1
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
2
|
Zhang Y, Zhang X, Xu H, Zhao S, Yang Z, Pi Z, Yang X, Liao X. A Ratiometric Fluorescence Probe Based on Silver Nanoclusters and CdSe/ZnS Quantum dots for the Detection of Hydrogen Peroxide by Aggregation and Etching. J Fluoresc 2024:10.1007/s10895-024-03774-x. [PMID: 38907118 DOI: 10.1007/s10895-024-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
In this study, a ratiometric fluorescence nanoprobe is developed for the analysis of hydrogen peroxide (H2O2). Silver nanoclusters (AgNCs) were synthesized by chemical reduction method using sodium borohydride (NaBH4) as reducing agent, and were coupled with CdSe/ZnS quantum dots (QDs) to form the ratiometric fluorescence nanoprobe silver nanoclusters-quantum dots (AgNCs-QDs). The effect of the volume ratio of CdSe/ZnS QDs to AgNCs on the fluorescence ratio of AgNCs-QDs was investigated. The fluorescence characterization results show that two emission peaks of AgNCs-QDs are located at 473 nm and 661 nm, respectively. Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) results show that H2O2 can cause the fluorescence probe to aggregate, while etching AgNCs to produce silver ions, which together cause the fluorescence of the QDs in the ratiometric fluorescent probe to be quenched. Based on this strategy, the fluorescence intensity ratio of the two emission peaks F473/F661 exhibits a strong linear correlation with the concentration of H2O2. The detection range is 3.32 µM ~ 2.65 mM with a detection limit of 3.32 µM. In addition, the ratiometric fluorescence probe can specifically recognize H2O2 and has excellent anti-interference performance and good fluorescence stability. Importantly, the probe was utilized for the detection of H2O2 in serum, showing the possibility of the probe in clinical detection applications.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xin Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Hedan Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Sitian Zhao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Zirui Yang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Zijie Pi
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xiaoling Yang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China.
| |
Collapse
|
3
|
Zhao T, Wu D, Zhang X, Lyu H. A fluorescent sensor based on single band bright red luminescent core-shell UCNPs for the high-sensitivity detection of glucose and glutathione. Anal Chim Acta 2024; 1295:342323. [PMID: 38355224 DOI: 10.1016/j.aca.2024.342323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
As the reliable biomarkers to evaluate the diabetes and neurological disease, sensitive and accurate detection of glucose and glutathione (GSH) in biological samples is necessary for early precaution and diagnosis of related-diseases. The single red upconversion nanoparticles (UCNPs) especially with core-shell structure can penetrate deeper biological tissues and cause less energy loss and thus have higher sensitivity and accuracy. Additionally, an enzyme-controlled cascade signal amplification (ECSAm) strategy will further enhance sensitivity. Herein, using single red UCNPs with core-shell structure as the luminescent material, a fluorescent sensor based on ECSAm was developed for the highly sensitive and accurate detection of glucose and GSH. Under the optimal conditions, the limits of detection for glucose and GSH by fluorescent method were 0.03 μM and 0.075 μM, separately. This assay was used to analyze the content of glucose and GSH in serum samples, and the obtained data was close to that of commercial blood glucose and GSH detection kit. The developed sensor platform based on single red UCNPs with core-shell structure and ECSAm can be a promising method for the accurate and sensitive detection of glucose and GSH in biological samples.
Collapse
Affiliation(s)
- Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dongzhi Wu
- Department of Orthopedics Institute, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China; Department of Orthopedics Institute, Fuzhou Second Hospital, Fuzhou, 350007, China
| | - Xuecheng Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Cao J, Jiang H, Wu Y, Yu X. Visual detection of H 2O 2 and glucose by HBcAb-HRP fluorescence-enhanced CdTe QDs/CDs ratiometric fluorescence sensing platform. Colloids Surf B Biointerfaces 2024; 235:113774. [PMID: 38309154 DOI: 10.1016/j.colsurfb.2024.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
This study presents the development of a sensitive and simple enhanced ratiometric fluorescence sensing platform in the consist of CdTe quantum dots (QDs), carbon dots (CDs), and hepatitis B core antibody labeled with horseradish peroxidase (HBcAb-HRP) for the visual analysis of H2O2 and glucose. The sulfur atoms in HBcAb-HRP have a strong affinity for Cd(II), which effectively enhances the fluorescence intensity of the CdTe QDs due to the generation of more radiative centers at the CdTe/Cd-SR complex. In the presence of H2O2, the Cd-S bonds are oxidized to form disulfide products and results in linear fluorescence quenching, while CDs maintain stable. Becasue glucose can be converted into H2O2 with the aid of glucose oxidase, this sensing platform can also be used for analyzing glucose. The detection limits for H2O2 and glucose are 2.9 μmol L-1 with RSD of 2.6% and 1.6 μmol L-1 with RSD of 2.4% respectively. In addition, under UV lamp irradiation, the orange-yellow CdTe QDs gradually quench with increasing H2O2 and glucose, while the blue CDs remain unchanged. A color change from orange-yellow to blue enables a visual semi-quantitative determination of H2O2 in commercial contact lens solution and glucose in human serum without any pretreatment. Thus, this CdTe QDs/CDs ratiometric sensing platform has significant potential for the rapid analysis of H2O2 and glucose in actual application.
Collapse
Affiliation(s)
- Jie Cao
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Han Jiang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
5
|
Guo Y, Zhao T, Guo Q, Ding M, Chen X, Lin J. Highly sensitive detection for xanthine by combining single-band red up-conversion nanoparticles and cycle signal amplification strategy based on internal filtration effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123566. [PMID: 37871542 DOI: 10.1016/j.saa.2023.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Up-conversion nanoparticles (UCNPs), especially single-band bright red UCNPs, have better penetration of biological tissues, absorb less lost energy, and have higher sensitivity and accuracy in the determination of actual biological samples in the field of biosensing. Here, a novel colorimetric and fluorescent dual-channel method based upon an internal filtration effect (IFE) quenching mechanism was proposed for the quantitative analysis of xanthine (XA) by using red UCNPs as fluorescence indicator and 3,3',5,5' -tetramethylbenzidine (TMB) as chromogenic substrate. The sensitivity of the detection system was also enhanced by a cycle signal amplification strategy based on the Fenton reaction. Under the best conditions, the detection limits of XA by fluorescent and colorimetric methods were 0.58 μM and 1.19 μM, respectively. The developed method was applied to the detection of XA in actual serum samples, and the recoveries of the spiked samples by fluorescent and colorimetric methods were in the range of 96.3-104.3 % and 94.3-105.4 %, respectively. In addition, the commercial ELISA method was used to verify the application of the proposed method and the test results of XA were close to those obtained by fluorescent and colorimetric methods, indicating that the accuracy of the developed nanosensing system was acceptable.
Collapse
Affiliation(s)
- Yingying Guo
- Department of CT/MRI, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qiaonan Guo
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mingji Ding
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
6
|
Han L, Chen Z, Yu C, Tang K, Wang Y, Sun W, Zhang X, Yao X, Chen J, Wu F, Lan J. Upconversion luminescence nanosensor for detection of Fe 3+ and phosphate ion based on the inner-filter effect. Anal Bioanal Chem 2023; 415:7139-7150. [PMID: 37803135 DOI: 10.1007/s00216-023-04979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
In this work, an upconversion luminescence (UCL) nanosensor for fast detection of ferric ion (Fe3+) and phosphate ion (Pi) is developed based on the inner-filter effect (IFE) between NaYF4:Yb/Er upconversion nanoparticles (UCNPs) and Fe3+-hypocrellin B (HB) complex. Fe3+-HB complex has strong absorption band (450-650 nm), which overlaps with the green emission peak of UCNPs at 545 nm. By adding Fe3+ and Pi, the UCNPs-HB system produces the red-shift change of absorption spectrum, which leads to the "on-off-on" process of IFE. So, with the specific recognition ability of HB for Fe3+ and the competitive complexation of Pi for Fe3+, the proposed nanosensor utilizes the UCL change to achieve the detection of the targets. For the detections of Fe3+, the linear range is 10-600 μM with a limit of detection (LOD) of 2.62 μM, and for Pi, the linear range is 5-100 μM with a LOD of 1.25 μM. The results for selectivity, precision, and recovery test are also satisfactory. Furthermore, the real sample detection shows that the proposed nanaosensor has a great potential in environmental and biological systems. An upconversion luminescence (UCL) nanosensor based on the inner-filter effect (IFE) between upconversion nanoparticles (UCNPs) and Fe3+-hypocrellin B (HB) complex for the detection of Fe3+ and phosphate ion has been proposed, which is promising to be a convenient and sensitive assay for monitoring Fe3+ and phosphate ion in different environments and biological systems.
Collapse
Affiliation(s)
- Luodan Han
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhiwei Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Chunxiao Yu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Keren Tang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yonghao Wang
- College of Environment and Safety Engineer, Fuzhou University, Fuzhou, Fujian, PR China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Xu Yao
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China.
| |
Collapse
|
7
|
Li G, Cheng L, Liu S, Wang T, Zhang C, Zhang Y, Zhao A, Kong L, Wang S, Wang K, Lin L. Non-invasive detection of haemoglobin, platelets, and total bilirubin using hyperspectral cameras. Talanta 2023; 260:124634. [PMID: 37149941 DOI: 10.1016/j.talanta.2023.124634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Hyperspectral imaging has emerged as a promising high-resolution and real-time imaging technology with potential applications in medical diagnostics and surgical guidance. In this study, we developed a high-speed hyperspectral camera by integrating a Fabry-Perot cavity filter on each CMOS pixel. We used it to non-invasively detect three blood components (haemoglobin, platelet, and total bilirubin). Specifically, we acquired transmission images of the subject's fingers, extracted spectral signals at each wavelength, and used dynamic spectroscopy to obtain non-invasive blood absorption spectra. The prediction models were established using the PLSR method and were modelled and validated based on the standard clinical-biochemical test values. The experimental results demonstrated excellent performance. The best predictions were obtained for haemoglobin, with a high related coefficient (R) of 0.85 or more in both the calibration and prediction sets and a mean absolute percentage error (MAPE) of only 5.7%. The results for total bilirubin were also ideal, with R values exceeding 0.8 in both sets and a MAPE of 10.6%. Although the prediction results for platelets were slightly less satisfactory, the error was still less than 15%, indicating that the results were also acceptable. Overall, our study highlights the potential of hyperspectral imaging technology for the development of portable and affordable devices for blood analysis, which can be used in various settings.
Collapse
Affiliation(s)
- Gang Li
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Leiyang Cheng
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Shuyang Liu
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Tianhe Wang
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Chen Zhang
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Yunhao Zhang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China; Tianjin Jinhang Institute of Technical Physics, China.
| | - Anna Zhao
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Li Kong
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Shuo Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Kang Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Ling Lin
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| |
Collapse
|
8
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
9
|
Wang K, Li G, Zhou M, Wang H, Wang D, Lin L. Noninvasive and simultaneous quantitative analysis of multiple human blood components based on the grey analysis system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122043. [PMID: 36335748 DOI: 10.1016/j.saa.2022.122043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Noninvasive detection of human blood components is the dream of human beings and the goal of clinical detection. From the perspective of mathematical analysis, based on the grey analysis system, the principle of spectral chemical quantitative analysis and the solution method of multivariate linear equation, this paper pioneers the spectrum elimination method, and obtains a complete, high-precision, synchronous and noninvasive detection system for a variety of human blood components. The spectral elimination method applies the principle of elimination method in mathematics to the noninvasive quantitative analysis of human blood components by spectral method, reduces the influence of non-target components on the detection of target components, and improves the accuracy of noninvasive quantitative analysis of human blood components. To demonstrate the effectiveness of the method, taking the analysis of the contents of seven blood components (hemoglobin, red blood cell count, neutrophils, lymphocytes, monocytes, eosinophils and basophils) in blood as an example, fourteen models were established by two different methods. From the comparison of modeling results, it can be concluded that when the seven models established by spectral elimination method predict the corresponding seven components of all samples, the predicted correlation coefficients are more than 0.9500. The experimental results show that the spectral elimination method and non-invasive detection system proposed can predict the content of human blood components with high accuracy. This paper studies a high-precision, simultaneous and noninvasive quantitative analysis system of multiple human blood components for the first time, which not only makes great progress in the non-invasive chemical quantitative analysis of human blood components by spectroscopy, but also has great application value for clinical medical treatment and disease diagnosis.
Collapse
Affiliation(s)
- Kang Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Gang Li
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Mei Zhou
- East China Normal University, College of Communication and Electronic Engineering, China.
| | - Huiquan Wang
- Tiangong University, College of Life Sciences, China.
| | - Dan Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Ling Lin
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| |
Collapse
|
10
|
Su K, Xiang G, Cui C, Jiang X, Sun Y, Zhao W, He L. Smartphone-based colorimetric determination of glucose in food samples based on the intrinsic peroxidase-like activity of nitrogen-doped carbon dots obtained from locusts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
11
|
Chen X, Yang Z, Chen Q, Zhang Y. Glucose determination in human serum by applying inner filter effect quenching mechanism of upconversion nanoparticles. Front Bioeng Biotechnol 2023; 11:1168086. [PMID: 37101750 PMCID: PMC10123268 DOI: 10.3389/fbioe.2023.1168086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Accurate blood glucose determination is essential to the clinical diagnosis and management of diabetes. This work establishes an inner filter effect (IFE) strategy between upconversion nanoparticles (UCNPs) and quinone-imine complex for glucose monitoring in human serum simply and efficiently. In this system, the enzyme glucose oxidase (GOx) catalyzes the reaction of glucose into hydrogen peroxide (H2O2) and gluconic acid when compulsion by oxygen. In the presence of horseradish peroxidase (HRP), the produced H2O2 can catalytically oxidize phenol and 4-amino antipyrine (4-AAP) to generate quinone-imine products. The purple-colored quinone-imine complex effectively absorbed the fluorescence of NaYF4:Yb3+, Er3+ UCNPs, leading to the strong fluorescence quenching of UCNPs through IFE. Thus, a new approach was established for glucose monitoring by determining the fluorescence intensity. Under the optimal condition, this approach shows better linearity to glucose from 2-240 μmol/L with a low detection limit at 1.0 μmol/L. Owing to the excellent fluorescence property and background-free interference of the UCNPs, the biosensor was applied for glucose measurements in human serum and got a satisfactory result. Furthermore, this sensitive and selective biosensor revealed great potential for the quantitative analysis of blood glucose or different kinds of H2O2-involved biomolecules for the application of clinical diagnosis.
Collapse
Affiliation(s)
| | - Zhiying Yang
- Changsha Health Vocational College, Changsha, China
| | - Qiong Chen
- Changsha Health Vocational College, Changsha, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
- *Correspondence: Youyu Zhang,
| |
Collapse
|
12
|
Zhao T, Li Y, Zhang X, Lyu H, Xie Z. A strategy for the accurate detection of glucose in human serum based on the IFE effect of up-transformed nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Besagarhally Shivappa S, Krishnegowda A. Spectrophotometric determination of glucose in human serum samples using para‐phenylenediamine and alpha‐naphthol as a chromogenic reagent. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Zhang Y, Hassan MM, Rong Y, Liu R, Li H, Ouyang Q, Chen Q. A solid-phase capture probe based on upconvertion nanoparticles and inner filter effect for the determination of ampicillin in food. Food Chem 2022; 386:132739. [PMID: 35334326 DOI: 10.1016/j.foodchem.2022.132739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Ampicillin (AMP) is commonly used to treat diseases caused by bacterial infections as a veterinary drug. However, the abuse of AMP can lead to residues in food and ultimately cause harm to humans. Thus, it is significant to construct a reliable system for AMP detection. Here, we developed an inner filter effect system based on a solid-phase capture probe and the catalysis of platinum nanoparticles (PtNPs) for AMP determination in food. In the presence of AMP, PDMS captured AMP then combined with aptamer-functionalized PtNPs, which catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine, resulting in upconversion fluorescence quenching. The results showed the fluorescence intensity of upconversion nanoparticles was related to AMP concentration (0.5-100 ng·mL-1) with an LOD of 0.32 ng·mL-1, which made quantification of AMP possible. The method also achieved a satisfactory recovery rate (96.89-112.92%) and can be used for AMP detection in food samples with selectivity and sensitivity.
Collapse
Affiliation(s)
- Yunlian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
15
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
16
|
Bi X, Li L, Luo L, Liu X, Li J, You T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem 2022; 385:132657. [DOI: 10.1016/j.foodchem.2022.132657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/26/2022]
|
17
|
Ye H, Ding Y, Liu T, Li J, Wang Q, Li Y, Gu J, Zhang Z, Wang X. Colorimetric assay based on NiCo 2S 4@N,S-rGO nanozyme for sensitive detection of H 2O 2 and glucose in serum and urine samples. RSC Adv 2022; 12:20838-20849. [PMID: 35919163 PMCID: PMC9295685 DOI: 10.1039/d2ra03444a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Traditional bimetallic sulfide-based nanomaterials often have a small specific surface area (SSA), low dispersion, and poor conductivity, thereby limiting their wide applications in the nanozyme-catalytic field. To address the above issues, we herein integrated NiCo2S4 with N,S-rGO to fabricate a nanocomposite (NiCo2S4@N,S-rGO), which showed a stronger peroxidase-mimetic activity than its pristine components. The SSA (155.8 m2 g-1) of NiCo2S4@N,S-rGO increased by ∼2-fold compared to NiCo2S4 with a pore size of 7-9 nm, thus providing more active sites and charge transfer channels. Based on the Michaelis-Menten equation, the affinity of this nanocomposite increased 40% and 1.1∼10.6-fold compared with NiCo2S4 with N,S-rGO, respectively, highlighting the significant enhancement of the peroxidase-like activity. The enhanced activity of this nanocomposite is derived from the joint participation of ˙OH, ˙O2 -, and photogenerated holes (h+), and was dominated by h+. To sum up, N,S-codoping, rich S-vacancies, and multi-valence states for this nanocomposite facilitate electron transfer and accelerate reaction processes. The nanocomposite-based colorimetric sensor gave low detection limits for H2O2 (12 μM) and glucose (0.3 μM). In comparison with the results detected by a common glucose meter, this sensor provided the relative recoveries across the range of 97.4-101.8%, demonstrating its high accuracy. Moreover, it exhibited excellent selectivity for glucose assay with little interference from common co-existing macromolecules/ions, as well as high reusability (>6 times). Collectively, the newly developed colorimetric sensor yields a promising methodology for practical applications in H2O2 and glucose detection with advantages of highly visual resolution, simple operation, convenient use, and satisfactory sensitivity.
Collapse
Affiliation(s)
- Hanzhang Ye
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yongli Ding
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Tingting Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Jiani Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Qi Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yuhao Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Jingjing Gu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Zhanen Zhang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
18
|
Borse S, Rafique R, Murthy ZVP, Park TJ, Kailasa SK. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Analyst 2022; 147:3155-3179. [PMID: 35730445 DOI: 10.1039/d1an02170b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| | - Rafia Rafique
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| |
Collapse
|
19
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
20
|
Li G, Wang K, Wang D, Lin L. Noninvasive blood glucose detection system based on dynamic spectrum and “M+N″ theory. Anal Chim Acta 2022; 1201:339635. [DOI: 10.1016/j.aca.2022.339635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
|
21
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
23
|
Almutairi EM, Ghanem MA, Al-Warthan A, Shaik MR, Adil SF, Almutairi AM. Chemical deposition and exfoliation from liquid crystal template: Nickel/nickel (II) hydroxide nanoflakes electrocatalyst for a non-enzymatic glucose oxidation reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Developed ratiometric fluorescent probe as a logic platform for potential diagnosis of thyroid disease and diabetes and fluorescent ink. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
26
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
27
|
Quantitative gold nanorods based photothermal biosensor for glucose using a thermometer as readout. Talanta 2021; 230:122364. [PMID: 33934801 DOI: 10.1016/j.talanta.2021.122364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
To meet the increasing need for point-of-care testing (POCT), simple and portable readout strategies would be highly desirable. Thermometer with high accuracy and straightforward readout is an ideal tool for the development of new POCT methods. The exploration of new thermometer-based detection methods is of great significance. In this study, a simple biosensor for glucose based on the photothermal effect of gold nanorods using a simple thermometer as readout has been developed. In the presence of glucose oxidase, glucose can react with the dissolved oxygen to produce H2O2. With the help of Fe2+, H2O2 can etch gold nanorods (AuNRs) to different aspect ratios. The decrease of the aspect ratio of AuNRs leads to the blue-shift of the localized surface plasmon resonance peak, resulting in a decrease of photothermal effect in the near-infrared regions and the temperature of the system decreased. The change of the temperature has a linear relationship with the logarithm of glucose concentration in the range of 1.0-10.0 mM with a detection limit of 0.8 mM. The proposed method possesses a bias offset of -0.03 mM for glucose detection compared to the hospital method. Since many enzymatic reactions can produce H2O2, the principle can be modified to detect different targets by simply change of the enzyme used.
Collapse
|
28
|
Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021; 62:8866-8907. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.
Collapse
Affiliation(s)
- Deshmukh Abdul Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Sun C, Gradzielski M. Upconversion-based nanosystems for fluorescence sensing of pH and H 2O 2. NANOSCALE ADVANCES 2021; 3:2538-2546. [PMID: 36134159 PMCID: PMC9417827 DOI: 10.1039/d0na01045f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation (EEA) effect and a conventional upconversion nanosystem based on the joint effect of EEA and fluorescence resonance energy transfer (FRET) are designed for the fluorescence sensing of H2O2. We show that the upconversion luminescence (UCL) is quenched by MoO3-x nanosheets (NSs) in both systems due to the strong absorbance of MoO3-x NSs in the visible and near-infrared regions. The recovery in UCL emissions upon addition of H2O2 enables quantitative monitoring of H2O2. Benefiting from the non-contact method, hydrophobic OA-NaYF4:Yb,Er can be used as the luminophore directly and ultrahigh quenching efficiency (99.8%) is obtained. Moreover, the non-contact method exhibits high sensitivity toward H2O2 with a detection limit of 0.63 μM, which is lower than that determined by simple spectrophotometry (0.75 μM) and conventional upconversion-based nanocomposites (9.61 μM). As an added benefit, the same strategy can be applied to the sensing of pH, showing a broad pH-responsive property over a range of 2.6 to 8.2. The successful preparation of different upconversion-based nanosystems for H2O2 sensing using the same material as the quencher provides a new design strategy for fluorescence sensing of other analytes.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
31
|
Glucose Detection of 4-Mercaptophenylboronic Acid-Immobilized Gold-Silver Core-Shell Assembled Silica Nanostructure by Surface Enhanced Raman Scattering. NANOMATERIALS 2021; 11:nano11040948. [PMID: 33917868 PMCID: PMC8068217 DOI: 10.3390/nano11040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022]
Abstract
The importance of glucose in many biological processes continues to garner increasing research interest in the design and development of efficient biotechnology for the sensitive and selective monitoring of glucose. Here we report on a surface-enhanced Raman scattering (SERS) detection of 4-mercaptophenyl boronic acid (4-MPBA)-immobilized gold-silver core-shell assembled silica nanostructure (SiO2@Au@Ag@4-MPBA) for quantitative, selective detection of glucose in physiologically relevant concentration. This work confirmed that 4-MPBA converted to 4-mercaptophenol (4-MPhOH) in the presence of H2O2. In addition, a calibration curve for H2O2 detection of 0.3 µg/mL was successfully detected in the range of 1.0 to 1000 µg/mL. Moreover, the SiO2@Au@Ag@4-MPBA for glucose detection was developed in the presence of glucose oxidase (GOx) at the optimized condition of 100 µg/mL GOx with 1-h incubation time using 20 µg/mL SiO2@Au@Ag@4-MPBA and measuring Raman signal at 67 µg/mL SiO2@Au@Ag. At the optimized condition, the calibration curve in the range of 0.5 to 8.0 mM was successfully developed with an LOD of 0.15 mM. Based on those strategies, the SERS detection of glucose can be achieved in the physiologically relevant concentration range and opened a great promise to develop a SERS-based biosensor for a variety of biomedicine applications.
Collapse
|
32
|
Qian R, Gao D, Liu L, Jiang Y. Colorimetric glucose sensing with multiple-color changes by using a MnO 2 NSs-TMB nanosystem. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:769-775. [PMID: 33459305 DOI: 10.1039/d0ay02184a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glucose performs many essential functions associated with metabolic processes in the living system, and is closely related to many diseases such as diabetes and hypoglycemia. Most of the existing glucose concentration detection methods require complex instruments, which undoubtedly limit its widespread use. Here, we have designed a glucose colorimetric detection system composed of glucose, glucose oxidase (GOD), manganese dioxide nanosheets (MnO2 NSs) and 3,3',5,5'-tetramethylbenzidine (TMB) to achieve colorimetric detection with the naked eye. Compared with the single-color change of the colorimetric method in previous studies, multiple-color changes have been realized. MnO2 NSs, as a kind of nanomaterial imitating oxidase, can directly oxidize TMB to oxTMB. Because oxTMB showed a dark yellow color when strongly oxidized and light blue when weakly oxidized, this feature can achieve multiple-color changes rather than a single-color change, which is helpful for colorimetric observation with the naked eye. Finally, we successfully used MnO2 NSs for colorimetric detection of glucose and realized multiple-color changes, making it easier to achieve colorimetric observation with the naked eye. The linear detection range is 0-4000 μM and limit of detection is 5.0 μM. This is not only useful for glucose, but also has an important significance for other experiments considering colorimetric experiments with the naked eye.
Collapse
Affiliation(s)
- Rui Qian
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China.
| | | | | | | |
Collapse
|
33
|
Molodtsova T, Gorshenkov M, Saliev A, Vanyushin V, Goncharov I, Smirnova N. One-step synthesis of γ-Fe2O3/Fe3O4 nanocomposite for sensitive electrochemical detection of hydrogen peroxide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Fluorescent and visual assay of H 2O 2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe. Anal Bioanal Chem 2021; 413:2135-2146. [PMID: 33511458 DOI: 10.1007/s00216-021-03181-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Herein, we synthesized and characterized glutathione-capped copper nanoclusters (CuNCs) using a convenient one-pot chemical reduction approach based on glutathione as capping and reducing agents. The Ce(III) induced aggregation-induced emission of CuNCs to form a CuNCs-Ce3+ fluoroprobe due to electrostatic and coordination interactions between Ce3+ and CuNCs. In contrast to CuNCs, the fluorescent intensities (FLs) of CuNCs-Ce3+ were enhanced by ~ 40-fold concomitant with 20-nm blue-shift of the maximum emission, and a 3.45-fold lengthening of the average fluorescent lifetime. The FLs of CuNCs-Ce3+ were selectively quenched at 650 nm by hydrogen peroxide (H2O2) via the redox reaction. Based on this phenomenon, the sensitive assay of H2O2 was realized, and the linear range spanned over the range of 14-140 μM. Notably, the visualization of the fluorescence quenched effect of H2O2 could be easily attained. Additionally, glucose could be specifically oxidized by glucose oxidase to produce H2O2, and thus the detection of glucose was achieved according to changes in the concentrations of H2O2. Under optimized conditions, the fluorescent assay of glucose based on the CuNCs-Ce3+ system offered the linear range of 8-48 μM with detection limit of 2.4 μM. Meanwhile, high selectivity of the as-constructed fluorescent assay allows the sensitive detection of H2O2 and glucose in real-world care products and human serum samples, showing a great application potential in their conventional monitoring.
Collapse
|
35
|
Yang L, Chen X, Ma P, Jin D, Zhou J, He H, Cheng Z, Lin J. Upconversion nanoparticles coated with molecularly imprinted polymers for specific sensing. Dalton Trans 2020; 49:17200-17206. [PMID: 33200757 DOI: 10.1039/d0dt03555f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of fluorescent sensors based on lanthanide-doped luminescent nanoparticles has increased their application in biomarker detection. Lanthanide-doped upconversion nanoparticles (UCNPs) have been explored as one of the most promising sensors owing to their merits such as excellent photostability, zero background auto-fluorescence, and reduced side effects of near-infrared triggered treatments. However, traditional upconversion luminescence assay based on direct Fluorescence Resonance Energy Transfer (FRET) between the target molecules and surface of UCNPs encounters low detection accuracy due to superficial adsorption interactions. In this work, we use a molecularly imprinting technique to achieve the specific interaction between UCNPs and molecules for accurate sensing. We demonstrate this by synthesizing a nanostructure with a molecularly imprinted polymer at the surface of UCNPs, in which the imprinted cavities can specifically capture the target molecule of rhodamine B. The upconversion signal changes in relation to the molecule concentration due to FRET. Quantitative analysis shows that the fluorescence-quenching rate is consistent with the Stern-Volmer equation, resulting in a limit of detection of 6.27 μg mL-1. Our fluorescence sensing approach integrates the advantages of both nonlinear upconversion and molecular imprinting technologies, showing great potential for the detection of specific molecules.
Collapse
Affiliation(s)
- Ling Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
37
|
Abstract
Background:
Diabetes Mellitus (DM) is a major public metabolic disease that influences
366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030.
DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore,
the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence-
based strategies have sparked tremendous interest due to their rapid response, facile operation,
and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of
glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic
dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have
received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity
and high photostability.
Methods:
MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence
can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose
can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate
H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery
spectra of the Si NPs.
Results:
This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a
limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed
favorable results and convincing reliability.
Conclusion:
We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for
rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction
with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing
approach for glucose detection has been designed and applied to monitor glucose levels in human serum
with satisfactory results.
Collapse
Affiliation(s)
- Kuan Luo
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinyu Jiang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
38
|
Zhou Z, Yang L, Huang L, Liao Y, Liu Y, Xiao Q. A novel fluorescent probe for H2O2 detection based on CdSe@ZnS quantum dots/Ag nanocluster hybrid. Anal Chim Acta 2020; 1106:176-182. [DOI: 10.1016/j.aca.2020.01.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
|
39
|
Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020; 208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
|
40
|
Abbasi A, Hanif S, Shakir M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S 2- and malachite green detection. RSC Adv 2020; 10:3137-3144. [PMID: 35497744 PMCID: PMC9048504 DOI: 10.1039/c9ra10372d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
A facile and green method was adopted to synthesize highly selective gum acacia-mediated silver nanoparticles as dual sensor (fluorescence turn-on and colorimetric) for Hg(ii) and fluorescence turn-off sensor for S2- and malachite green. The mechanism proposed for a dual response towards Hg(ii) is the redox reaction between Ag(0) and Hg(ii), resulting in the formation of Ag(i) and Hg(0) and electron transfer from gum acacia to Ag(i), which further leads to the formation of an Ag@Hg nanoalloy. The enhanced fluorescence signal was quenched selectively by S2- owing to the formation of Ag2S and HgS. The reported nanosensor was found to be useful for sensing malachite green via the inner filter effect. The linear ranges were 3 nmol L-1 to 13 μmol L-1 for Hg(ii), 3-170 μmol L-1 for S2- and 7-80 μmol L-1 for malachite green, and the corresponding detection limits were 2.1 nmol L-1 for Hg(ii), 1.3 μmol L-1 for S2- and 1.6 μmol L-1 for malachite green.
Collapse
Affiliation(s)
- Ambreen Abbasi
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| | - Summaiya Hanif
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| | - Mohammad Shakir
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| |
Collapse
|
41
|
Tsai ES, Himmelstoß SF, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles for sensing pH. Analyst 2019; 144:5547-5557. [PMID: 31403643 DOI: 10.1039/c9an00236g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upconversion nanoparticles (UCNPs) can provide a vehicle for chemical imaging by coupling chemically sensitive dyes and quenchers. The mechanism for coupling of two anthraquinone dyes, Calcium Red and Alizarin Red S, was investigated as a function of pH. The green emission band of the UCNPs was quenched by a pH-dependent inner filter effect (IFE) while the red emission band remained unchanged and acted as the reference signal for ratiometric pH measurements. Contrary to previous expectation, there was little evidence for a resonance energy transfer (RET) mechanism even when the anthraquinones were attached onto the UCNPs through electrostatic attraction. Since the UCNPs are point emitters, only emitters close to the surface of the UCNP are within the expected Förster distance and UC-RET is <10%. The theoretical and experimental analysis of the interaction between UCNPs and pH-sensitive quenchers will allow the design of UCNP pH sensors for determination of pH via IFE.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | | | | | | | | |
Collapse
|
42
|
Lee PC, Li NS, Hsu YP, Peng C, Yang HW. Direct glucose detection in whole blood by colorimetric assay based on glucose oxidase-conjugated graphene oxide/MnO 2 nanozymes. Analyst 2019; 144:3038-3044. [PMID: 30907399 DOI: 10.1039/c8an02440e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein report a facile approach for the preparation of horseradish peroxidase (HRP)-mimic glucose oxidase-conjugated graphene oxide/MnO2 (GOD-GO/MnO2) as new nanozyme to detect the glucose concentration in whole blood. The nano-sized of MnO2 nanoparticles embedded in bovine serum albumin (BSA)-coated GO by in situ growth were evaluated focusing on the principle of HRP-mimic activity catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Furthermore, we constructed dual sensing platforms based on the combination of a plasma separation pad and GOD-GO/MnO2 for direct detection of glucose concentration in whole blood by colorimetric assay without blood sample pretreatment. As a proof-of-concept, a limit of detection of 3.1 mg dL-1 for glucose was obtained with a wide linear quantification range from 25 mg dL-1 to 300 mg dL-1 through visual observation and quantitative analysis, suggesting potential clinical applications in blood glucose monitoring for diabetic patients.
Collapse
Affiliation(s)
- Po-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Wang C, Li J, Tan R, Wang Q, Zhang Z. Colorimetric method for glucose detection with enhanced signal intensity using ZnFe 2O 4-carbon nanotube-glucose oxidase composite material. Analyst 2019; 144:1831-1839. [PMID: 30676591 DOI: 10.1039/c8an02330a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, a composite material comprised of ZnFe2O4 nanomaterial, carbon nanotubes (CNT) and glucose oxidase (GOD) was synthesized and used for glucose detection. ZnFe2O4-CNT was formed by a one-step solvothermal approach using acid-treated CNT as precursor, then GOD was linked to it by coupling reaction between -NH2 and -COOH. After addition of glucose, which is oxidized by GOD, the intermediate product (H2O2) further oxidizes the 3,3',5,5'-tetramethylbenzidine (TMB) substrate and forms a blue product. This process was accelerated in the presence of peroxidase-mimic ZnFe2O4 nanomaterial and the detected signal intensity was correspondingly enhanced. The linear detection range of glucose was 0.8 to 250 μM, with a limit of detection of 0.58 μM. This may originate from (1) the limited diffusion of intermediate species, which resulted in enhanced local concentrations of reaction compounds; (2) enhanced electron transmission among CNT, GOD and ZnFe2O4; (3) the synergistic enhancement of catalytic activity of ZnFe2O4 compared with other metal oxides; (4) the high loading capacity of ZnFe2O4-CNT for GOD molecules, because of its high surface-to-volume ratio. Meanwhile, this method has reasonable selectivity, stability and reusability and can be used for real serum detection, which may be useful for the development of sensitive biosensors.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
Emissions of terbium metal-organic frameworks modulated by dispersive/agglomerated gold nanoparticles for the construction of prostate-specific antigen biosensor. Anal Bioanal Chem 2019; 411:3979-3988. [PMID: 31089787 DOI: 10.1007/s00216-019-01883-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Herein, a universal and multifunctional fluorescence sensor platform is designed by the interaction of aggregation/dispersion gold nanoparticles (AuNPs) with Tb-metal-organic frameworks (Tb-MOFs). It is found that the dispersed AuNPs rather than the aggregated ones can quench effectively the fluorescence of Tb-MOFs, and the quenching process presumably involves the mechanism of inner filter effect (IFE), dynamic quenching effect (DQE), and fluorescence resonance energy transfer (FRET). The different affinities of aptamer and aptamer-target complex toward AuNPs are employed to modulate the fluorescence signal change of Tb-MOFs. As the proof of concept, prostate-specific antigen (PSA), an efficient tumor indicator for prostate cancer, is selected as the target. At first, the PSA aptamer can protect AuNPs against salt-induced aggregation, leading to the fluorescence of Tb-MOFs quenching. Subsequently, upon PSA introduction, the rigid aptamer-PSA complex is formed and cannot stabilize AuNPs in high salt conditions, so the AuNPs aggregate significantly and the fluorescence of Tb-MOFs is restored. The linear range of PSA is achieved from 1 to 100 ng/mL with a detection limit of 0.36 ng/mL. Finally, this method has been validated to be sensitive and specific for PSA in human urine samples. Graphical abstract.
Collapse
|
45
|
Dehghan G, Shaghaghi M, Alizadeh P. A novel ultrasensitive and non-enzymatic "turn-on-off" fluorescence nanosensor for direct determination of glucose in the serum: As an alternative approach to the other optical and electrochemical methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:459-468. [PMID: 30807944 DOI: 10.1016/j.saa.2019.02.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/16/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A new, simple, rapid, highly sensitive and selective and non-enzymatic fluorometric method for direct determination of glucose in real samples was developed. The method was based on the inhibition of fluorescence resonance energy transfer (FRET) process between terbium (III)-1, 10-phenanthroline (Tb-phen) complex and silver nanoparticles (AgNPs). Upon the addition of glucose, the quenched FRET-based fluorescence of Tb-phen complex was gradually recovered by glucose via its strong adsorption on the surface of AgNPs and removal of Tb-phen complex from AgNPs surface. Therefore the fluorescence of Tb-phen complex switched to "turn-on" state. Under the optimum conditions, a linear relationship was obtained between the enhanced fluorescence intensity and glucose concentration in the range of (5-900) × 10-8 M with the detection limit of 1.94 × 10-8 M. The proposed sensing system was successfully applied to determine glucose in the spiked normal and diabetic patient serum samples after deproteinization with acetonitrile. Analytical recoveries from treated serum samples were in the range of 99.97-104.80% and 92.14-105.43%, respectively. The common interfering species, such as ascorbic acid, fructose and galactose did not cause interior interference due to unique emission properties of Tb-phen complex probe. Also the interaction of the Tb-phen complex with AgNPs, which led to the fluorescence intensity quenching of the complex, was further examined by FTIR technique. In short, as compared to most of the existing methods, the newly proposed method, provides some advantages and makes it promising for the direct rapid screening of glucose residues of real samples in clinical diagnosis of diabetes, as an alternative approach to the other exiting optical and electrochemical methods.
Collapse
Affiliation(s)
- Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
| | - Pari Alizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
46
|
Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose. Talanta 2019; 197:599-604. [DOI: 10.1016/j.talanta.2019.01.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/20/2022]
|
47
|
Guo ZH, Li YY, Ding CP, Hu XJ, Wen Y, Wang B. A novel Pb2+-selective micellar self-assembled fluorescent chemosensor based on amino thiadiazole calix[4]arene derivative. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
Himmelstoß SF, Hirsch T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 2019; 7:022002. [PMID: 30822759 DOI: 10.1088/2050-6120/ab0bfa] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The right choice of a fluorescent probe is essential for successful luminescence imaging and sensing and especially concerning in vivo and in vitro applications, the development of new classes have gained more and more attention in the last years. One of the most promising class are upconversion nanoparticles (UCNPs)-inorganic nanocrystals capable to convert near-infrared light in high energy radiation. In this review we will compare UCNPs with other fluorescent probes in terms of (a) the optical properties of the probes, such as their brightness, photostability and excitation wavelength; (b) their chemical properties such as the dispersibility, stability under experimental or physiological conditions, availability of chemical modification strategies for labelling; and (c) the potential toxicity and biocompatibility of the probe. Thereby we want to provide a better understanding of the advantages and drawbacks of UCNPs and address future challenges in the design of the nanocrystals.
Collapse
Affiliation(s)
- Sandy F Himmelstoß
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
50
|
An instant reused luminescent mixed matrix membrane sensor for convenient phenolic nitro-explosives detection. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|