313 DOI: 10.1039/d0ra01455a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 01/29/2023] Open
Abstract
Detection and visualization of phosphates such as ATP in living organisms can facilitate the elucidation of various biological events. Although substantial efforts had been made in this area, present methods have disadvantages such as the need for specialized equipment and poor sensitivities. To address these limitations, novel fluorescent probes, (di-(2-picolyl)amino)quinazolines, were developed for application in ATP detection. They selectively recognized copper ions by fluorescence quenching, and their copper complexes displayed fluorescence enhancement in the presence of phosphoric acid derivatives. This fluorescence on–off system enabled highly sensitive fluorescence detection of ATP when combined with a phenyl boronic acid-modified γ-cyclodextrin through a plausible multipoint recognition system. Supramolecular probe Cu-dpa-QZ2/FPB-γ-CyD recognized ATP with high sensitivity.![]()
Collapse
Affiliation(s)
- Kazusa Aoki
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Ryuji Osako
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Jiahui Deng
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Yumiko Suzuki
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
25
|
Fisher O, Benson RA, Imray CH. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomark Med 2019; 13:953-965. [PMID: 31321992 DOI: 10.2217/bmm-2019-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During periods of ischemia and hypoxia, intracellular adenosine triphosphate stores are rapidly depleted. Its metabolism results in release of purine nucleosides into the systemic circulation. While the potential of purine nucleosides as a biomarker of ischemia has long been recognized, this has been limited by their complex physiological role and inherent instability leading to problematic sampling and prolonged, complex analysis procedures. Purine release has been demonstrated from cerebral tissue in patients undergoing carotid endarterectomy and patients presenting to hospital with stroke and transient ischemic attack. Rises in purine nucleosides have also been demonstrated in patients with angina and myocardial infarction, during systemic hypoxia, exercise, in patients with peripheral arterial disease and during surgery. This article reviews purine nucleoside production in ischemia, the development of purine analysis technology and details results of the studies investigating purine nucleosides as a biomarker of ischemia with suggestions for areas of future research.
Collapse
Affiliation(s)
- Owain Fisher
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| | - Ruth A Benson
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Institute of Cancer & Genomic Sciences, University of Birmingham, B15 2SY, UK
| | - Christopher He Imray
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| |
Collapse
|
26
|
Zhang X, Jiang Y, Xiao N. Monitoring ADP and ATP in vivo using a fluorescent Ga(iii)-probe complex. Chem Commun (Camb) 2018; 54:12812-12815. [PMID: 30260362 DOI: 10.1039/c8cc06311g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A naphthol-based sensor (L) was designed and synthesized for the specific recognition of Ga3+ using fluorescence enhancement. An in situ generated L-Ga3+ ensemble detected ADP and ATP more selectively through a fluorescence "switch off" response, which was confirmed both in cells and in adult zebrafish.
Collapse
Affiliation(s)
- Xinyu Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
| | | | | |
Collapse
|
27
|
Aguilera-Sáez LM, Belmonte-Sánchez JR, Romero-González R, Martínez Vidal JL, Arrebola FJ, Garrido Frenich A, Fernández I. Pushing the frontiers: boron-11 NMR as a method for quantitative boron analysis and its application to determine boric acid in commercial biocides. Analyst 2018; 143:4707-4714. [PMID: 30183032 DOI: 10.1039/c8an00505b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quantitative boron-11 NMR (11B qNMR) spectroscopy has been introduced for the first time as a method to determine boric acid content in commercial biocides. Validation of the method affords a limit of detection of 0.02% w/w and a limit of quantification of 0.04% w/w, which are low enough to determine boric acid in commercial biocides. Other figures of merit such as linearity (R2 > 0.99), recovery (93.6%-106.2%), intra- and inter-day precision (from 0.7 to 2.0%), uncertainty (3.7 to 4.4%) and matrix effects were also evaluated. This method was successfully applied to determine boric acid in five different commercial biocides in a wide range of concentrations (<0.05 to 10% w/w) providing excellent results when they were compared with those obtained using inductively coupled plasma-mass spectrometry (ICP-MS). The suitability of this method for a fast and reliable quantification of boric acid in commercial biocide preparations has been demonstrated. The absence of the matrix effect allows the application of this validated method for the determination of boric acid in other matrices of diverse composition.
Collapse
Affiliation(s)
- Luis Manuel Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, Agrifood Campus of International Excellence, ceiA3, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Xiong Y, Cheng Y, Wang L, Li Y. An ''off-on'' phosphorescent aptasensor switch for the detection of ATP. Talanta 2018; 190:226-234. [PMID: 30172503 DOI: 10.1016/j.talanta.2018.07.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
An "off-on" phosphorescent aptasensor based on the 3-mercaptopropionic acid (MPA) capped Mn-doped ZnS quantum dots (MPA-Mn:ZnS QDs)/aptamer hybrid system was developed to detect adenosine triphosphate (ATP) in biological fluids. The phosphorescence of MPA-Mn:ZnS QDs was obviously quenched when ATP aptamer was added due to the aggregation induced effect. ATP aptamer, adsorbed on the surface of the phosphorescent MPA-Mn:ZnS QDs, has a high affinity for ATP. And then, with the addition of ATP, phosphorescence was gradually recovered because of the stronger special binding interaction between ATP and ATP aptamer than that between QDs and ATP aptamer. In this case, a high sensitivity and selectivity of phosphorescent aptasensor for the detection of ATP has constructed with a low detection limit of 0.9 nM and a wide linear range from 2 nM to 9 µM. What's more, the phosphorescent aptasensor does not require complex pretreatments and can effectively eliminate the interference from auto fluorescence and scattering light.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yue Cheng
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
29
|
Kock FV, Machado MP, Athayde GP, Colnago LA, Barbosa LL. Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method. Microchem J 2018. [DOI: 10.1016/j.microc.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Cardiano P, Foti C, Giacobello F, Giuffrè O, Sammartano S. Study of Al 3+ interaction with AMP, ADP and ATP in aqueous solution. Biophys Chem 2018; 234:42-50. [PMID: 29407770 DOI: 10.1016/j.bpc.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
The interaction of Al3+ and nucleotide ligands, namely adenosine-5'-monophosphate, (AMP), adenosine-5'-diphosphate, (ADP), adenosine-5'-triphosphate, (ATP), has been studied in aqueous solution at T = 298.15 K and I = 0.15 mol L-1 in NaCl (only for Al3+-ATP system at I = 0.1 mol L-1). Formation constants and speciation models for the species formed are discussed on the basis of potentiometric results. The speciation models found for the three systems include ML and ML2 species in all the cases, and for Al3+-ADP and ATP systems, MLH, MLOH and ML2OH species as well. The formation constant value for ML species shows the trend, AMP < ADP < ATP. 1H NMR spectroscopy was also employed for the study of Al3+-ATP system. The 1H NMR results are in agreement with the speciation model obtained from analysis of potentiometric titration data, confirming the stabilities of the main species. Enthalpy change values were obtained by titration calorimetry; for the main Al3+-ATP species (at T = 298.15 K and I = 0.1 mol L-1 in NaCl), they resulted always higher than zero, as typical for hard-hard interactions. The dependence of formation constants on ionic strength over the range I = 0.1 to 1 mol L-1 in NaCl is also reported for Al3+-ATP system. The sequestering ability of the nucleotides under study towards Al3+ was also evaluated by the empirical parameter pL0.5.
Collapse
Affiliation(s)
- Paola Cardiano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fausta Giacobello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
31
|
Yu C, Zhang Q, Xu PY, Bai Y, Shen WB, Di B, Su MX. Quantitative determination and validation of octreotide acetate using 1 H-NMR spectroscopy with internal standard method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:37-45. [PMID: 28921691 DOI: 10.1002/mrc.4665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards.
Collapse
Affiliation(s)
- Chen Yu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Yao Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Bai
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Bin Shen
- Center for Instrumental Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Xiang Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
32
|
Li T, Liao Y, Jiang X, Mu D, Hou X, Zhang C, Deng P. pH detection in biological samples by 1D and 2D 1H- 31P NMR. Talanta 2017; 178:538-544. [PMID: 29136859 DOI: 10.1016/j.talanta.2017.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
The chemical shifts of several important endogenous phosphorus compounds under different pH conditions were explored, including adenosine-5'-triphosphate, adenosine-5'-diphosphate, adenosine-5'-monophosphate, phosphorylcholine and phosphorylethanolamine. Their 31P NMR and 1H NMR chemical shifts were all pH-sensitive in the similar pH range. Two dimensional (2D) 1H-31P NMR spectra were found helpful to identify these endogenous phosphorus markers in biological samples from rather complicated NMR spectra. Herein, for the first time, a pH sensor based on 2D 1H-31P NMR was established and applied to biological samples analysis with pH values determined in good agreement with those by potentiometric method. Apart from being simple, green, rapid and less sample-consuming, information concerning both the endogenous phosphorus markers and pH status could be attained in a single NMR run, which demonstrated the great potential of this method in rare sample analysis and even disease diagnosis.
Collapse
Affiliation(s)
- Ting Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yong Liao
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyan Jiang
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Di Mu
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
33
|
Gilormini PA, Lion C, Noel M, Krzewinski-Recchi MA, Harduin-Lepers A, Guérardel Y, Biot C. Improved workflow for the efficient preparation of ready to use CMP-activated sialic acids. Glycobiology 2016; 26:1151-1156. [PMID: 27543325 DOI: 10.1093/glycob/cww084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 11/13/2022] Open
Abstract
Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Cédric Lion
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Maxence Noel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Marie-Ange Krzewinski-Recchi
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Anne Harduin-Lepers
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Yann Guérardel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Christophe Biot
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| |
Collapse
|