1
|
Cai Y, Li Y, Wang Y, Xu Y, Chen T, Xue R, Liu Y, Chen W, Yang X, Liu Z, Bao X, Huang Z. Triple-mode sensing platform for acetylcholinesterase activity monitoring and anti-Alzheimer's drug screening based on a highly stable Cu (I) compound. Biosens Bioelectron 2025; 271:117078. [PMID: 39708491 DOI: 10.1016/j.bios.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Acetylcholinesterase (AChE) and AChE inhibitors play critical roles in the early diagnosis and treatment of Alzheimer's disease (AD). Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform was constructed for both AChE activity monitoring and AChE inhibitor screening by exploring a Cu (I) compound, Cu3I (SR)2 (R = CH2CH2NH2), as a fluorescent probe. In comparison of most other fluorescent probes, Cu3I (SR)2 presented exceptional stability against pH, temperature, UV irradiation, redox agents, and metal ions, as well as good recyclability due to its unique chemical structure. We further found the fluorescence emission of Cu3I (SR)2 could be quenched by MnO2 nanosheet (NS) via inner filter effect, and restored by thiocholine (TCh) generated from the hydrolysis of acetylthiocholine iodide (ATCh) in the catalysis of AChE. On this basis, a fluorescence "turn-on" assay was developed for monitoring AChE activity with a detection limit of 0.03 U/L and a detection range of 0.25-50 U/L. This method demonstrates great potential for real-time detection of AChE activity in biological samples and screening of AChE inhibitors obtained from herbal extracts as anti-AD agents. Additionally, Cu3I (SR)2/MnO2 NS sensing system also exhibited a color change from brown to colorless as the increasing AChE activity, which allowed the colorimetric and smartphone detection of AChE activity.
Collapse
Affiliation(s)
- Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Yue Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Yuanyuan Wang
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yihan Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Ruisong Xue
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yanmei Liu
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Wei Chen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, 215400, Suzhou, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 130021, Changchun, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
2
|
Tian X, Li L, Zheng X, Liu BT, Chen L, Wang Z, Bi Y, Song G, Li S, Meng Q, Li C, Zhang D. A novel aggregation-induced emission-featured hyperbranched poly(amido amine)s stabilized copper nanoclusters‑cerium (III) sensor for detection of thiol flavor compounds in processed meat. Food Chem 2025; 466:142236. [PMID: 39612855 DOI: 10.1016/j.foodchem.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Thiol flavor compounds are a class of flavoring ingredients that contribute significantly to food flavor. However, rapid discrimination of multiple thiol-flavor compounds remain a challenge. In this study, a ratiometric fluorescent sensor (TPE-ssHPA@Cu NCs-Ce3+) with dual-channel fluorescence features was developed using tetraphenylethene-embedded hyperbranched poly(amidoamine) as a template to stabilize the copper nanocluster‑cerium ions. The sensor was explored for the specific discrimination of six typical thiol flavor compounds, each producing diverse fluorescent fingerprints that were further identified using pattern recognition methods. The sensor achieved a rapid response in identifying thiol flavor compounds and multicomponent mixtures, with detection limits of 0.32-3.13 μM. Furthermore, it was successfully applied to differentiate between the different types and cooking times of meat broths.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Guangchun Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, PR China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Cai Z, Zhang Y, Zhao M, Bao J, Lv L, Li H. A facile synthesis of water-soluble copper nanoclusters as label-free fluorescent probes for rapid, selective and sensitive determination of alizarin red. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124708. [PMID: 38936210 DOI: 10.1016/j.saa.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Copper nanoclusters (FA@CuNCs) emitting blue fluorescence were successfully developed via a one-pot technique. In this method, the copper chloride, folic acid and hydrazine hydrate were applied as a precursor, protective agent and reducing agent, respectively. The absorption, fluorescence excitation and emission spectra of FA@CuNCs were carried out by using ultraviolet-visible and fluorescence spectrometry, respectively. The morphology, particle size, functional groups, oxidation states of elements of FA@CuNCs were discussed via using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The stability of FA@CuNCs was studied under various conditions, such as storage time at 25 ℃, ultraviolet radiation time, sodium chloride solutione and pH. The FA@CuNCs displayed blue fluorescence under the excitation wavelength of 361 nm, and the fluorescence quantum yield was 7.45 %. As a result of the inner filter effect, the alizarin red could significantly weaken the blue fluorescence of FA@CuNCs. Thus, the as-prepared FA@CuNCs could be utilized as fluorescence nanosensors for the trace determination of alizarin red. This platform suggested an excellent linear range for alizarin red varying from 0.5 to 200 μM with a fitting coefficient of 0.9955. The detection limit was calculated to be 0.064 μM in the light of the 3b/k (b and k refer to the standard deviation and slope of fitted curve, respectively). Furthermore, the as-developed FA@CuNCs could be used to detect the alizarin red in real samples and for the sensing of temperature.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China.
| | - Yixuan Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Manlin Zhao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Jinjia Bao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Ling Lv
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Haoyang Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| |
Collapse
|
4
|
Chen H, Peng B, Zhang P, Yang Y, Hu X. "Turn-on" fluorescence sensing for sensitively detecting Cr(VI) via a guest exchange process in Cu NCs@MIL-101 composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4835-4842. [PMID: 38967373 DOI: 10.1039/d4ay00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Copper nanoclusters (Cu NCs) are a new fluorescent material that is often used for determining metal ions, but most sensing systems are based on the "turn-off" model. Here, a "turn-on" model of fluorescence sensing for the detection of Cr(VI) was developed based on Cu NCs@MIL-101 composites. The Cu NCs@MIL-101 composites were synthesized from a simple mixture of Cu NCs and MIL-101(Cr), in which the Cu NCs were uniformly distributed in MIL-101(Cr). Notably, the fluorescence intensity of Cu NCs@MIL-101 was significantly weakened due to the internal filtration effect (IFE) of MIL-101. When Cr(VI) was introduced, the fluorescence of Cu NCs@MIL-101 was recovered by the guest exchange process between Cr(VI) and the Cu NCs, which overcame the IFE of Cu NCs@MIL-101. Based on this, a "turn-on" fluorescence probe was successfully constructed for the quantitative detection of Cr(VI) with two linear ranges of 0.05-1 μM and 1-20 μM, and a low detection limit of 0.05 μM. The proposed fluorescence probe possessed excellent selectivity and anti-interference ability, and was successfully applied for the detection of Cr(VI) in real water samples with satisfactory results. This study provides a new approach for the analytical application of Cu NCs.
Collapse
Affiliation(s)
- Huijing Chen
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Bo Peng
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ping Zhang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ying Yang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xue Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Wu Y, Ke C, Song Z, Zhu H, Guo H, Sun H, Liu M. Fluorescence and colorimetric dual-mode multienzyme cascade nanoplatform based on CuNCs/FeMn-ZIF-8/PCN for detection of sarcosine. Analyst 2024; 149:935-946. [PMID: 38193145 DOI: 10.1039/d3an01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
It is critical to develop a highly efficient and sensitive method for detecting the biomarker sarcosine (SA) of prostate cancer due to its importance for men's health. In our work, a fluorescence (FL) and colorimetric dual-mode multienzyme cascade nanoplatform for SA detection was designed and constructed. CuNCs/FeMn-ZIF-8/PCN nanocomposites with high FL properties and peroxidase-like activity were successfully prepared by encapsulating copper nanoclusters (CuNCs) into FeMn-ZIF-8 and then loaded onto P-doped graphitic carbon nitride (PCN). Furthermore, the nanocomposites served as carriers for the immobilization of sarcosine oxidase (SOX) to construct a high-efficiency dual-mode multienzyme cascade nanoplatform CuNCs/SOX@FeMn-ZIF-8/PCN for the detection of SA. The intermediate H2O2 generated in the cascade caused the FL quenching of nanocomposites and the discoloration of 3,3',5,5'-tetramethylbenzidin. The linear ranges for SA detection in the dual-mode system were 1-100 μM (FL) and 1-200 μM (colorimetric), with detection limits of 0.34 and 0.59 μM, respectively. This nanoplatform exhibited notable repeatability, specificity, and stability, making it suitable for detecting sarcosine in real human urine samples. Therefore, this dual-mode multienzyme cascade nanoplatform would have a potential applicative prospect for detecting SA and other biomarkers in real clinical samples.
Collapse
Affiliation(s)
- Yu Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Chenxi Ke
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Zichen Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Huiling Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| |
Collapse
|
6
|
Mahmoud AM, Abu-Alrub SS, Al-Qarni AO, El-Wekil MM, Shahin RY. A reliable and selective ratiometric sensing probe for fluorometric determination of P 2O 74- based on AIE of GSH@CuNCs-assisted by Al-N@CQDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123850. [PMID: 38219614 DOI: 10.1016/j.saa.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
In this study, a novel composite material was developed for the ratiometric detection of pyrophosphate anion (P2O74-). This composite consisted of Al and nitrogen co-doped carbon dots (Al-N@CQDs) and glutathione-capped copper nanoclusters (GSH@CuNCs). The Al-N@CQDs component, with its high reserved coordination capacity of Al3+, induced the non-luminescent behavior of GSH@CuNCs, resulting in an aggregation-induced emission (AIE) effect. The hybrid material (Al-N@CQDs/GSH@CuNCs) exhibited dual-emission signals at 620 nm and 450 nm after integrating the two independent materials utilizing the AIE effect and the fluorescence resonance energy transfer (FRET) approach. This approach represents the first utilization of this composite for ratiometric detection. Nevertheless, upon the addition of P2O74-, the AIE and FRET processes were hindered due to the higher coordination interaction of Al3+ towards P2O74- compared to the amino/carboxyl groups on Al-N@CQDs. This successful interference of the AIE and FRET processes allowed for the effective estimation of P2O74-. The response ratio (F450/F620) increased with increasing the concentration of P2O74- in the range of 0.035-160 µM, with an impressive detection limit of 0.012 µM. This innovative approach of utilizing hybrid CQDs/thiolate-capped nanoclusters as a ratiometric fluorescent sensor for analytical applications introduces new possibilities in the field. The as-fabricated system was successfully applied to detect P2O74- in different real samples such as water, serum, and urine samples with acceptable results.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Samer S Abu-Alrub
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Reem Y Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| |
Collapse
|
7
|
Shen J, Fan Z. Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism. Mikrochim Acta 2023; 190:427. [PMID: 37792071 DOI: 10.1007/s00604-023-06005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
The simple preparation of a nanohybrid of terbium-doped carbon dots/glutathione-capped copper nanoclusters (Tb@CDs/GSH-CuNCs) was for the first time developed for ratiometric detection of phosphate anion (Pi). Blue-emission of Tb@CDs can trigger non-luminescence of GSH-CuNCs for aggregation-induced emission (AIE) performance due to the strong reserved coordination capacity of Tb3+. Thus, Tb@CDs/GSH-CuNCs rapidly generated dual-emission signals at 630 nm and 545 nm by directly mixing the two individual materials via the AIE effect, alongside fluorescence resonance energy transfer (FRET) process. However, by the introduction of Pi, both AIE and FRET processes were blocked because of the stronger binding affinity of Tb3+ and Pi than that of Tb3+ and -COOH on Tb@CDs, thus realizing successful ratiometric detection of Pi. The linear concentration range was 0-16 μM, with the limit of detection (LOD) of 0.32 μM. The proposed method provided new ideas for designing nanohybrid of CDs and nanoclusters (MNCs) as ratiometric fluorescent probes for analytical applications.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China
- Department of Chemistry, Changzhi University, 73 Baoningmen East Street, Changzhi, 046011, Shanxi Province, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China.
| |
Collapse
|
8
|
Atulbhai SV, Singhal RK, Basu H, Kailasa SK. Perspectives of different colour-emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. LUMINESCENCE 2023; 38:867-895. [PMID: 35501299 DOI: 10.1002/bio.4272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
In the past 2 decades, multicolour light-emissive nanomaterials have gained significant interest in chemical and biological sciences because of their unique optical properties. These materials have drawn much attention due to their unique characteristics towards various application fields. The development of novel nanomaterials has become the pinpoint for different application areas. In this review, the recent progress in the area of multicolour-emissive nanomaterials is summarized. The different emissions (white, orange, green, red, blue, and multicolour) of nanostructure materials (metal nanoclusters, quantum dots, carbon dots, and rare earth-based nanomaterials) are briefly discussed. The potential applications of different colour-emissive nanomaterials in the development of fluorescent inks, light-emitting diodes, cell imaging, and sensing devices are briefly summarized. Finally, the future perspectives of multicolour-emissive nanomaterials are discussed.
Collapse
Affiliation(s)
- Sadhu Vibhuti Atulbhai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
9
|
Mu J, Zhang H, Huang Z, Jia Q. Terbium-triggered aggregation-induced emission of bimetallic nanoclusters for anticancer drugs sensing via the inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122388. [PMID: 36696862 DOI: 10.1016/j.saa.2023.122388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The development of accurate and sensitive detection methods of anticancer drugs is of significant importance because they play vital roles in biological systems. In recent years, bimetallic nanoclusters (BMNCs) incorporating the advantages of two metals have gained more and more attention, and can be widely applied in sensing applications. In this work, for the first time, we designed a sensing platform based on terbium ion (Tb3+) triggered aggregation-induced emission (AIE) of BMNCs. Tb3+ hybrid glutathione (GS) protected Ag/Cu nanoclusters (Tb3+@GS-AgCuNCs) were facilely fabricated according to the complexation reaction between Tb3+ and the carboxyl group of GS. Due to the inner filter effect (IFE), the fluorescence of Tb3+@GS-AgCuNCs decreased significantly in the presence of anticancer drugs with 6-thioguanine and methotrexate as representatives. In addition, the sensing platform was applied to monitor 6-thioguanine and methotrexate in real serum samples, indicating that it has great potential in anticancer drugs related applications.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Huifeng Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Sharma P, Naithani S, Layek S, Kumar A, Rawat R, Kaja S, Nag A, Kumar S, Goswami T. Development of low-cost copper nanoclusters for highly selective "turn-on" sensing of Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122697. [PMID: 37071963 DOI: 10.1016/j.saa.2023.122697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The development of low-cost earth abundant metal based fluorescent sensors for a rapid and selective nanomolar level detection of Hg2+ is essential due to the increasing world-wide concern of its detrimental effect on humans as well as the environment. Herein, we present a perylene tetracarboxylic acid functionalized copper nanoclusters (CuNCs) based "turn-on" fluorescence probe for highly selective detection of toxic Hg2+ ions. The fabricated CuNCs exhibited high photostability with emission maximum centered at 532 nm (λex = 480 nm). The fluorescence intensity of CuNCs was remarkably enhanced upon the addition of Hg2+ over other competing ions and neutral analytes. Notably, the 'turn-on' fluorescence response exhibits highly sensitive detection limit as low as 15.9 nM (S/N ∼ 3). The time resolved fluorescence spectroscopy suggested the energy transfer between CuNCs and Hg2+ ions following either inhibited fluorescence resonance energy transfer (FRET) or surface modification of CuNCs during Hg2+ sensing. This study offers the systematic design and development of new fluorescent 'turn-on' nanoprobes for rapid and selective recognition of heavy metal ions.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Samar Layek
- Department of Physics, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Amit Kumar
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Reema Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Sravani Kaja
- Department of Chemistry, BITS Pilani, Hyderabad 5000078, India
| | - Amit Nag
- Department of Chemistry, BITS Pilani, Hyderabad 5000078, India
| | - Sushil Kumar
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
11
|
Xi Y, Hu M, Gao L, Sun Q, Ma E, Hu W, Li M, Liu W, Sun J, Zhang C. A pyrazole-functional 3D cobalt-organic framework for fluorescence detection of Cu2+ and Hg2+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Zou J, Xu F, Zheng J, Xiang Y, Li M, Zhou Q, Xia H. Recyclable fluorescence sensing based on copper clusters for simultaneous determination of copper ions and ammonia. Analyst 2023; 148:1068-1074. [PMID: 36752351 DOI: 10.1039/d3an00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A one-step strategy for synthesizing fluorescent copper clusters stabilized by L-cysteine has been successfully established in aqueous solutions. The direct determination of copper ions was realized by the fluorescence enhancement phenomenon caused by the preparation and aggregation process. At the same time, ammonia treatment can lead to rapid fluorescence quenching, resulting from the influence on the aggregation behavior of Cu clusters, while the fluorescence can be recovered by the continuous addition of copper ions. Therefore, a recyclable fluorescence sensing system is constructed for the simultaneous determination of copper ions and ammonia. This method is simple, anti-interference and has been successfully applied to the determination of environmental samples.
Collapse
Affiliation(s)
- Jie Zou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fujian Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jishi Zheng
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuhao Xiang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Mengtian Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinghan Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hui Xia
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
13
|
Zhang Y, Deng Q, Tang C, Zhang M, Huang Z, Cai Z. Fluorescent folic acid-capped copper nanoclusters for the determination of rifampicin based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121944. [PMID: 36228492 DOI: 10.1016/j.saa.2022.121944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Development of excellent sensors to determine trace concentrations of rifampicin is of intense importance for medicine analysis and human health. Herein, a facile and green fluorescent probe was established for the determination of rifampicin by using folic acid protected copper nanoclusters (FA-Cu NCs). Many characterization methods were applied for the analysis of the as-prepared FA-Cu NCs including UV-visible absorption spectra, fluorescence spectra, Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), fluorescence lifetime and X-ray photoelectron spectroscopy (XPS). The TEM image suggested that the as-prepared FA-Cu NCs were highly dispersed. The as-synthesized FA-Cu NCs emerged blue fluorescence under UV light and demonstrated maximum emission wavelength at 446 nm under the maximum excitation wavelength of 358 nm. After the addition of rifampicin, the FL intensities of FA-Cu NCs were uncommonly quenched. The related experimental data intimated that the quenching mechanisms were assumed to the inner filter effect (IFE) and static quenching. The as-proposed probe platform displayed an obvious linear relationship with rifampicin concentrations varying from 0.5 to 100 µM, and the corresponding detection limit (LOD) was 0.073 µM (S/N = 3). Finally, the as-established detection platform was successfully employed to analyze trace concentrations of rifampicin in real samples.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China.
| | - Qingbo Deng
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Chang Tang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Minglu Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Zilong Huang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Zhifeng Cai
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China.
| |
Collapse
|
14
|
Amin Z, Rauf T, Jan Q, Kuchey MY, Sofi FA, Ismail T, Rashid A, Bhat BA, Sidiq N, Bhat MA. Synthesis of a Novel Hydrazone Functionality based Spectrophotometric Probe for Selective and Sensitive Estimation of Toxic Heavy Metal Ions. ChemistrySelect 2023. [DOI: 10.1002/slct.202202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zainab Amin
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Rauf
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Qounsar Jan
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Ismail
- Department of Chemistry SP College Srinagar 190001, J & K India
| | - Auqib Rashid
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Bilal Ahmad Bhat
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences Qatar University Doha 2713 Qatar
| | - Mohsin Ahmad Bhat
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| |
Collapse
|
15
|
Shen J, Fan Z. Ce 3+-induced Fluorescence Amplification of Copper Nanoclusters Based on Aggregation-induced Emission for Specific Sensing 2,6-pyridine Dicarboxylic Acid. J Fluoresc 2023; 33:135-144. [PMID: 36301441 DOI: 10.1007/s10895-022-03044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023]
Abstract
A straightforward, cost-effective and biocompatible reduction approach was applied to fabricate soluble but non-luminous glutathione-stabilized copper nanocluster (GSH-CuNCs). Surprisingly, as high as 1 × 103 times fluorescence enhancement was acquired when Ce3+ was injected at an extremely low concentration of only 18 µM. Ce3+ outperformed other rare-earth metal ions in terms of inducing fluorescence amplification of the non-luminous GSH-CuNCs. Furthermore, Ce3+ was employed as inducer for aggregation-induce emission (AIE) effect as well as reactant to coordinate with target of 2,6-pyridine dicarboxylic acid (DPA) due to the stronger coordination ability between Ce3+ and DPA than that of Ce3+ and GSH. As a result, the Ce3+/GSH-CuNCs ensemble was developed as a novel sensor to detect DPA in the "on-off" mode. When DPA was introduced into the sensor, Ce3+ failed to interact with GSH and detached from the surface of GSH-CuNCs, leading to fluorescence quenching. In addition, static quenching process and internal filtration effect (IFE) between Ce3+/GSH-CuNCs and DPA were also responsible for fluorescence quenching effect. A good linear relationship was obtained from 0.3 µM to 18 µM, with a limit of detection (LOD) of 0.19 µM. The as-proposed probe displayed high specificity to DPA and provided a simple, fast rapid and cheap method for construction this type of ensemble sensors to detect other targets.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China
- Department of Chemistry, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
16
|
Zhang S, Cui R, Zhao Q, Guo Y. Blue Luminescent Glutathione‐protected Copper Nanoclusters for Selective Detection of Barbaloin. ChemistrySelect 2022. [DOI: 10.1002/slct.202202396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shen Zhang
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 Shanxi China
| | - Rumiao Cui
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 Shanxi China
| | - Qingkai Zhao
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 Shanxi China
| | - Yuyu Guo
- College of Arts Taiyuan University of Technology Jinzhong 030600 Shanxi China
| |
Collapse
|
17
|
Dual modes of fluorescence sensing and smartphone readout for sensitive and visual detection of mercury ions in Porphyra. Anal Chim Acta 2022; 1226:340153. [DOI: 10.1016/j.aca.2022.340153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
|
18
|
Surface engineered bimetallic gold/silver nanoclusters for in situ imaging of mercury ions in living organisms. Anal Bioanal Chem 2022; 414:4235-4244. [PMID: 35449469 DOI: 10.1007/s00216-022-04076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/01/2022]
Abstract
Chemical sensing for the sensitive and reliable detection of mercury(II) ions (Hg2+) is of great importance in environmental protection, food safety, and biomedical applications. Due to the bio-enrichment property of Hg2+ in organisms, it is particularly meaningful to develop an effective tool that can in situ and rapidly monitor the level of Hg2+ in living organisms. In this work, we report ligand functionalized gold-silver bimetallic nanoclusters with bright red fluorescence as intracellular probes for imaging Hg2+ in living cells and zebrafish. The bimetallic nanoclusters of DTT-GSH@Au/AgNCs (DG-Au/AgNCs) with strong fluorescence that benefited from the synergistic effect of Au and Ag atoms were obtained through a one-pot synthesis method, incorporating glutathione (GSH) and dithiothreitol (DTT) as the reducers and functionalized ligands. Attractively, the bright red fluorescence of DG-Au/AgNCs could be rapidly and selectively quenched by Hg2+ within 1 min with a very low detection limit of 1.01 nM. Additionally, DG-Au/AgNCs had a great advantage in the detection of Hg2+ in living cells and zebrafish owing to its notably strong red fluorescence at 665 nm, which could avoid effectively auto-fluorescence interference from the organism. Such easily prepared bimetallic fluorescent nanoclusters would be expected to provide a noninvasive and sensitive approach in the detection of heavy metals in situ for environmental protection.
Collapse
|
19
|
Guo YY, Li WJ, Guo PY, Han XR, Deng ZR, Zhang S, Cai ZF. One facile fluorescence strategy for sensitive determination of baicalein using trypsin-templated copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120689. [PMID: 34894569 DOI: 10.1016/j.saa.2021.120689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Herein, we established a fluorescent detection platform for baicalein (Bai) based on copper nanoclusters, which were prepared by using copper sulfate as the precursor, trypsin (Tryp) as the template and hydrazine hydrate as the reducing agent. The entire preparation and testing process were rapid, facile and green. Many characterization methods, such as UV-vis absorption spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FT-IR), fluorescence lifetime, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), were applied for the analysis of trypsin-templated copper nanoclusters (Cu NCs@Tryp). The Cu NCs@Tryp released green fluorescence at maximum emission wavelength of 457 nm under maximum excitation wavelength of 377 nm. More importantly, the fluorescence of Cu NCs@Tryp was efficiently quenched by Bai. According to this phenomenon, a facile, rapid and selective turn-off fluorescence probe for Bai sensing was developed. Under the optimized testing conditions, the ln(F0/F) value and concentration of Bai displayed excellent linear relationship changing from 0.5 to 60 μM (R2 = 0.9969), and the detection limit was 0.078 μM. Furthermore, the Cu NCs@Tryp has been successfully employed to measure the amount of Bai in bovine serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Yu-Yu Guo
- College of Arts, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Wen-Jing Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Peng-Yu Guo
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Xin-Rui Han
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Zi-Rong Deng
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Shen Zhang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhi-Feng Cai
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
20
|
Panthi G, Park M. Synthesis of metal nanoclusters and their application in Hg 2+ ions detection: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127565. [PMID: 34736203 DOI: 10.1016/j.jhazmat.2021.127565] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Mercuric (Hg2+) ions released from human activities, natural phenomena, and industrial sources are regarded as the global pollutant of world's water. Hg2+ ions contaminated water has several adverse effects on human health and the environment even at low concentrations. Therefore, rapid and cost-effective method is urgently required for the detection of Hg2+ ions in water. Although, the current analytical methods applied for the detection of Hg2+ ions provide low detection limit, they are time consuming, require expensive equipment, and are not suitable for in-situ analysis. Metal nanoclusters (MNCs) consisting of several to ten metal atoms are important transition missing between single atoms and plasmonic metal nanoparticles. In addition, sub-nanometer sized MNCs possess unique electronic structures and the subsequent unusual optical, physical, and chemical properties. Because of these novel properties, MNCs as a promising material have attracted considerable attention for the construction of selective and sensitive sensors to monitor water quality. Hence this review is focused on recent advances on synthesis strategies, and optical and chemical properties of various MNCs including their applications to develop optical assay for Hg2+ ions in aqueous solutions.
Collapse
Affiliation(s)
- Gopal Panthi
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| |
Collapse
|
21
|
Li L, Fu M, Yang D, Tu Y, Yan J. Sensitive detection of glutathione through inhibiting quenching of copper nanoclusters fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120563. [PMID: 34749113 DOI: 10.1016/j.saa.2021.120563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A method for a sensitive fluorescence detection of glutathione was established. Glutathione-stabilized copper nanoclusters (CuNCs) were synthesized via a facile process. These CuNCs showed blue fluorescence with a peak around 450 nm. In the presence of p-benzoquinone (PBQ), the electron transfer from the copper nanoclusters to PBQ quenched the fluorescence of the CuNCs. Glutathione (GSH), as a reducing agent, formed a complex with PBQ. This formation inhibited the quenching from PBQ, and a restored fluorescence was obtained. This interaction provided a fluorescence enhancement for the measurement of GSH. Under the optimal condition, linear responses were obtained toward GSH in the ranges of 0.06-6.0 μM, with a limit of detection at 20 nM. This developed assay was easy in operation with high sensitivity and selectivity. The applicability was approved with successful glutathione measurements in real samples.
Collapse
Affiliation(s)
- Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
22
|
Rahimi F, Anbia M. Nitrogen-rich silicon quantum dots: facile synthesis and application as a fluorescent "on-off-on" probe for sensitive detection of Hg 2+ and cyanide ions. LUMINESCENCE 2022; 37:598-609. [PMID: 35037385 DOI: 10.1002/bio.4195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The sensitive and reliable detection of Hg2+ and CN- as harsh environmental contaminants are of great importance. In view of this, a novel "on-off-on" fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detecting Hg2+ and CN- ions in aqueous media. NR-SiQDs were synthesized by a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with L-asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photo- and pH-stability. The fluorescence emission was effectively quenched by Hg2+ (turn off) due to the formation of a non-fluorescent stable NR-SiQDs/Hg2+ complex while after the addition of cyanide ions (CN- ), Hg2+ ions can be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn on) due to the formation of highly stable [Hg (CN)4 ]2- species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN- , respectively. Finally, the NR-SiQDs based fluorescence probe was utilized to detect Hg2+ and CN- ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| |
Collapse
|
23
|
Li Z, Shen T, Gu J, Chattha SA. PVP–gold–copper nanocluster based NIR fluorescence probe for sensitive detection of malachite green. NEW J CHEM 2022. [DOI: 10.1039/d1nj04943g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel NIR fluorescent probe based on PVP–Au/CuNCs has been developed, exhibiting good selectivity and stability for detecting malachite green (MG).
Collapse
Affiliation(s)
- Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Tian Shen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Sadaqat Ali Chattha
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Department of Leather & Fibre Technology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
24
|
S S, Nair AJS, Sandhya KY. Highly Stable Copper Nano Cluster on Nitrogen-Doped Graphene Quantum Dots for the Simultaneous Electrochemical Sensing of Dopamine, Serotonin, and Nicotine; a Possible Addiction Scrutinizing Strategy. J Mater Chem B 2022; 10:3974-3988. [DOI: 10.1039/d1tb02368c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stable copper nanocluster CuNC@N-GQD which exhibited stability for more than one year was synthesized using nitrogen doped graphene quantum dots (N-GQDs) as reducing and capping agents and smaller...
Collapse
|
25
|
Xue Y, Cheng Z, Luo M, Hu H, Xia C. Synthesis of Copper Nanocluster and Its Application in Pollutant Analysis. BIOSENSORS 2021; 11:424. [PMID: 34821639 PMCID: PMC8615659 DOI: 10.3390/bios11110424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/09/2023]
Abstract
Copper nanoclusters (Cu NCs) with their inherent optical and chemical advantages have gained increasing attention as a kind of novel material that possesses great potential, primarily in the use of contaminants sensing and bio-imaging. With a focus on environmental safety, this article comprehensively reviews the recent advances of Cu NCs in the application of various contaminants, including pesticide residues, heavy metal ions, sulfide ions and nitroaromatics. The common preparation methods and sensing mechanisms are summarized. The typical high-quality sensing probes based on Cu NCs towards various target contaminants are presented; additionally, the challenges and future perspectives in the development and application of Cu NCs in monitoring and analyzing environmental pollutants are discussed.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510150, China
| |
Collapse
|
26
|
Zhang S, Wang Z, Yan W, Guo Y. Novel luteolin sensor of tannic acid-stabilized copper nanoclusters with blue-emitting fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119887. [PMID: 33971442 DOI: 10.1016/j.saa.2021.119887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, the fluorescent copper nanoclusters (Cu NCs) were firstly adopted to detect luteolin with excellent performance. The blue-emitting Cu NCs was successfully prepared through a facile one-pot approach by protection of tannic acid (TA) and chemical reduction of ascorbic acid (AA). The water-soluble nanoclusters possessed uniform size and displayed good stability. The TA-Cu NCs showed maximum luminescence at 434 nm when excited at 366 nm. Based on the static quenching and inner filter effect (IFE) mechanism, the TA-Cu NCs was efficiently and selectively quenched by luteolin. The detection limit was 0.12 μM and linear relationship existed in the range of 0.2-100 μM. Moreover, the TA-Cu NCs probe was successfully employed to detect luteolin in bovine serum samples with satisfactory recoveries. This novel platform was expected to expand the possible detection method based on fluorescence properties.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Zhuo Wang
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Wenyu Yan
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Yuyu Guo
- College of Arts, Taiyuan University of Technology, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
27
|
Cai ZF, Deng CH, Wang J, Zuo Y, Wu JL, Wang XP, Lv TZ, Wang YY, Feng DY, Zhao J, Zhang CF, Zhang JM. Sensitive and selective determination of aloin with highly stable histidine-capped silver nanoclusters based on the inner filter effect. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Water-soluble luminescent gold nanoclusters reduced and protected by histidine for sensing of barbaloin and temperature. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Anand SK, Mathew MR, Girish Kumar K. A dual channel optical sensor for biliverdin and bilirubin using glutathione capped copper nanoclusters. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Er Demirhan B, Şatana Kara HE, Demirhan B. One-step green aqueous synthesis of blue light emitting copper nanoclusters for quantitative determination of food color Ponceau 4R. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Liu H, Dong L, Wang M, Huang G. A new method for cartap detection with high sensitivity and selectivity based on the inner filter effect between GSH-Cu NCs and Au NPs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2659-2664. [PMID: 34037634 DOI: 10.1039/d1ay00591j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a novel and sensitive fluorescence method for cartap determination is established on the basis of the inner filter effect (IFE) of gold nanoparticles (Au NPs) on the fluorescence of glutathione protected Cu NCs (GSH-Cu NCs). In the presence of Au NPs, the fluorescence of GSH-Cu NCs was strongly quenched by the IFE because the absorption spectra of Au NPs overlap well with the emission spectra of GSH-Cu NCs. Upon addition of cartap, cartap could induce the aggregation of Au NPs whose absorption spectrum does not overlap with the emission spectrum of GSH-Cu NCs. Then, with the increase in cartap concentration, the IFE-decreased fluorescence was gradually recovered, realizing the fluorescence sensing of cartap. Under optimal conditions, the proposed method has a good linear relationship with cartap concentration in the range of 7-100 nM, and the detection limit is 3.34 nM. In addition, satisfactory results were obtained for cartap analysis using tap water and cabbage as real samples, which demonstrated that the method as-developed would have great practical application prospects.
Collapse
Affiliation(s)
- Haijian Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China. and Weifang Key Laboratory of Pollution Control and Resource Utilization of Chemical Wastewater, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China
| | - Libin Dong
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China.
| | - Miao Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China.
| | - Guofu Huang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China. and Weifang Key Laboratory of Pollution Control and Resource Utilization of Chemical Wastewater, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China
| |
Collapse
|
32
|
Li W, Zhang X, Hu X, Shi Y, Li Z, Huang X, Zhang W, Zhang D, Zou X, Shi J. A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124872. [PMID: 33387715 DOI: 10.1016/j.jhazmat.2020.124872] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel fluorescence sensing platform was fabricated for visual detection of cadmium ions (Cd2+) with excellent stability and portability. In this protocol, dual-emission ratiometric fluorescence probe were constructed based on silicon oxide-coated copper nanoclusters (CuNCs@SiO2) as a signal reference and cadmium telluride quantum dots (CdTe QDs) as signal response, thereby greatly improving the accuracy of test results. The level of Cd2+ can be reported within a wide linear range from 0.010 mg·L-1 to 2.0 mg·L-1 with a sensitive detection limit of 1.1 μg·L-1 (2.75 μg·kg-1) and a quick sample-to-answer monitoring time of 6 min, which was quite qualified for regularly monitoring Cd2+. Moreover, aiming to attain portable analysis, the smartphone as colorimetric reader and analyzer were also utilized for rapidly analyzing Cd2+ by capturing the change in fluorescence color. Additionally, benefiting from the strong combination of 1, 10-phenanthroline (Phen) and Cd2+, the fluorescence probe showed excellent anti-interference activities for Cd2+ assay in complex oyster matrix. Overall, the sensing platform had significant stability, specificity and sensitivity, offering a promising potential for conveniently evaluating the quality of marine bivalves polluted with Cd2+.
Collapse
Affiliation(s)
- Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongqiang Shi
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Di Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
33
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
34
|
Liu M, Kuang K, Li G, Yang S, Yuan Z. Photoluminescence-enhanced cholesteric films: Coassembling copper nanoclusters with cellulose nanocrystals. Carbohydr Polym 2021; 257:117641. [PMID: 33541665 DOI: 10.1016/j.carbpol.2021.117641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Iridescent and luminescent composite films were fabricated through a coassembly strategy, in which glutathione-stabilized copper nanoclusters (GSH-CuNCs) were incorporated into chiral nematic structures of a cellulose nanocrystal (CNC) film. Through variations in the helical pitch, these composite films exhibited broadband reflection. The fluorescence emission spectrum of the composite film exhibited peaks at 439 and 600 nm, corresponding to crystallization-induced emission from CNCs and assembly-induced emission from CuNCs. The enhanced luminescence and prolonged lifetime of the composite film were attributed to the confinement effect of solid layers and attendant intermolecular interactions. By tuning the reaction time, temperature, and pH of the solution, the emission color and intensity of the CuNCs could be changed. At appropriate GSH and Cu2+ concentrations, the chiral organization of GSH-CuNCs enabled the composite CNC film to exhibit right-handed chiral fluorescence with an asymmetry factor of -0.16. Luminescent composite films were employed to fabricate LEDs with custom colors and patterns.
Collapse
Affiliation(s)
- Mingye Liu
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kexu Kuang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guihua Li
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiquan Yang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zaiwu Yuan
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
35
|
Shao C, Xiong S, Cao X, Zhang C, Luo T, Liu G. Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Fluorescent and visual assay of H 2O 2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe. Anal Bioanal Chem 2021; 413:2135-2146. [PMID: 33511458 DOI: 10.1007/s00216-021-03181-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Herein, we synthesized and characterized glutathione-capped copper nanoclusters (CuNCs) using a convenient one-pot chemical reduction approach based on glutathione as capping and reducing agents. The Ce(III) induced aggregation-induced emission of CuNCs to form a CuNCs-Ce3+ fluoroprobe due to electrostatic and coordination interactions between Ce3+ and CuNCs. In contrast to CuNCs, the fluorescent intensities (FLs) of CuNCs-Ce3+ were enhanced by ~ 40-fold concomitant with 20-nm blue-shift of the maximum emission, and a 3.45-fold lengthening of the average fluorescent lifetime. The FLs of CuNCs-Ce3+ were selectively quenched at 650 nm by hydrogen peroxide (H2O2) via the redox reaction. Based on this phenomenon, the sensitive assay of H2O2 was realized, and the linear range spanned over the range of 14-140 μM. Notably, the visualization of the fluorescence quenched effect of H2O2 could be easily attained. Additionally, glucose could be specifically oxidized by glucose oxidase to produce H2O2, and thus the detection of glucose was achieved according to changes in the concentrations of H2O2. Under optimized conditions, the fluorescent assay of glucose based on the CuNCs-Ce3+ system offered the linear range of 8-48 μM with detection limit of 2.4 μM. Meanwhile, high selectivity of the as-constructed fluorescent assay allows the sensitive detection of H2O2 and glucose in real-world care products and human serum samples, showing a great application potential in their conventional monitoring.
Collapse
|
37
|
Cai Y, Wang F, Hua Y, Liu H, Yin M, Zhang C, Zhang Y, Wang H. A fluorimetric testing strip for the visual evaluation of mercury in blood using copper nanoclusters with DMSO-enhanced fluorescence and stability. NANOSCALE 2020; 12:24079-24084. [PMID: 33241820 DOI: 10.1039/d0nr06896a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fluorimetric analytical method using test strips has been fabricated for detecting Hg2+ ions in blood by using copper nanoclusters (Cu NCs) prepared via a biomineralization route. Unexpectedly, the as-prepared Cu NCs displayed greatly amplified red fluorescence once dispersed in DMSO, the intensity of which decreased specifically in the presence of Hg2+. Moreover, the resultant Cu NCs were deposited onto test strips to be further fast dried on superhydrophobic substrates in vacuum. The test strip-based fluorimetry can allow for the direct analysis of Hg2+ in blood in the linear concentration range of 0.10-1000 nM. Importantly, this solvent-enhanced fluorescence protocol for different metal probes such as Cu NCs promises extensive analysis applications for designing numerous fluorimetric platforms such as test strips.
Collapse
Affiliation(s)
- Yuanyuan Cai
- Rizhao Key laboratory of Marine Medicine and Materials Application Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sam S, Anand SK, Mathew MR, Kumar KG. Tannic Acid Capped Copper Nanoclusters as a Cost-Effective Fluorescence Probe for Hemoglobin Determination. ANAL SCI 2020; 37:599-603. [PMID: 33071267 DOI: 10.2116/analsci.20p322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the first time, we report on a copper nanoclusters based fluorescence sensor for hemoglobin (Hgb). The aggregation-induced quenching of tannic acid capped copper nanoclusters' (TACuNCs) fluorescence by a Hgb-H2O2 mixture that mimics the Fenton's reagent is used here for the selective determination of Hgb. It is possible to effectively determine Hgb using this sensitive and cost-effective sensor in the linear range of 5.0 × 10-8 to 4.0 × 10-9 M with a detection limit of 5.6 × 10-10 M. The practical utility of the sensor is evident from the good recovery values obtained from Hgb spiked with artificial blood serum.
Collapse
Affiliation(s)
- Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology
| | - Sanu K Anand
- Department of Applied Chemistry, Cochin University of Science and Technology
| | - Manna Rachel Mathew
- Department of Applied Chemistry, Cochin University of Science and Technology
| | | |
Collapse
|
39
|
Wang D, Wang Z, Wang X, Zhuang X, Tian C, Luan F, Fu X. Functionalized Copper Nanoclusters-Based Fluorescent Probe with Aggregation-Induced Emission Property for Selective Detection of Sulfide Ions in Food Additives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11301-11308. [PMID: 32926614 DOI: 10.1021/acs.jafc.0c04275] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, a novel and facile synthetic method of 3-mercaptopropionic acid functionalized copper nanoclusters with aggregation-induced emission (AIE) induced by Cu2+ (Cu2+@MPA-Cu NCs) was developed by a one-pot reaction as a fluorescent probe for the detection of sulfide ion (S2-). The prepared Cu2+@MPA-Cu NCs behaved as aggregated clusters and had strong pink fluorescence under 365 nm UV light with excellent fluorescence emission at 610 nm. The quantum yield increased from 0.56% to 4.8% before and after Cu2+ added. The presence of S2- would strongly bind to Cu2+, which caused the structure of the aggregated Cu2+@MPA-Cu NCs to be destroyed and then the fluorescence quenched. On the basis of this principle, a fluorescent probe was constructed for the detection of S2- with a very good linearity in the range 0-600 μM (R2 = 0.9843) and a detection limit of 26.3 nM. Finally, the nanohybrids were successfully demonstrated for the application in the selective detection of S2- in food additives. This study essentially paved a new avenue for effectively developing an easy sensor platform for S2- measurements in food additives.
Collapse
Affiliation(s)
- Dawei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
40
|
Jiao M, Li Y, Jia Y, Xu L, Xu G, Guo Y, Luo X. Ligand-modulated aqueous synthesis of color-tunable copper nanoclusters for the photoluminescent assay of Hg(II). Mikrochim Acta 2020; 187:545. [PMID: 32886171 DOI: 10.1007/s00604-020-04539-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Water-soluble Cu nanoclusters (NCs) with tunable emission were synthesized through an eco-friendly one-pot aqueous method. Blue-, green-, and red-emitting NCs with the emission peaks at 420 nm, 505 nm, and 630 nm were obtained by employing ethanediamine, cysteine, and glutathione as surface ligands, respectively. The ligand effects on the optical properties of Cu NCs were studied by the single variable method. It has been revealed by systematic characterizations that the dependence of emission color on the structures of ligands was mainly attributed to their different size-tuning effects. Glutathione has the strongest chelating ability and it can significantly reduce the monomer reactivity and thus decrease the supersaturation degree of the reaction, which is favorable for modulating Cu precursor to grow into larger NCs. In contrast, ethanediamine ligand resulted in smaller nanoclusters due to its weaker binding capability. Because of the strong emission and terrific fluorescent stability, Cu NCs capped with ethanediamine, possessing an emission peak at 420 nm when excited at a wavelength of 350 nm, were directly used for probing Hg(II) with satisfying selectivity, presenting a linear range of 0.1-5.0 mM and a detection limit of 33 μM. The sensor showed good performance in real sample analysis with recoveries ranging from 99% to 103%, and comparable accuracy with atomic fluorescence spectroscopy, manifesting the reliability of the current strategy for sensing Hg(II). Graphical abstract Water-soluble copper nanoclusters with blue, green, and red emissions were synthesized by employing ethanediamine, cysteine, and glutathione as surface ligands respectively, and the blue-emitting nanoclusters with strong emission and terrific stability were directly used for selectively sensing Hg2+.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuxiu Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Le Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
41
|
Shao C, Li C, Zhang C, Ni Z, Liu X, Wang Y. Novel synthesis of orange-red emitting copper nanoclusters stabilized by methionine as a fluorescent probe for norfloxacin sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118334. [PMID: 32305833 DOI: 10.1016/j.saa.2020.118334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In the present work, we report a novel chemical approach for the synthesis of orange-red emitting copper nanoclusters (Cu NCs) using L-methionine as stabilizing agent at room temperature for the first time. The synthetic route is facile, economical and viable. The methionine stabilized copper nanoclusters (Cu NCs/Met) were thoroughly characterized by TEM, FT-IR, XPS, UV-Vis, steady state and transient fluorescence spectroscopy. The results show the synthesized Cu NCs/Met with a fluorescence quantum yield of 4.37% possessed high stability and excellent optical features such as large Stokes shift and long fluorescence lifetime (8.3 μs). Significantly, the fluorescence intensity of Cu NCs/Met could be efficiently quenched by norfloxacin (NOR) pharmaceutical. A fast and cost-effective NOR sensor was proposed employing Cu NCs/Met as the fluorescent nanoprobe, and the quenching mechanisms were attributed to inner filter effect and agglomeration-induced quenching. The developed sensor exhibited a high sensitivity and selectivity towards NOR in a wide linear range from 0.05 to 250 μM with a detection limit as low as 17 nM. Moreover, the practicability of the developed NOR sensor for real sample assay was validated with satisfactory recoveries, indicating this sensing platform with great potential for label-free pharmaceutical detection in complex systems.
Collapse
Affiliation(s)
- Congying Shao
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Chunbo Li
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Cheng Zhang
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Zheng Ni
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Xianhu Liu
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongxiang Wang
- College of Chemistry and Materials Science/Information College, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
42
|
Mathew MR, Anand SK, Radecki J, Radecka H, Girish Kumar K. Simple and Cost-effective “Turn-on” Fluorescence Sensor for the Determination of Xanthine. J Fluoresc 2020; 30:695-702. [DOI: 10.1007/s10895-020-02543-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
|
43
|
Liu R, Duan S, Bao L, Wu Z, Zhou J, Yu R. Photonic crystal enhanced gold-silver nanoclusters fluorescent sensor for Hg 2+ ion. Anal Chim Acta 2020; 1114:50-57. [PMID: 32359514 DOI: 10.1016/j.aca.2020.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/01/2020] [Accepted: 04/02/2020] [Indexed: 01/16/2023]
Abstract
Luminescent nanoclusters (NCs) have attracted much attention because of their good photostability and low toxicity, however, the low quantum yield is still a deficiency, and many increasing efforts are being devoted to enhance the luminescence intensity of NCs. In this paper, a method of enhancing the fluorescent signal of gold-silver nanoclusters (AuAgNCs) by photonic crystals (PhCs) was proposed. The fluorescent intensity of AuAgNCs on PhCs can be enhanced 8.0-fold in comparison to the control sample without PhCs. Furthermore, a novel fluorescence sensor of AuAgNCs based on PhCs is used for the sensitive and selective detection of Hg2+ ion in the aqueous solution, the detection limit is 0.35 nM due to the PhCs enhancement effect for the fluorescence. This proposed method may not only develop a highly sensitive method for determination of Hg2+ ion, but also expand the application of AuAgNCs in ultra-trace analysis.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; Hunan Provincial Key Lab of Dark Tea and Jin-hua, College of Chemistry and Material Engineering, Hunan City University, Yiyang, 413000, PR China
| | - Shanshan Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lijiao Bao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhaoyang Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jun Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
44
|
Tai YT, Simon T, Chu YY, Ko FH. One-pot synthesis of copper nanoconjugate materials as luminescent sensor for Fe3+ and I− detection in human urine sample. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Li L, Chen J, Li Y, Song N, Zhu L, Li Z. Synthesis of fluorescent pink emitting copper nanoparticles and sensitive detection of α-naphthaleneacetic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117433. [PMID: 31390579 DOI: 10.1016/j.saa.2019.117433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Detecting NAA in food has drawn intense attention as it has imposed significant threat to people's health and the growth of food industry. Over the past few years, great importance has been attached to the application of copper nanomaterials as fluorescent probe to food and environmental detection. Here, the simple, rapid, cost effective and water soluble fluorescent copper nanoparticles were synthesized with chemical reduction sonochemical assisted method for highly selective and sensitive detection of α-naphthaleneacetic acid (NAA) by using 2-mercaptobenzothiazole (MBT) as a protecting agent and polyvinylpyrrolidone (PVP) as a stabilizing agent (MBT-PVP CuNPs). The resultant CuNPs has a spherical shape with an average diameter of 10-15 nm and strong fluorescent pink emission characteristic peak at 580 nm upon 334 nm excitation. Interestingly, upon the addition of NAA, the fluorescence of MBT-PVP CuNPs can be effectively quenched for the reason that NAA could interact with MBT via hydrogen bonding and conform copper-NAA clathrate with Cu+ via coordination bond, which shows a good linearity in the range of NAA from 0.5 to 50 μM and with a detection limit of 9.6 nM. Moreover, the prepared probe has good selectivity for NAA detection over other co-existing molecules. It is worth mentioning that this method has been successfully applied to authentic comestible sample analysis and obtained satisfying and promising results, which indicates that this strategy is likely to have a promising application potential for NAA detection in the field of food safety.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China; Humic Acid Engineering and Technology Research Center of Shanxi Province, Jinzhong 030619, PR China.
| | - Juan Chen
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 201424, PR China
| | - Nan Song
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Lulu Zhu
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, PR China.
| |
Collapse
|
46
|
Cai Z, Zhu R, Pang S, Tian F, Zhang C. One‐step Green Synthetic Approach for the Preparation of Orange Light Emitting Copper Nanoclusters for Sensitive Detection of Mercury(II) Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.201904013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhifeng Cai
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Ruitao Zhu
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Shulin Pang
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Fang Tian
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Caifeng Zhang
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
- Humic Acid Engineering and Technology Research Center of Shanxi Province Jinzhong 030619 P. R. China
| |
Collapse
|
47
|
Benavides J, Quijada-Garrido I, García O. The synthesis of switch-off fluorescent water-stable copper nanocluster Hg 2+ sensors via a simple one-pot approach by an in situ metal reduction strategy in the presence of a thiolated polymer ligand template. NANOSCALE 2020; 12:944-955. [PMID: 31840709 DOI: 10.1039/c9nr08439h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fabrication of stable fluorescent copper nanoclusters (CuNCs) in aqueous media is still challenging, despite the low price and potential biomedical applications. Herein, we report a facile and efficient strategy for assembling CuNCs using multifunctional thiolated copolymers with pH and thermoresponsive features. The new nanohybrids are formed via a simple one-pot approach through the reduction of a copper salt with hydrazine in the presence of a multithiolated polymer, which provides a template during nanocluster assembly and further efficient protection against oxidation and aggregation. Furthermore, the thermo- and pH-responsive properties of the pristine copolymers endow the nanohybrids with these stimuli-responsive features. The thiol content and the macromolecular size of the polymer ligands exert strong influences on the final photophysical properties of these new hybrid luminescent nanoclusters. The existence of stable bright greenish-yellow emission in water over long periods of time, the high photostability under UV irradiation and the strong oxidation resistance toward hydrogen peroxide of the hybrid CuNCs suggest that they have great promise for nanomedicine, bioassay and nanosensor use. Furthermore, the polymeric CuNCs obtained have been successfully tested as optical switch-off sensors for the sensitive and highly selective detection of Hg2+ in the presence of other metal ions in liquid and solid states. Finally, we demonstrate the practical application of the new hybrid to Hg2+ detection in human urine.
Collapse
Affiliation(s)
- Jesús Benavides
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, E-28006-Madrid, Spain.
| | | | | |
Collapse
|
48
|
Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters. Mikrochim Acta 2020; 187:81. [DOI: 10.1007/s00604-019-4067-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
49
|
A Simple and Cost Effective Turn off Fluorescence Sensor for Biliverdin and Bilirubin Based on L-Cysteine Modulated Copper Nanoclusters. J Fluoresc 2019; 30:63-70. [PMID: 31858352 DOI: 10.1007/s10895-019-02470-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
The present article reports the efficiency of L-cysteine modulated copper nanoclusters (L-cys-CuNCs) as a fluorescent probe for the selective determination of naturally occurring bile pigments biliverdin (BVD) and bilirubin (BLR). These pigments were found to quench the fluorescence of L-cys-CuNCs through static processes. Under optimized conditions, the proposed strategy permitted the quantification of BVD and BLR in the range 4.00 × 10-5 to 5.00 × 10-7M and 1.00×10-5 to 1.00×10-6 M respectively with limits of detection 2.33 × 10-7M and 2.29 × 10-7 M. The practical utility of the developed sensor have been investigated in spiked blood and urine samples.
Collapse
|
50
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|