1
|
Gabrielle Sutanto L, Sabilla S, Wardhana BY, Ramadani A, Sari AP, Anjani QK, Basirun WJ, Amrillah T, Amalina I, Jiwanti PK. Carbon nanomaterials as electrochemical sensors for theophylline: a review. RSC Adv 2024; 14:28927-28942. [PMID: 39263434 PMCID: PMC11388037 DOI: 10.1039/d4ra03585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Theophylline (TP) is a methylxanthine derivative, which serves as a valuable compound in treating respiratory disorders and acts as a bronchodilator agent. However, TP has a limited therapeutic range (20-100 μmol L-1), demanding precise monitoring to prevent potential drug toxicity even with slight level fluctuations during treatment. Thus, to overcome this limitation, electrochemical methods have been extensively used due to their efficacy in achieving sensitivity, selectivity, and accuracy. In the context of electrochemical sensors, nanocarbon-based materials have gained widespread recognition for their extensive applications. Therefore, this review aims to explore the latest advancements in carbon-based electrodes particularly used for the precise determination of TP through electrochemical methods. The results are expected to provide insights into the profound significance of the methods in enhancing the accuracy and sensitivity for the detection of TP.
Collapse
Affiliation(s)
- Laurencia Gabrielle Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Syarifa Sabilla
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Brasstira Yuva Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anggi Ramadani
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anis Puspita Sari
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), University Malaya Kuala Lumpur 50603 Malaysia
- Department of Chemistry, Faculty of Science, University Malaya Kuala Lumpur 50603 Malaysia
| | - Tahta Amrillah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Ilma Amalina
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
2
|
Ma Y, Wei X, Xu J, Ji S, Yang F, Zeng A, Li Y, Cao J, Zhang J, Luo Z, Fu Q. Development of double-layer poly (amino acid) modified electrochemical sensor for sensitive and direct detection of betamethasone in cosmetics. Talanta 2024; 273:125855. [PMID: 38461643 DOI: 10.1016/j.talanta.2024.125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Screening for illegal use of glucocorticoids (GCs) in cosmetics by electrochemical methods is extremely challenging due to the poor electrochemical activity of GCs. In this study, poly-L-Serine/poly-Taurine modified electrode (P(Tau)/P(L-Ser)/GCE) was prepared for sensitive and direct determination of betamethasone in cosmetics by a simple two-step in situ electropolymerization reaction. The relevant parameters of preparation and electroanalytical conditions were respectively studied, including the concentration of polymerization solution, the number of scanning circles and the scanning rate. The SEM and EDS mapping demonstrated successful preparation of P(Tau)/P(L-Ser)/GCE. The electro-catalytic properties of the obtained electrodes were investigated using cyclic voltammetry and differential pulse voltammetry methods, showing a remarkable improvement of sensitivity for the detection of betamethasone due to the synergic effect of both P(L-Ser) and P(Tau). In addition, we investigated the electrochemical reduction of betamethasone on the surface of modified electrode. It was found that the process was controlled by diffusion effect and involved the transfer of two electrons and two protons. Then the electrochemical sensor method based on P(Tau)/P(L-Ser)/GCE was established and delivered a linear response to betamethasone concentration from 0.5 to 20 μg mL-1 with a limit of detection of 32.2 ng mL-1, with excellent recoveries (98.1%-106.8%) and relative standard deviations (<4.8%). Furthermore, the established electrochemical sensor method was compared with conventional HPLC method. The results showed that both of them were comparable. Moreover, the established electrochemical sensor method was with the merits of short analysis time, environmentally friendly, low cost and easy to achieve in-site detection.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinran Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiameng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuhua Ji
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunzhe Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiliang Cao
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong, 723000, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Mari E, Duraisamy M, Eswaran M, Sellappan S, Won K, Chandra P, Tsai PC, Huang PC, Chen YH, Lin YC, Ponnusamy VK. Highly electrochemically active Ti 3C 2Tx MXene/MWCNT nanocomposite for the simultaneous sensing of paracetamol, theophylline, and caffeine in human blood samples. Mikrochim Acta 2024; 191:212. [PMID: 38509344 DOI: 10.1007/s00604-024-06273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
The facile fabrication is reported of highly electrochemically active Ti3C2Tx MXene/MWCNT (3D/1D)-modified screen-printed carbon electrode (SPE) for the efficient simultaneous electrochemical detection of paracetamol, theophylline, and caffeine in human blood samples. 3D/1D Ti3C2Tx MXene/MWCNT nanocomposite was synthesized using microwave irradiation and ultrasonication processes. Then, the Ti3C2Tx/MWCNT-modified SPE electrode was fabricated and thoroughly characterized towards its physicochemical and electrochemical properties using XPS, TEM, FESEM, XRD, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. As-constructed Ti3C2Tx-MWCNT/SPE offers excellent electrochemical sensing performance with good detection limits (0.23, 0.57, and 0.43 µM) and wide linear ranges (1.0 ~ 90.1, 2.0 ~ 62.0, and 2.0-90.9 µM) for paracetamol, caffeine, and theophylline, respectively, in the human samples. Notably, the non-enzymatic electroactive nanocomposite-modified electrode has depicted a semicircle Nyquist plot with low charge transfer resistance (Rct∼95 Ω), leading to high ionic diffusion and facilitating an excellent electron transfer path. All the above results in efficient stability, reproducibility, repeatability, and sensitivity compared with other reported works, and thus, it claims its practical utilization in realistic clinical applications.
Collapse
Affiliation(s)
- Elancheziyan Mari
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620, Republic of Korea
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), No. 100, Shiquan 1St Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Murugesan Duraisamy
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Puiau Pinang, Malaysia
| | - Muthusankar Eswaran
- School of Electronics and Automation (SoE), Kerala University of Digital Sciences, Innovation and Technology (Digital University Kerala), Thiruvananthapuram, Kerala, India
| | - Senthilkumar Sellappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore City, India
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical Univiersity, Kaohsiung City, 807, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), No. 100, Shiquan 1St Road, Sanmin District, Kaohsiung City, 807, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Zhunan Town, Miaoli County, 35053, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University, Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung City, 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), No. 100, Shiquan 1St Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
- Department of Chemistry, National Sun Yat-Sen University (NSYSU), Kaohsiung City, 804, Taiwan.
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University, Taichung City, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical Univiersity, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
4
|
Aschemacher NA, Gegenschatz SA, Teglia CM, Siano ÁS, Gutierrez FA, Goicoechea HC. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples. Talanta 2024; 267:125246. [PMID: 37774452 DOI: 10.1016/j.talanta.2023.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
In this work, a novel, simple and reproducible poly(l-proline)/functionalized multi-walled carbon nanotube composite on glassy carbon electrode (poly(PRO)-MWCNTs/GCE) was developed as an electrochemical sensor for the simultaneous determination of gallic acid (GA), theophylline (TP) and caffeine (CAF) by differential pulse voltammetry (DPV). The sensing platform was optimized by experimental design and response surface methodology, using various factors affecting polymerization and detection, such as electropolymerization time and potential, and pH, respectively. As a result, the dispersion conditions were the mixing of 1.78 mg MWCNTs with 1.00 mL l-proline solution to 4.14 mg mL-1 (in SDBS 0.5%), followed by 21 min of sonication with electropolymerization by 16 cyclic scans. In addition, the final analysis was performed at a pH of 3.00 and prior accumulation at 0.350 V for 40 s. The electrochemical behavior of GA, TP and CAF on the optimized sensor was investigated. As a result, the electrode preserves and synergistically combines the properties of each modifier. This new electrochemical sensor showed superior electrocatalytic properties for the oxidation of GA, TP and CAF, which significantly improved the sensitivity of the three compounds. Under the optimized experimental conditions, the detection limits achieved by S/N were 0.03, 0.04 and 0.11 μmol L-1 for GA, TP and CAF, respectively. The analysis of real samples was successfully performed in human breast milk, tea, infusion of yerba mate, coffee, Coca-Cola zero and energy drink, showing good recoveries, ranged between 87 and 108%. The proposed sensor also showed good selectivity, repeatability and reproducibility, indicating feasibility and reliability. This is the first time that the l-proline monomer is used as a dispersant for MWCNTs and as a precursor for the in-situ polymerization of the proline polymer. Previously, the electropolymerizations were carried out with the monomer in solution rather than as an exfoliant of MWCNTs, where the polymer is electrosynthesized between MWCNTs rather than on them. In this way, the large specific surface area and strong adsorption ability of the nanomaterial are enhanced, and the ability to promote electron transfer reaction is increased, which provides enough effective reaction sites.
Collapse
Affiliation(s)
- Nicolás A Aschemacher
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Sofía A Gegenschatz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
5
|
Wang Y, Li S, Gao Y, Du B, Vafaei S, Li M, Wu H, Tong X, Chen Y. Synthesis of poly (L-cysteine)/g-C 3N 4 modified glassy carbon electrodes for electrochemical detection of methotrexate as a medicine for treatment of breast cancer in pharmaceutical fluid samples. CHEMOSPHERE 2023; 331:138769. [PMID: 37100252 DOI: 10.1016/j.chemosphere.2023.138769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Analyzing the levels of anticancer medications in biological samples and body fluids reveals important details on the course and effects of chemotherapy. p (L-Cys)/graphitic-carbon nitride (g-C3N4)/GCE, a modified glassy carbon electrode, was created for the current study's electrochemical detection of methotrexate (MTX), a drug used to treat breast cancer, in pharmaceutical fluid samples. l-Cysteine was electro-polymerized on the surface of the g-C3N4/GCE after the g-C3N4 was first modified to prepare the p (L-Cys)/g-C3N4/GCE. Analyses of morphology and structure showed that well-crystalline p (L-Cys) on g-C3N4/GCE was successfully electropolymerized. Studying the electrochemical characteristics of p (L-Cys)/g-C3N4/GCE using CV and DPV techniques revealed a synergistic impact between g-C3N4 and l-cysteine that improved the stability and selectivity of the electrochemical oxidation of MTX while enhancing the electrochemical signal. Results showed that 7.5-780 μM was the linear range, and that 0.11841 μA/μM and 6 nM, respectively, were the sensitivity and limit of detection. The applicability of the suggested sensors was assessed using real pharmaceutical preparations, and the results showed that p (L-Cys)/g-C3N4/GCE had a high degree of precision. Five breast cancer patients who volunteered and provided prepared blood serum samples between the ages of 35 and 50 were used to examine the validity and accuracy of the proposed sensor in the current work for the determination of MTX. The results showed good recovery values (greater than 97.20%), appropriate accuracy (RSD less than 5.11%), and good agreement between the ELISA and DPV analysis results. These findings showed that p (L-Cys)/g-C3N4/GCE can be applied as a trustworthy MTX sensor for MTX level monitoring in blood samples and pharmaceutical samples.
Collapse
Affiliation(s)
- Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shuangshuang Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advance Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manning Li
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China; Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
6
|
Vinoth S, Wang SF. Lanthanum vanadate-based carbon nanocomposite as an electrochemical probe for amperometric detection of theophylline in real food samples. Food Chem 2023; 427:136623. [PMID: 37364311 DOI: 10.1016/j.foodchem.2023.136623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Theophylline (THP) is an emerging drug for chronic obstructive pulmonary disease whose side effects can be greatly affected by caffeine-containing real foods. Because an overdose of this substance can cause respiratory and neurological damage, producing a fast and accurate analytical procedure is critical. Based on a cutting-edge hybrid nanocomposite, this study was used to construct an electrochemical sensor for the accurate detection of THP. Spectroscopy and morphological investigation supported the easy synthesis of tetragonal-LaVO4 (t-LV) nanopellets and LV@CNF hybrid nanocomposite. To detect THP, a highly dispersed LV@CNF nanocomposite was modified on a glassy carbon electrode as a sensing substrate. By amperometric technique, the sensor shows a wide linear range of 0.01-1070 μM, low limit of detection (2.63 nM), and sensitivity (0.228 μA μM-1 cm-2). Finally, the current technique was successfully used to identify THP in real food samples (chocolate, coffee and black tea).
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
7
|
Wu L, Lu X, Wu Y, Huang C, Gu C, Tian Y, Ma J. An electrochemical sensor based on synergistic enhancement effects between nitrogen-doped carbon nanotubes and copper ions for ultrasensitive determination of anti-diabetic metformin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163120. [PMID: 36996983 DOI: 10.1016/j.scitotenv.2023.163120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Metformin (MET) is the primary medicine for type II diabetes, which produces carcinogenic byproducts during chlorine disinfection, so the detection of MET in aqueous environment is crucial. In this work, an electrochemical sensor based on nitrogen-doped carbon nanotubes (NCNT) has been constructed for ultrasensitive determination of MET in the presence of Cu(II) ions. The excellent conductivity and rich π-conjugated structure of NCNT facilitate the electron transfer rate of fabricated sensor and benefit the adsorption of cation ions. Cu(II) ions can chelate with MET to form MET-Cu(II) complex, which are easily accumulated on the surface of NCNT through cation-π interaction. Attributing to the synergistic enhancement effects of NCNT and Cu(II) ions, the fabricated sensor exhibits excellent analytical performances with a low detection limit of 9.6 nmol L-1, high sensitivity of 64.97 A mol-1 cm-2 and wide linear range of 0.3-10 μmol L-1. The sensing system has been successfully applied for rapid (20 s) and selective determination of MET in real water samples with satisfactory recoveries (90.2 %-108.8 %). This study provides a robust strategy for MET detection in aqueous environment and holds great promise for rapid risk assessment and early warning of MET.
Collapse
Affiliation(s)
- Lingxia Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yun Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Chuantao Gu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
8
|
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023; 410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.
Collapse
|
9
|
de Freitas Araújo KC, de Araújo Costa ECT, de Araújo DM, Santos EV, Martínez-Huitle CA, Castro PS. Probing the Use of Homemade Carbon Fiber Microsensor for Quantifying Caffeine in Soft Beverages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1928. [PMID: 36903043 PMCID: PMC10004175 DOI: 10.3390/ma16051928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In the development of electrochemical sensors, carbon micro-structured or micro-materials have been widely used as supports/modifiers to improve the performance of bare electrodes. In the case of carbon fibers (CFs), these carbonaceous materials have received extensive attention and their use has been proposed in a variety of fields. However, to the best of our knowledge, no attempts for electroanalytical determination of caffeine with CF microelectrode (µE) have been reported in the literature. Therefore, a homemade CF-µE was fabricated, characterized, and used to determine caffeine in soft beverage samples. From the electrochemical characterization of the CF-µE in K3Fe(CN)6 10 mmol L-1 plus KCl 100 mmol L-1, a radius of about 6 µm was estimated, registering a sigmoidal voltammetric profile that distinguishes a µE indicating that the mass-transport conditions were improved. Voltammetric analysis of the electrochemical response of caffeine at the CF-µE clearly showed that no effects were attained due to the mass transport in solution. Differential pulse voltammetric analysis using the CF-µE was able to determine the detection sensitivity, concentration range (0.3 to 4.5 µmol L-1), limit of detection (0.13 μmol L-1) and linear relationship (I (µA) = (11.6 ± 0.09) × 10-3 [caffeine, μmol L-1] - (0.37 ± 0.24) × 10-3), aiming at the quantification applicability in concentration quality-control for the beverages industry. When the homemade CF-µE was used to quantify the caffeine concentration in the soft beverage samples, the values obtained were satisfactory in comparison with the concentrations reported in the literature. Additionally, the concentrations were analytically determined by high-performance liquid chromatography (HPLC). These results show that these electrodes may be an alternative to the development of new and portable reliable analytical tools at low cost with high efficiency.
Collapse
Affiliation(s)
- Karla Caroline de Freitas Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Emily Cintia Tossi de Araújo Costa
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Danyelle Medeiros de Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Elisama V. Santos
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
- School of Science and Technology, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Carlos A. Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Pollyana Souza Castro
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| |
Collapse
|
10
|
Fan J, Shang T, Duan P. Design of electrochemical sensor for 1,3-propanediol detection in presence of glycerol. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Zhang M, Li Y, Ma F, Niu Y, Chen X, Ye BC. Metal–Organic-Framework-Derived Ni3ZnC0.7 Materials for Highly Sensitive Electrochemical Detection of Catechol. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Tasić ŽZ, Petrović Mihajlović MB, Simonović AT, Radovanović MB, Antonijević MM. Recent Advances in Electrochemical Sensors for Caffeine Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9185. [PMID: 36501886 PMCID: PMC9735645 DOI: 10.3390/s22239185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review.
Collapse
|
13
|
Imidazole-Based Monomer as Functional Unit for the Specific Detection of Paraxanthine in Aqueous Environments. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the context of personalized medicine, the paraxanthine-to-caffeine ratio is an accepted standard for the optimization of the dose-response effect of many pharmaceuticals in individual patients. There is a strong drive towards the development of cheaper and portable devices for the detection of biomarkers, including paraxanthine and caffeine, which requires materials with high binding efficiency and specificity. We designed a recognition unit specific for paraxanthine which can discriminate molecules with small structural differences and can be used to increase the sensitivity of sensors. A number of functional units were screened by nuclear magnetic resonance for their ability to form specific binding interactions with paraxanthine in water and negligible interactions with its structural analogue caffeine. Imidazole was identified as the unit showing the most promising results and its two polymerizable derivatives were evaluated by isothermal titration calorimetry to identify the best monomer. The data suggested that 4-vinylimidazole was the most promising unit forming specific and strong binding interaction with paraxanthine. The calorimetry experiments allowed also the determination of the thermodynamic parameters of all interactions and the association constant values. Optimization of polymerization protocols in water, achieving high monomer conversions and chemical yields, demonstrate the suitability of the selected functional monomer for polymer preparations, targeting the detection of paraxanthine in aqueous environments.
Collapse
|
14
|
Patil VB, Malode SJ, Mangasuli SN, Tuwar SM, Mondal K, Shetti NP. An Electrochemical Electrode to Detect Theophylline Based on Copper Oxide Nanoparticles Composited with Graphene Oxide. MICROMACHINES 2022; 13:mi13081166. [PMID: 35893164 PMCID: PMC9394302 DOI: 10.3390/mi13081166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
The electrochemical analysis of theophylline (THP) was investigated by fabricating a carbon paste electrode (CPE) modified with graphene oxide (GO) along with copper oxide (CuO) nanoparticles (CuO-GO/CPE). The impact of electro-kinetic parameters such as the heterogeneous rate constant, the scan rate, the accumulation time, the pH, the transfer coefficient, and the number of electrons and protons transferred into the electro-oxidation mechanism of THP has been studied utilizing electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The differential pulse voltammetry technique was employed to investigate THP in pharmaceutical and biological samples, confirming the limit of detection (LOD) and quantification (LOQ) of the THP. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to characterize the CuO nanoparticles. The CuO-GO/CPE was more sensitive in THP detection because its electrocatalytic characteristics displayed an enhanced peak current in the 0.2 M supporting electrolyte of pH 6.0, proving the excellent sensing functioning of the modified electrode.
Collapse
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Shweta J. Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
| | - Sumitra N. Mangasuli
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| |
Collapse
|
15
|
Poly(aquachlorobis(1,10–phenanthroline)copper(II)iodidemonohydrate)/GCE for simultaneous determination of caffeine and theophylline in human serum, tea, and tablet samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
17
|
Yang M, Guo H, Sun L, Wu N, Wang M, Yang F, Zhang T, Zhang J, Pan Z, Yang W. Simultaneous electrochemical detection of hydroquinone and catechol using MWCNT-COOH/CTF-1 composite modified electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Crapnell RD, Banks CE. Electroanalytical overview: The electroanalytical detection of theophylline. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Geto A, Brett CMA. Electrochemical Sensor for Caffeine in Coffee and Beverages Using a Naphthalene Sulfonic Acid Polymer Film–Based Modified Electrode. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Jose J, Subramanian V, Shaji S, Sreeja PB. An electrochemical sensor for nanomolar detection of caffeine based on nicotinic acid hydrazide anchored on graphene oxide (NAHGO). Sci Rep 2021; 11:11662. [PMID: 34083560 PMCID: PMC8175555 DOI: 10.1038/s41598-021-89427-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/05/2021] [Indexed: 01/17/2023] Open
Abstract
A simple modified sensor was developed with nicotinic acid hydrazide anchored on graphene oxide (NAHGO), by ultrasonic-assisted chemical route, using hydroxy benzotriazole as a mediator. Structural and morphologies of NAHGO samples were investigated in detail by Fourier-Transform Infrared spectroscopy (FT-IR), Powder X-ray diffraction (P-XRD), Raman spectroscopy, Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric analysis (TGA). The detailed morphological examination and electrochemical studies revealed the delaminated sheet with the tube-like structure of NAHGO provided the route for more electroactive surface which influenced the electrooxidation of caffeine with increased current. The electrochemical behaviour of NAHGO on a glassy carbon electrode (GCE) for caffeine detection was demonstrated by employing voltammetric techniques. The influence of scan rate, pH, and concentration on caffeine's peak current was also studied. The NAHGO sensor was employed for the determination of caffeine in imol plus and energy drinks. The detection limit determined was 8.7 × 10-9 M, and the best value was reported so far. The results show that NAHGO modified electrodes are one of the best preferences to establish new, efficient, and reliable analytical tools for the detection of caffeine.
Collapse
Affiliation(s)
- Jemini Jose
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| | - Viswanathan Subramanian
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Sadasivan Shaji
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - P B Sreeja
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
22
|
|
23
|
Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W. Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Mikrochim Acta 2021; 188:85. [DOI: 10.1007/s00604-021-04744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
|
24
|
Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluid samples using graphite pencil electrode modified with palladium nanoparticles. Talanta 2021; 222:121539. [DOI: 10.1016/j.talanta.2020.121539] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022]
|
25
|
Zhang B, She N, Du J, Zhang M, Fang G, Wang S. Nanocomposites based on quasi-networked Au 1.5Pt 1Co 1 ternary alloy nanoparticles and decorated with poly-L-cysteine film for the electrocatalytic application of hydroquinone sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111251. [PMID: 32905935 DOI: 10.1016/j.ecoenv.2020.111251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
A mildly one-pot method is developed for the synthesis of quasi-networked Au1.5Pt1Co1 ternary alloy nanoparticles (TANPs) at room temperature through the co-reduction of AuCl4-, PtCl6- and Co2+ with hydrazine hydrate. Characterizations of XRD, XPS, HRTEM, EDS and SAED successfully reveal the crystal structure, composition, valence and morphology of Au1.5Pt1Co1 TANPs, respectively. The glassy carbon electrode (GCE) modified by Au1.5Pt1Co1 TANPs with good dispersion and multi-density surface defects occupies the optimal electrochemical active surface area (ECSA). After the coated poly-L-cysteine (P-L-Cys) film on the Au1.5Pt1Co1/GCE surface, the morphology, element mapping and surface roughness of the P-L-Cys/Au1.5Pt1Co1/GCE are investigated via FESEM and AFM to verify continuous electrode modification processes. The electrochemical behaviors of the composite electrode for hydroquinone (HQ) are evaluated by cyclic voltammetry (CV) with interfacial properties of adsorption and diffusion. Differential pulse voltammetry (DPV) for HQ electrochemical sensing at 0.10 V (vs. SCE) exhibits two linear response ranges from 0.1 to 30 and 30-200 μM, respectively. A low detection limit (S/N = 3) of 0.045 μM is obtained with a sensitivity of 4.247 μA μM-1·cm-2. The resulting P-L-Cys/Au1.5Pt1Co1/GCE also presents ascendant selectivity, repeatability, reproducibility and stability. In addition, the established method is applied to the assessment of the HQ level in real water samples (mineral water, tap water and lake water) with the satisfactory results of spiked recoveries. The sensor may become a promising tool for the trace analysis of the electroactive substance in food or environmental samples.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nana She
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meng Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Applicability of Cork as Novel Modifiers to Develop Electrochemical Sensor for Caffeine Determination. MATERIALS 2020; 14:ma14010037. [PMID: 33374209 PMCID: PMC7794975 DOI: 10.3390/ma14010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5-1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.
Collapse
|
27
|
Anastasiadi RM, Berti F, Colomban S, Tavagnacco C, Navarini L, Resmini M. Simultaneous Quantification of Antioxidants Paraxanthine and Caffeine in Human Saliva by Electrochemical Sensing for CYP1A2 Phenotyping. Antioxidants (Basel) 2020; 10:antiox10010010. [PMID: 33374269 PMCID: PMC7823619 DOI: 10.3390/antiox10010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose–response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 μM for paraxanthine and 5.80 μM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).
Collapse
Affiliation(s)
- Rozalia-Maria Anastasiadi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Silvia Colomban
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Claudio Tavagnacco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Luciano Navarini
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| |
Collapse
|
28
|
Zhang L, Si X, Yan X, He H, Deng D, Luo L. A Novel Electrochemical Sensor Based on Au-rGO Nanocomposite Decorated with Poly(L-cysteine) for Determination of Paracetamol. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999200414145325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:
Paracetamol is a common antipyretic and analgesic drug, but its excessive
intake can accumulate toxic metabolites and cause kidney and liver damage, so it is critical to determine
the content of paracetamol for clinical diagnosis and dose use.
Methods:
Au-reduced graphene oxide (Au-rGO) nanocomposite decorated with poly(L-cysteine) on
carbon paste electrode was fabricated for the determination of paracetamol. Au-rGO was first coelectrodeposited
on the carbon paste electrode surface. Afterwards, L-cysteine was electropolymerized
to fabricate the Au-rGO/poly(L-cysteine) modified carbon paste electrode. Scanning electron
microscope was used to characterize the morphology of Au-rGO and poly(L-cysteine)/Au-rGO. The
electrochemical properties of the sensor were studied by cyclic voltammetry and differential pulse
voltammetry.
Results:
After exploring the optimal conditions, the sensor showed a wide linear response for paracetamol
detection in the range of 1-200 μM with a detection limit of 0.5 μM (S/N = 3).
Conclusion:
The fabricated sensor demonstrated good sensitivity with rapid detection capacity in real
samples.
Collapse
Affiliation(s)
- Lin Zhang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojing Si
- Food Department, Shanghai Business School, Shanghai 200235, China
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Haibo He
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
29
|
Peng J, Wei L, Liu Y, Zhuge W, Huang Q, Huang W, Xiang G, Zhang C. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection. RSC Adv 2020; 10:36828-36835. [PMID: 35517930 PMCID: PMC9057021 DOI: 10.1039/d0ra06783k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Vanillin is widely used as a flavor enhancer and is known to have numerous other interesting properties, including antidepressant, anticancer, anti-inflammatory, and antioxidant effects. However, as excess vanillin consumption can affect liver and kidney function, simple and rapid detection methods for vanillin are required. Herein, a novel electrochemical sensor for the sensitive determination of vanillin was fabricated using an iron phthalocyanine (FePc)-based metal-organic framework (MOF). Scanning electron microscopy and transmission electron microscopy showed that the FePc MOF has a hollow porous structure and a large surface area, which impart this material with high adsorption performance. A glassy carbon electrode modified with the FePc MOF exhibited good electrocatalytic performance for the detection of vanillin. In particular, this vanillin sensor had a wide linear range of 0.22-29.14 μM with a low detection limit of 0.05 μM (S/N = 3). Moreover, the proposed sensor was successfully applied to the determination of vanillin in real samples such as vanillin tablets and human serum.
Collapse
Affiliation(s)
- Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Liying Wei
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
- School of Pharmacy, Henan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Yuxia Liu
- College of Physics and Electronic Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China
| | - Wenfeng Zhuge
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Qing Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Gang Xiang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Cuizhong Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| |
Collapse
|
30
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
31
|
Shaidarova LG, Chelnokova IA, Il’ina MA, Makhmutova GF, Akhmatkhanova FF, Budnikov HC. Batch-Injection Amperometric Determination of Caffeine and Theophylline on an Electrode Modified by Carbon Nanotubes and Ruthenium Oxides. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Kilele JC, Chokkareddy R, Rono N, Redhi GG. A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Shehata M, Azab S, Fekry A. Facile caffeine electrochemical detection via electrodeposited Ag nanoparticles with modifier polymers on carbon paste sensor at aqueous and micellar media. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis and detection of caffeine (Caf) is very useful due to its widespread usage in several daily consumed beverages, food products, and pharmacological preparations with various physiological effects. The preparation of a newly electrodeposited Ag nanoparticles – cellulose acetate phthalate (CAP) – chitosan (Chit) modified carbon paste (ACCMCP) sensor for sensitive determination of Caf in 0.01 mol L−1 H3PO4 solution (pH 1.0–5.0) both in aqueous and micellar media (0.5 mmol L−1 SDS) was achieved. The interaction of Caf was monitored using electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamperometry, and surface characterization was carried out using X-ray diffraction, scanning electron microscope, and energy dispersive X-ray techniques. The linear detection range of Caf was between 4 and 500 μmol L−1 (r2 = 0.955) and the limit of detection obtained from the calibration plot was 0.252 μmol L−1. The sensor was applicable for detecting Caf in numerous real samples with recoveries from 98.03% to 101.60% without interference of any accompanying species, which ensures high method selectivity.
Collapse
Affiliation(s)
- M. Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - S.M. Azab
- Pharmaceutical Chemistry Dept., National Organization for Drug Control and Research (NODCAR), Giza 29, Egypt
| | - A.M. Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
34
|
A novel electrochemical biomimetic sensor based on E-MIP artificial acceptor and SI-ATRP assisted signal amplification. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Hernandez-Aldave S, Tarat A, McGettrick JD, Bertoncello P. Voltammetric Detection of Caffeine in Beverages at Nafion/Graphite Nanoplatelets Layer-by-Layer Films. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E221. [PMID: 30736450 PMCID: PMC6410159 DOI: 10.3390/nano9020221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
We report for the first time a procedure in which Nafion/Graphite nanoplatelets (GNPs) thin films are fabricated using a modified layer-by-layer (LbL) method. The method consists of dipping a substrate (quartz and/or glassy carbon electrodes) into a composite solution made of Nafion and GNPs dissolved together in ethanol, followed by washing steps in water. This procedure allowed the fabrication of multilayer films of (Nafion/GNPs)n by means of hydrogen bonding and hydrophobic‒hydrophobic interactions between Nafion, GNPs, and the corresponding solid substrate. The average thickness of each layer evaluated using profilometer corresponds to ca. 50 nm. The as-prepared Nafion/GNPs LbL films were characterized using various spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), FTIR, and optical microscopy. This characterization highlights the presence of oxygen functionalities that support a mechanism of self-assembly via hydrogen bonding interactions, along with hydrophobic interactions between the carbon groups of GNPs and the Teflon-like (carbon‒fluorine backbone) of Nafion. We showed that Nafion/GNPs LbL films can be deposited onto glassy carbon electrodes and utilized for the voltammetric detection of caffeine in beverages. The results showed that Nafion/GNPs LbL films can achieve a limit of detection for caffeine (LoD) of 0.032 μM and linear range between 20‒250 μM using differential pulse voltammetry, whereas, using cyclic voltammetry LoD and linear range were found to be 24 μM and 50‒5000 μM, respectively. Voltammetric detection of caffeine in beverages showed good agreement between the values found experimentally and those reported by the beverage producers. The values found are also in agreement with those obtained using a standard spectrophotometric method. The proposed method is appealing because it allows the fabrication of Nafion/GNPs thin films in a simple fashion using a single-step procedure, rather than using composite solutions with opposite electrostatic charge, and also allows the detection of caffeine in beverages without any pre-treatment or dilution of the real samples. The proposed method is characterized by a fast response time without apparent interference, and the results were competitive with those obtained with other materials reported in the literature.
Collapse
Affiliation(s)
- Sandra Hernandez-Aldave
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Bay Campus, Crwmlyn Burrows, Swansea SA1 8EN, UK.
| | - Afshin Tarat
- Perpetuus Advanced Materials, Unit B1, Olympus Court, Millstream Way, Swansea Vale, Llansamlet, SA7 0AQ, UK.
| | - James D McGettrick
- SPECIFIC, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK.
| | - Paolo Bertoncello
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Bay Campus, Crwmlyn Burrows, Swansea SA1 8EN, UK.
- Centre for NanoHealth, Swansea University, Singleton Campus, Swansea SA2 8PP, UK.
| |
Collapse
|
36
|
Tang P, Gomez MT, Leung HT, Sun G. Bio-inspired ultrasensitive colorimetric detection of methyl isothiocyanate on nylon-6 nanofibrous membrane: A comparison of biological thiol reactivities. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:375-382. [PMID: 30245405 DOI: 10.1016/j.jhazmat.2018.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/23/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Living organisms, including human beings, rapidly show skin color changes after chemical poisonings, a result of toxicological or detoxification reactions caused by biological thiol compounds. On the other side, quick and portable detection of highly-volatile toxicants is an urgent need for improving human safety and personal protection, especially real-time monitoring of fumigants at low level for protection of farm workers and residents from overexposure of fumigants, vaporous pesticides. Here, we designed a rapid and portable detection method for methyl isothiocyanate (MITC) vapor by mimicking detoxification reactions of biological thiols in human bodies with MITC. The detection reaction was implemented on a nylon-6 nanofibrous membrane with ultrahigh surface areas to show color signals with the addition of Ellman's reagent. The reactivities of glutathione, N-acetyl-L-cysteine, L-homocysteine, cysteamine, and thioglycolic acid toward MITC were experimentally explored and theoretically discussed. The detection sensitivity is tunable in different biological thiol systems, which broadens the sensor applications in detection of trace amount of MITC in ambient environment and improves the protection of human safety. The new sensor system reduced the sensor operation time to 15 min and achieved the detection limit of 99 ppb, much lower than its permissible exposure limit (220 ppb).
Collapse
Affiliation(s)
- Peixin Tang
- Division of Textiles and Clothing, University of California, Davis, 95616, CA, USA
| | | | - Ho Ting Leung
- Department of Chemistry, University of California, Davis, 95616, CA, USA
| | - Gang Sun
- Division of Textiles and Clothing, University of California, Davis, 95616, CA, USA.
| |
Collapse
|
37
|
Yang YS, Yuan ZH, Zhang XP, Xu JF, Lv PC, Zhu HL. A selective fluorescent sensor for cysteine detection with potential as a white light emitting fluorophore in living cell imaging. J Mater Chem B 2019. [DOI: 10.1039/c9tb00273a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel fluorescent sensor CysW-1 was introduced for cysteine detection via the cleavage reaction of two fluorophores. Then a relatively steady and practical white light emitting system was successfully generated. The biocompatibility ensured the living cell imaging and further pre-clinical applications.
Collapse
Affiliation(s)
- Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Xu-Ping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Jian-Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| |
Collapse
|
38
|
Gan T, Li J, Zhao A, Xu J, Zheng D, Wang H, Liu Y. Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem 2018; 268:1-8. [DOI: 10.1016/j.foodchem.2018.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
|
39
|
Zahed FM, Hatamluyi B, Lorestani F, Es’haghi Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J Pharm Biomed Anal 2018; 161:12-19. [DOI: 10.1016/j.jpba.2018.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
|
40
|
Recent progress in nanomaterial-based assay for the detection of phytotoxins in foods. Food Chem 2018; 277:162-178. [PMID: 30502132 DOI: 10.1016/j.foodchem.2018.10.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/03/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Phytotoxins refers to toxic chemicals derived from plants. They include both secondary metabolites that are dose-dependently toxic and allergens that can cause anaphylactic shock in sensitive individuals. Detecting phytotoxins in foods is increasingly important. Conventional methods for detecting phytotoxins lack sufficient sensitivity and operational convenience. Nanomaterial-based determination assays show great competence in fast and accurate sensing of trace substances. In the present review, representative phytotoxin categories of alkaloids, cyanides, and proteins are discussed. Application of notable nanomaterials, e.g. carbon nanotubes, graphene oxide, magnetic nanoparticles, metal-based nanotools, and quantum dots, in specific sensing strategies to fit the physiochemical properties of the target toxins are summarized. Nanomaterials mainly play four roles in phytotoxin detection: 1) analyte enricher; 2) sensor structure mediator; 3) target recognizer or reactant; 4) signaling agent. Great achievements have been made in the detection of trace plant-derived toxins in food matrices, yet there are still challenges awaiting further investigation.
Collapse
|
41
|
Wang A, Ding Y, Li L, Duan D, Mei Q, Zhuang Q, Cui S, He X. A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system. Talanta 2018; 192:478-485. [PMID: 30348421 DOI: 10.1016/j.talanta.2018.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
Abstract
An extremely sensitive enzyme sensor for detection of 17β-estradiol based on electropolymerized L-lysine molecules on a glassy carbon electrode (GCE) modified with critic acid@graphene (CA-GR) and cross-linked with laccase enzyme has been developed in this work. As the laccase immobilization, glutaraldehyde was chosen as cross-linker through the groups reactions. The novel enzyme sensor could recognize and determinate 17β-estradiol effectively. The morphology of the enzyme modified electrode was characterized by transmission electron microscopy (TEM) and electron microscopy (SEM). The amino interaction between cross-linker and enzyme was characterized by Fourier transform infrared spectroscopy (FTIR). Under the optimal experimental conditions, good linear relationships were achieved in the range of 4 × 10-13 - 5.7 × 10-11 M and a limit of detection as low as 1.3 × 10-13 M. Moreover, the enzyme sensor exhibited good reproducibility, stability and high selectivity to 17β-estradiol. Excellent performance was showed in the human urine samples analysis, thus confirming great prospect for further application in clinic diagnosis and biological research.
Collapse
Affiliation(s)
- Anqing Wang
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, PR China.
| | - Li Li
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Dingding Duan
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Qianwen Mei
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Qi Zhuang
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Shiqiang Cui
- Key Laboratory of Optoelectronic Devices and Systems of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xinyu He
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
42
|
Liu X, Ran M, Liu G, Liu X, Xue Z, Lu X. A sensitively non-enzymatic amperometric sensor and its application in living cell superoxide anion radical detection. Talanta 2018; 186:248-255. [DOI: 10.1016/j.talanta.2018.04.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 01/14/2023]
|
43
|
Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode. Talanta 2018; 184:452-460. [PMID: 29674068 DOI: 10.1016/j.talanta.2018.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/05/2023]
Abstract
This work reports the synthesis of new symmetrically substituted manganese(III) phthalocyanine (2eOHMnPc) (2) containing tetra 5-chloroquinolin-8-yloxy group at the peripheral position for the first time. Manganese(III) phthalocyanine (2) was synthesized by cyclotetramerization of 4-(5-chloroquinolin-8-yloxy)phthalonitrile (1) in the presence of corresponding metal salt (manganese(II) chloride). This peripherally substituted phthalocyanine complex (2) was purified by column chromatography and characterized by several techniques such as IR, mass and UV-Visible spectral data. This novel synthesized phthalocyanine was mixed with multiwalled carbon nanotubes in order to prepare the novel catalytic surface on glassy carbon electrode for theophylline and caffeine detection in acidic medium. The novel composite electrode surfaces were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Individual and simultaneous determination of theophylline and caffeine were studied by differential pulse voltammetry. The detection limits were individually calculated for theophylline and caffeine as 6.6 × 10-9 M and 5.0 × 10-8 M, respectively. In simultaneous determination, LODs were calculated for theophylline and caffeine as 8.1 × 10-9 M and 3.0 × 10-7 M, respectively. The practical applicability of the proposed modified electrode was tested for the determination of theophylline and caffeine in green tea, cola and theophylline serum.
Collapse
|