1
|
Islam M, Ahmed MS, Yun S, Kim HY, Nam KW. Harnessing Radiation for Nanotechnology: A Comprehensive Review of Techniques, Innovations, and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2051. [PMID: 39728587 DOI: 10.3390/nano14242051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials. Additionally, radiation-induced nanomaterials are more cost effective and energy efficient. This technology is also having a positive impact on the environment, as materials are being produced with fewer emissions, less energy, and less waste. This cutting-edge technology is opening up new possibilities and has become an attractive option for many industries, from medical advancements to energy storage. It is also helping to make the world a better place by reducing our carbon footprint and preserving natural resources. This review aims to meticulously point out the synthesis approach and highlights significant progress in generating radiation-induced nanomaterials with tunable and complex morphologies. This comprehensive review article is essential for researchers to design innovative materials for advancements in health care, electronics, energy storage, and environmental remediation.
Collapse
Affiliation(s)
- Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Md Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sua Yun
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae-Yong Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
2
|
Shi Y, Han X, Zou S, Liu G. Nanomaterials in Organoids: From Interactions to Personalized Medicine. ACS NANO 2024; 18:33276-33292. [PMID: 39609736 DOI: 10.1021/acsnano.4c13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Organoids are three-dimensional models of microscopic organisms created through the self-organization of various types of stem cells. They are widely unitized in personalized medicine due to their capacity to replicate the structure and functionality of native organs. Meanwhile, nanotechnology has been integrated into diagnostic and therapeutic tools to manage an array of medical conditions, given its unique characteristics of nanoscale. Nanomaterials have demonstrated potential in developing innovative and effective organoids. With a focus on studying the interaction of nanomaterials and organoid technology in personalized medicine, this Review examines the role of nanomaterials in regulating the fate of stem cells to construct different types of organoids. It also explores the potential of nanotechnology to create 3D microenvironments for organoids. Finally, perspectives and challenges of applying nanotechnology for organoids development toward the translation of personalized medicine are discussed.
Collapse
Affiliation(s)
- Ying Shi
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Han
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Yan Q, Wu R, Wang J, Zeng T, Yang L. An ultrasensitive sandwich-type electrochemical immunosensor based on rGO-TEPA/ZIF67@ZIF8/Au and AuPdRu for the detection of tumor markers CA72-4. Bioelectrochemistry 2024; 160:108755. [PMID: 38878457 DOI: 10.1016/j.bioelechem.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 09/15/2024]
Abstract
Cancer antigen 72-4 (CA72-4) is an important marker of cancer detection, and accurate detection of CA72-4 is urgently required. Herein, a sandwich-type immunosensor was constructed for detection CA72-4 based on composite nanomaterial as the substrate material and trimetal nanoparticles as the nanoprobe. The composite nanomaterial rGO-TEPA/ZIF67@ZIF8/Au used as a selective bio-recognition element were modified on the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the AuPdRu trimeric metal. After the target antigen 72-4 were captured, the nanoprobes were further assembled to form an antibody1 (Ab1)- antigen-antibody2 (Ab2) nanoprobes sandwich-like system on the electrode surface. Then, hybrid the substrate material rGO-TEPA/ZIF67@ZIF8/Au and the AuPdRu trimeric metal nanoprobes efficiently catalyzed the reduction of H2O2 and amplified the electrochemical signals. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and Chronoamperometry (I-T) methods were used to characterize the performance and detection capabilities for CA72-4 of the prepared immunosensors. The results showed that the detection limit was 1.8 × 10-5 U/mL (S/N = 3), and the linear range was 0.001-1000 U/mL. This study provides a new signal amplification strategy for electrochemical sensors and a theoretical basis for the clinical application of immunosensor to detect other tumor markers.
Collapse
Affiliation(s)
- Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruixue Wu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianyi Zeng
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
4
|
Wang A, Fu L. Nano-Functional Materials for Sensor Applications. Molecules 2024; 29:5515. [PMID: 39683674 DOI: 10.3390/molecules29235515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The rapid development of nanotechnology and materials science has led to remarkable advances in sensor applications across various fields [...].
Collapse
Affiliation(s)
- Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Eker F, Akdaşçi E, Duman H, Bechelany M, Karav S. Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1854. [PMID: 39591094 PMCID: PMC11597456 DOI: 10.3390/nano14221854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| |
Collapse
|
6
|
Ghaani M, Azimzadeh M, Büyüktaş D, Carullo D, Farris S. Electrochemical Sensors in the Food Sector: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24170-24190. [PMID: 39453461 DOI: 10.1021/acs.jafc.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In a world that is becoming increasingly concerned with health, safety, and the sustainability of food supply chains, the control and assurance of food quality have become of utmost importance. This review examines the application and potential of electrochemical sensors in the dynamic field of food science to meet these expanding demands. The article introduces electrochemical sensors and describes their operational mechanics and the components contributing to their function. A summary of the most prevalent electrochemical methods outlines the diverse food analysis techniques available. The review shifts to discussing the food science applications of these sensors, highlighting their crucial role in detecting compounds in food samples like meat, fish, juice, and milk for contemporary quality control. This paper showcases electrochemical sensors' utility in food analysis, underscoring their significance as powerful, efficient tools for maintaining food safety and how they could transform our approach to global food quality control and assurance.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| |
Collapse
|
7
|
Gao H, Peng W, Zhou Y, Ding Z, Su M, Wu Z, Yu C. Flexible and multi-functional three-dimensional scaffold based on enokitake-like Au nanowires for real-time monitoring of endothelial mechanotransduction. Biosens Bioelectron 2024; 263:116610. [PMID: 39079209 DOI: 10.1016/j.bios.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Endothelial cells are sensitive to mechanical force and can convert it into biochemical signals to trigger mechano-chemo-transduction. Although conventional techniques have been used to investigate the subsequent modifications of cellular expression after mechanical stimulation, the in situ and real-time acquiring the transient biochemical information during mechanotransduction process remains an enormous challenge. In this work, we develop a flexible and multi-functional three-dimensional conductive scaffold that integrates cell growth, mechanical stimulation, and electrochemical sensing by in situ growth of enokitake-like Au nanowires on a three-dimensional porous polydimethylsiloxane substrate. The conductive scaffold possesses stable and desirable electrochemical sensing performance toward nitric oxide under mechanical deformation. The prepared e-AuNWs/CC/PDMS scaffold exhibits a good electrocatalytic ability to NO with a linear range from 2.5 nM to 13.95 μM and a detection limit of 8 nM. Owing to the excellent cellular compatibility, endothelial cells can be cultured directly on the scaffold and the real-time inducing and recording of nitric oxide secretion under physiological and pathological conditions were achieved. This work renders a reliable sensing platform for real-time monitoring cytomechanical signaling during endothelial mechanotransduction and is expected to promote other related biological investigations based on three-dimensional cell culture.
Collapse
Affiliation(s)
- Hui Gao
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenjing Peng
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Yaqiu Zhou
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhengyuan Ding
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zengqiang Wu
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
8
|
Ghuniem MM. Determination of Some Element’s Migrants in Aqueous Simulant from Plastic Food Contact Products by Inductively Coupled Plasma Mass Spectrometer. FOOD ANAL METHOD 2024; 17:1497-1510. [DOI: 10.1007/s12161-024-02666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 01/05/2025]
Abstract
AbstractVarious chemicals present at different stages in the food supply chain can lead to the leaching of heavy metals. These metals can accumulate in the human body through the consumption of contaminated food. Consequently, it is necessary to validate an analytical technique for the quantification chemical that could contaminate food. This study presents a rapid, straightforward, and efficient analytical method for the direct quantification of some potentially toxic elements in aqueous simulants from plastic food contact products using an inductively coupled mass spectrometer (ICP-MS). The method’s validation encompassed the study of the estimated detection limits, practical quantification limits, linearity, accuracy, and measurement uncertainty of aluminium (Al), antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) under optimized ICP-MS conditions. The estimated detection limits ranged from 7.5 × 10−4 to 0.074 mg/kg, while practical quantification limits spanned from 0.02 to 0.8 mg/kg. The average recoveries ± standard deviations at different spiking levels were varied between 85.7 ± 1.51 and 115.6 ± 0.88% with coefficients of variation between 0.42 and 5.85%. The method trueness was verified by using references materials (test material in aqueous acetic acid) purchased from Food Chemistry Proficiency Testing and Analysis (FAPAS) yielding satisfactory results within acceptable recovery and Z-score values. The method precision, in terms of relative standard deviation (RSD), was being below 4.22%. The method uncertainty expressed as expanded uncertainty of all validated elements was found to be ≤ 21.9%. Validated method was employed to determine specific elements in aqueous simulants of thirty commercial plastic food packaging samples, representing three distinct types of plastic polymers. The results showed that the mean concentrations, in mg/kg, were as follows: 2.04 (Al), 0.02 (As), 0.02 (Cd), 0.02 (Co), 0.06 (Cr), 0.41 (Cu), 1.55 (Fe), 0.09 (Mn), 0.15 (Ni), 0.07 (Pb), 0.05 (Sb), and 0.81 (Zn). Furthermore, 30% of analyzed samples exceeding the maximum permissible limits of Al for plastic materials and articles intended to come into contact with food.
Collapse
|
9
|
Liang D, Yang S, Ding Z, Xu X, Tang W, Wang Y, Qian K. Engineering a Bifunctional Smart Nanoplatform Integrating Nanozyme Activity and Self-Assembly for Kidney Cancer Diagnosis and Classification. ACS NANO 2024; 18:23625-23636. [PMID: 39150349 DOI: 10.1021/acsnano.4c08085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Accurate diagnosis and classification of kidney cancer are crucial for high-quality healthcare services. However, the current diagnostic platforms remain challenges in the rapid and accurate analysis of large-scale clinical biosamples. Herein, we fabricated a bifunctional smart nanoplatform based on tannic acid-modified gold nanoflowers (TA@AuNFs), integrating nanozyme catalysis for colorimetric sensing and self-assembled nanoarray-assisted LDI-MS analysis. The TA@AuNFs presented peroxidase (POD)- and glucose oxidase-like activity owing to the abundant galloyl residues on the surface of AuNFs. Combined with the colorimetric assay, the TA@AuNF-based sensing nanoplatform was used to directly detect glucose in serum for kidney tumor diagnosis. On the other hand, TA@AuNFs could self-assemble into closely packed and homogeneous two-dimensional (2D) nanoarrays at liquid-liquid interfaces by using Fe3+ as a mediator. The self-assembled TA@AuNFs (SA-TA@AuNFs) arrays were applied to assist the LDI-MS analysis of metabolites, exhibiting high ionization efficiency and excellent MS signal reproducibility. Based on the SA-TA@AuNF array-assisted LDI-MS platform, we successfully extracted metabolic fingerprints from urine samples, achieving early-stage diagnosis of kidney tumor, subtype classification, and discrimination of benign from malignant tumors. Taken together, our developed TA@AuNF-based bifunctional smart nanoplatform showed distinguished potential in clinical disease diagnosis, point-of-care testing, and biomarker discovery.
Collapse
Affiliation(s)
- Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Ziqi Ding
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Xiaoyu Xu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Wenxuan Tang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| |
Collapse
|
10
|
Zhang B, Guo Y, Lu Y, Ma D, Wang X, Zhang L. Bibliometric and visualization analysis of the application of inorganic nanomaterials to autoimmune diseases. Biomater Sci 2024; 12:3981-4005. [PMID: 38979695 DOI: 10.1039/d3bm02015k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yuanyuan Guo
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yu Lu
- The First Clinical Medical College of Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiahui Wang
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
11
|
Shoup DN, Fan S, Zapata-Herrera M, Schorr HC, Aizpurua J, Schultz ZD. Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging. Anal Chem 2024; 96:11422-11429. [PMID: 38958534 DOI: 10.1021/acs.analchem.4c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement of surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths; so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of a bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we use super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied, which revealed subdiffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggests that the emissions arising from the bipyramid-GERTs are less influenced by confined fields.
Collapse
Affiliation(s)
- Deben N Shoup
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mario Zapata-Herrera
- Center for Materials Physics in San Sebastián (CSIC-UPV/EHU), Donostia-San Sebastián 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Javier Aizpurua
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Electricity and Electronics, University of the Basque Country UPV/EHU, ESP, 48940 Leioa, Spain
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Rhie J, Lee D, Kim T, Kim S, Seo M, Kim DS, Bahk YM. Optical Tweezing Terahertz Probing for a Single Metal Nanoparticle. NANO LETTERS 2024; 24:6753-6760. [PMID: 38708988 DOI: 10.1021/acs.nanolett.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.
Collapse
Affiliation(s)
- Jiyeah Rhie
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dukhyung Lee
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Taehoon Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Seonghun Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Mi Bahk
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
13
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
14
|
Qin X, Yin P, Zhang Y, Su M, Chen F, Xu X, Zhao J, Gui Y, Guo H, Zhao C, Zhang Z. Self-assembled ordered AuNRs-modified electrodes for simultaneous determination of dopamine and topotecan with improved data reproducibility. Mikrochim Acta 2024; 191:350. [PMID: 38806865 DOI: 10.1007/s00604-024-06441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 μM and 1.5-40 μM, and the detection limits of DA and TPC were 0.06 μM and 0.17 μM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.
Collapse
Affiliation(s)
- Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Peijun Yin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yuhang Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Mingxing Su
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Fenghua Chen
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jianbo Zhao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yanghai Gui
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Huishi Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Chao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
15
|
Karthika P, Shanmuganathan S, Subramanian V, Delerue-Matos C. Selective detection of salivary cortisol using screen-printed electrode coated with molecularly imprinted polymer. Talanta 2024; 272:125823. [PMID: 38422908 DOI: 10.1016/j.talanta.2024.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A novel electrochemical sensor was developed for the detection of salivary cortisol levels. The sensor employs a combination of a molecularly imprinted polymer (MIP) and gold nanoparticles (AuNPs) that are electrodeposited onto a screen-printed electrode (SPE). The study utilised density functional theory and molecular docking techniques to determine the geometry of molecular orbitals, electrostatic potential energies, and binding energy of cortisol and the polymers. The thin film of cortisol-imprinted polymer on the SPE was created by electro-polymerizing pyrrole and thiophene-3-carboxylic acid on the electrode surface along with cortisol as the template molecule. The MIP film was characterised using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical techniques. The sensor exhibited a linear response in the concentration range of 0.05 nmol L-1 to 2.5 μmol L-1, with a limit of detection of 0.01 nmol L-1, as determined by differential pulse voltammetry. This method offers a simple yet efficient and sensitive approach to detecting cortisol levels in human saliva samples.
Collapse
Affiliation(s)
- Palanisamy Karthika
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Viswanathan Subramanian
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| |
Collapse
|
16
|
Kong Q, Liu C, Zhang Y, He Y, Zhang R, Wang Y, Zhou Q, Cui F. Nucleic acid aptamer-based electrochemical sensor for the detection of serum P-tau231 and the instant screening test of Alzheimer's disease. Mikrochim Acta 2024; 191:328. [PMID: 38743383 DOI: 10.1007/s00604-024-06395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.
Collapse
Affiliation(s)
- Qingfei Kong
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
- The Heilongjiang Provincial Joint Laboratory of Basic Medicine and Multiple Organ System Diseases (International Cooperation), Harbin, Heilongjiang, 150086, China
| | - Chunhan Liu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yanlin Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yifan He
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Ruiting Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- The Heilongjiang Provincial Joint Laboratory of Basic Medicine and Multiple Organ System Diseases (International Cooperation), Harbin, Heilongjiang, 150086, China.
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- The Heilongjiang Provincial Joint Laboratory of Basic Medicine and Multiple Organ System Diseases (International Cooperation), Harbin, Heilongjiang, 150086, China.
| |
Collapse
|
17
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
18
|
Zhu M, Liu Y, Wang M, Liu T, Chu Z, Jin W. Facile construction of nanocubic Mn 3[Fe(CN) 6] 2@Pt based electrochemical DNA sensors for ultrafast precise determination of SARS-CoV-2. Bioelectrochemistry 2024; 156:108598. [PMID: 37992612 DOI: 10.1016/j.bioelechem.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
Owing to the high mortality and strong infection ability of COVID-19, the early rapid diagnosis is essential to reduce the risk of severe symptoms and the loss of lung function. In clinic, the commonly used detection methods, including the computed tomography (CT) and reverse transcription-polymerase chain reaction (RT-PCR), are often time-consuming with bulky instruments, which normally require more than one hour to report the results. To shorten the analytical period for testing the COVID-19 virus (SARS-CoV-2), we proposed an ultrafast and ultrasensitive DNA sensors to achieve an accurate determination of the DNA sequence by the RNA reverse transcription (rtDNA) of the SARS-CoV-2. A nanocubic architecture of the MnFe@Pt crystals was constructed to integrate both electrocatalysis and conductivity to greatly improve the biosensing performance. After the immobilization of a specific capture and report DNA on above nanocomposite, the rtDNA can be rapidly caught to the DNA sensor to form a double-helix structure, thus generating the current signal change. Within only 10 min, the as-prepared DNA sensors exhibited ultralow detection limit (1 × 10-20 M) and wide linear detection range, together with an outstanding selectivity among various interfering substances.
Collapse
Affiliation(s)
- Mengjiao Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Meiyue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
19
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
20
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Zhang M, Wang Y, Jiang J, Jiang Y, Song D. The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review. Crit Rev Anal Chem 2024:1-22. [PMID: 38462811 DOI: 10.1080/10408347.2024.2324460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Fu X, Lu Y, Peng Y. An integrated electrochemical immunosensor based on Pd-Ir cubic nanozyme and Ketjen black for ultrasensitive detection of circulating tumor cells. Anal Biochem 2024; 686:115428. [PMID: 38103628 DOI: 10.1016/j.ab.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Ultrasensitive detection of circulating tumor cells (CTCs) holds significant clinical importance in monitoring metastasis and therapeutic outcomes. In this study, we have developed a novel electrochemical sensing model based on nanomaterials for highly sensitive and specific determination of CTCs. A gold electrode co-modified with Ketjin black (KB) and Au nanoparticles (AuNPs) exhibits exceptional conductivity. By conjugating palladium-iridium cubic nanozyme (Pd-Ir CNE) with antibodies, we have created a detection probe capable of catalyzing hydrogen peroxide (H2O2), thereby amplifying the output signal and resulting in significantly enhanced current on the electrode for detecting CTCs. The constructed immunosensor has achieved a detection limit of 2 cell mL-1 for model MCF-7 cells. Furthermore, the as-constructed electrochemical immunosensor can accurately detect whole blood-spiked target CTCs, showing great promise for clinical applications in early cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Xuhuai Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Yunyao Lu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Yang Peng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China.
| |
Collapse
|
23
|
Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V. Aptamer-functionalized MOFs and AI-driven strategies for early cancer diagnosis and therapeutics. Biotechnol Lett 2024; 46:1-17. [PMID: 38155321 DOI: 10.1007/s10529-023-03454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Abhishek Futane
- Department of Engineering Technology, Faculty of Electronics and Computer Technology & Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Abu Hasnat Mustafa
- Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kunatan, Pahang, Malaysia
| | - Vigneswaran Narayanamurthy
- Department of Engineering Technology, Faculty of Electronics and Computer Technology & Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
24
|
Wang Y, Yu F, Liu Q, Wang C, Zhu G, Bai L, Shi S, Zhao Y, Jiang Z, Zhang W. A novel and sensitive dual signaling ratiometric electrochemical aptasensor based on nanoporous gold for determination of Ochratoxin A. Food Chem 2024; 432:137192. [PMID: 37633144 DOI: 10.1016/j.foodchem.2023.137192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Ochratoxin A (OTA) is a toxic pollutant in foods, and its actual detection is crucial. A novel and sensitive dual signaling ratiometric electrochemical aptasensor based on nanoporous gold (NPG) was proposed to determine OTA. NPG, with high specific surface area and conductivity, improved the sensitivity by immobilizing more aptamers. Meanwhile, the dual signaling ratiometric strategy improved the detection reproducibility through self-referencing and built-in correction. NPG and ratiometric strategy multi-amplified the dual signal changes. The sensitivity of OTA was evaluated by the ratio of methylene to ferrocene current values. Under the optimal conditions, the NPG-based aptasensor demonstrated excellent sensitivity with a wide linear range of 1 pg/mL to 2 ng/mL and the limit of detection (LOD) of 0.4 pg/mL for OTA. This developed aptasensor also effectively detected OTA in spiked Cordyceps sinensis and grape juice samples, with recovery values falling in the 98.49-108.0% range.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Fei Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Qinghua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Liping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Shuai Shi
- Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Henan Luoyang 471023, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
25
|
Důbravová A, Muchová M, Škoda D, Lovecká L, Šimoníková L, Kuřitka I, Vícha J, Münster L. Highly efficient affinity anchoring of gold nanoparticles on chitosan nanofibers via dialdehyde cellulose for reusable catalytic devices. Carbohydr Polym 2024; 323:121435. [PMID: 37940301 DOI: 10.1016/j.carbpol.2023.121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Polysaccharides are often utilized as reducing and stabilizing agents and as support in the synthesis of gold nanoparticles (AuNPs). However, using approaches like spin coating or dip coating, AuNPs are generally bound to the support only by weak interactions, which can lead to decreased stability of the composite. Here, a two-stage approach for the preparation of composites with covalently anchored AuNPs is proposed. First, 5 nm AuNPs with high catalytic activity for the reduction of 4-nitrophenol (TOF = 15.8 min-1) were synthesized and stabilized using fully oxidized and solubilized 2,3-dialdehyde cellulose (DAC). Next, the carbonyl groups in the shell of prepared nanoparticles were used to tether AuNPs to chitosan nanofibers with quantitative efficacy in a process that we termed "affinity anchoring". Schiff bases formed during this process were subsequently reduced to secondary amines by borohydride, which greatly improved the stability of the composite in the broad pH range from 3 to 9. The catalytic efficacy of the resulting composite is demonstrated using a model catalytic device, showing high stability, fast conversion rates, and direct reusability.
Collapse
Affiliation(s)
- Alžběta Důbravová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - David Škoda
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lenka Lovecká
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lucie Šimoníková
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
26
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
27
|
Wei MJ, Li J, Wei ZQ, Zhang SF, Wang ZX, Li HY, Zhang R, Kong FY, Wang W. A single-site porphyrin (Cu)-based COF electrocatalyst for the electrochemical detection of gallic acid sensitively. Anal Chim Acta 2023; 1283:341975. [PMID: 37977793 DOI: 10.1016/j.aca.2023.341975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Sensitive and convenient determination of gallic acid (GA) is vital for food safety. Here, a novel porphyrin (Cu)-based covalent organic framework named as COF(Cu) was successfully synthesized by condensing pre-metalated 5,10,15,20-tetrakis (para-aminophenyl) porphyrin copper (II) and 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene ligands. By combining the advantages of porphyrin with tetrathiafulvalene, it may be possible to create a COF with an intrinsically effective charge-transfer channel. In addition, the Cu-N4 type in the COF(Cu) can be regarded as the single-site electrocatalyst. Benefiting from these advantages, the COF(Cu) based electrochemical sensor demonstrated outstanding response to gallic acid (GA). Under the optimal conditions by square wave voltammetry technique, the COF(Cu) modified electrode showed a wide linear range (0.01-1000 μM), a low detection limit (2.81 nM), good reproducibility, acceptable selectivity as well as high stability. Moreover, the established approach was adopted to detect GA in real tea samples with good recoveries, indicating that the COF(Cu) based electrochemical sensor may pave the way for the application in food analysis.
Collapse
Affiliation(s)
- Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ze-Qi Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Sheng-Feng Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
28
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2023:10.1007/s10895-023-03494-8. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
29
|
Dehdashtian S, Wang S, Murray TA, Chegeni M, Rostamnia S, Fattahi N. Determination of vanillin in different food samples by using SMM/Au@ZIF-67 electrochemical sensor. Sci Rep 2023; 13:17907. [PMID: 37863995 PMCID: PMC10589296 DOI: 10.1038/s41598-023-45342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Vanillin is a popular flavoring agent in many food products. Simple, fast, and reliable quantification of this compound is crucial for the food industry. In this work, we have developed a new electrochemical sensor for accurate detection of vanillin in various real samples. The composite electrode was made of sodium montmorillonite nanoclay (SMM) and gold nanoparticles modified ZIF-67 (Au@ZIF-67), in which SMM contributes to the large adsorption capacity of the analyte, ZIF-67 and SMM supply more sensing active sites, and gold nanoparticles provide high electrical conductivity. The sensing electrode was comprehensively characterized using Brunauer-Emmett-Teller, EDS, XRD, SEM, FTIR, and TEM, and its electrochemical behavior for determination of vanillin including the electrooxidation mechanism of vanillin and different parameters such as scan rate and pH value was investigated. The result revealed that a two electron-two proton process was involved in the electrooxidation of vanillin, which takes place more readily due to the lower potential on the surface of SMM/Au@ZIF-67/carbon paste electrode. The new composite electrode was also more sensitive to vanillin detection with an anodic peak current almost 2.6 times more than that of the bare electrode. A linear sensing concentration range was established between 1 and 1200 nM with a detection limit of 0. 3 nM and a limit of quantitation of 1 nM. For real samples, the sensor demonstrated excellent recovery rates and reliability that was comparable to the standard high-performance liquid chromatography method.
Collapse
Affiliation(s)
- Sara Dehdashtian
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA.
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA.
| | - Shengnian Wang
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA
| | - Teresa A Murray
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71270, USA
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272, USA
| | - Mahdieh Chegeni
- Department of Chemistry, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, 69199-69737, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Koterwa A, Pierpaoli M, Nejman-Faleńczyk B, Bloch S, Zieliński A, Adamus-Białek W, Jeleniewska Z, Trzaskowski B, Bogdanowicz R, Węgrzyn G, Niedziałkowski P, Ryl J. Discriminating macromolecular interactions based on an impedimetric fingerprint supported by multivariate data analysis for rapid and label-free Escherichia coli recognition in human urine. Biosens Bioelectron 2023; 238:115561. [PMID: 37549553 DOI: 10.1016/j.bios.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
This manuscript presents a novel approach to address the challenges of electrode fouling and highly complex electrode nanoarchitecture, which are primary concerns for biosensors operating in real environments. The proposed approach utilizes multiparametric impedance discriminant analysis (MIDA) to obtain a fingerprint of the macromolecular interactions on flat glassy carbon surfaces, achieved through self-organized, drop-cast, receptor-functionalized Au nanocube (AuNC) patterns. Real-time monitoring is combined with singular value decomposition and partial least squares discriminant analysis, which enables selective identification of the analyte from raw impedance data, without the use of electric equivalent circuits. As a proof-of-concept, the authors demonstrate the ability to detect Escherichia coli in real human urine using an aptamer-based biosensor that targets RNA polymerase. This is significant, as uropathogenic E. coli is a difficult-to-treat pathogen that is responsible for the majority of hospital-acquired urinary tract infection cases. The proposed approach offers a limit of detection of 11.3 CFU/mL for the uropathogenic E. coli strain No. 57, an analytical range in all studied concentrations (up to 105 CFU/mL), without the use of antifouling strategies, yet not being specific vs other E.coli strain studied (BL21(DE3)). The MIDA approach allowed to identify negative overpotentials (-0.35 to -0.10 V vs Ag/AgCl) as most suitable for the analysis, offering over 80% sensitivity and accuracy, and the measurement was carried out in just 2 min. Moreover, this approach is scalable and can be applied to other biosensor platforms.
Collapse
Affiliation(s)
- Adrian Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Artur Zieliński
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Wioletta Adamus-Białek
- Institute of Medical Sciences, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317, Kielce, Poland.
| | - Zofia Jeleniewska
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banach 2c, 02-097, Warsaw, Poland.
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Poland.
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
31
|
Sipuka D, Olorundare FOG, Makaluza S, Midzi N, Sebokolodi TI, Arotiba OA, Nkosi D. Dendrimer-Gold Nanocomposite-Based Electrochemical Aptasensor for the Detection of Dopamine. ACS OMEGA 2023; 8:33403-33411. [PMID: 37744816 PMCID: PMC10515171 DOI: 10.1021/acsomega.3c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 09/26/2023]
Abstract
Dopamine is an important neurotransmitter and biomarker that plays a vital role in our neurological system and body. Thus, it is important to monitor the concentration levels of dopamine in our bodies. We report an aptamer-based sensor fabricated through an electro-co-deposition of a generation 3 poly(propylene imine) (PPI) dendrimer and gold nanoparticles (AuNPs) on a glassy carbon (GC) electrode by cyclic voltammetry. Through self-assembly, a single-stranded thiolated dopamine aptamer was immobilized on the GC/PPI/AuNPs electrode to prepare an aptasensor. Voltammetry and electrochemical impedance spectroscopy (EIS) were used to characterize the modified electrodes. The readout for the biorecognition event between the aptamer and various dopamine concentrations was attained from square wave voltammetry and EIS. The aptasensor detected dopamine from the range of 10-200 nM, with a limit of detection of 0.26 and 0.011 nM from SWV and EIS, respectively. The aptasensor was selective toward dopamine when different amounts of epinephrine and ascorbic acid were present. The aptasensor was applicable in a more complex matrix of human serum.
Collapse
Affiliation(s)
- Dimpo
S. Sipuka
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Foluke O. G. Olorundare
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Sesethu Makaluza
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Nyasha Midzi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Tsholofelo I. Sebokolodi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Omotayo A. Arotiba
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanomaterials Science Research, University
of Johannesburg, 2028 Johannesburg, South Africa
| | - Duduzile Nkosi
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|
32
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
33
|
Kasztelan M, Zoladek S, Wieczorek W, Palys B. Template-Free Synthesized Gold Nanobowls Composed with Graphene Oxide for Ultrasensitive SERS Platforms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16960-16969. [PMID: 37674654 PMCID: PMC10478765 DOI: 10.1021/acs.jpcc.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
Engineering of plasmonic properties of gold nanostructures expands the field of their applications from photocatalysis and photothermal effects to ultrasensitive surface-enhanced Raman spectroscopy (SERS). The known methods of preparation of gold nanobowls involve the deposition of gold layer on polymers or silicon nanotemplates and the removal of the top layer of gold together with the template. Such gold nanobowls are characterized by very broad plasmonic bands due to the plasmon hybridization. The sharp edges on the top of nanobowls are potential sources of the strong electromagnetic field beneficial for SERS. We present a novel template-free synthesis of gold nanobowls (AuNBs). The AuNB layers are deposited on graphene oxide (GO) layers. We compare AuNBs with gold nanospheres (AuNSs) and gold nanourchins (AuNUs) having similar size. The gold nanoparticles are combined with pristine GO or graphene oxide conditioned in ammonia (GONH3) or graphene oxide conditioned in sodium hydroxide (GONaOH). The SERS properties of the hybrid supports were studied using rhodamine 6G (R6G) as the SERS probe. The 633 nm laser line was used, which falls out of the molecular resonance with R6G. The results indicate that AuNBs show largely higher enhancement factors when compared to AuNUs and AuNSs. Furthermore, the GO materials are able to modify the SERS enhancement by 1 order of magnitude. We explain the influence of the GO material by three factors: (1) enabling or disabling the charge transfer between gold and R6G, which is crucial for the chemical part of SERS enhancement; (2) causing the aggregation of gold nanoparticles and formation of hot spots; (3) dipole contribution to the electromagnetic enhancement through the abundance of polar groups on the surface.
Collapse
Affiliation(s)
- Mateusz Kasztelan
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Sylwia Zoladek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Władysław Wieczorek
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
34
|
Pham TN, Van Hoang O, Van Manh T, Trang NLN, Oanh VTK, Lam VD, Phan VN, Le AT. An insight of light-enhanced electrochemical kinetic behaviors and interfacial charge transfer of CuInS 2/MoS 2-based sensing nanoplatform for ultra-sensitive detection of chloramphenicol. Anal Chim Acta 2023; 1270:341475. [PMID: 37311615 DOI: 10.1016/j.aca.2023.341475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Owing to the effective combination between MoS2 sheets with CuInS2 nanoparticles (NPs), a direct Z-scheme heterojunction was successfully constructed and proved as a promising structure to modify the working electrode surface with the aim of enhancing overall sensing performance towards CAP detection. Herein, MoS2 was employed as a high mobility carrier transport channel with a strong photo-response, large specific surface area, and high in-plane electron mobility, while CuInS2 acted as an efficient light absorber. This not only offered a stable nanocomposite structure but also created impressive synergistic effects of high electron conductivity, large surface area, highlight exposure interface, as well as favorable electron transfer process. Moreover, the possible mechanism and hypothesis of the transfer pathway of photo-induced electron-hole pairs on the CuInS2-MoS2/SPE as well as their impacts on the redox reaction of K3/K4 probes and CAP were proposed and investigated in detail via a series of calculated kinetic parameters, demonstrating the high practical applicability of light-assisted electrodes. Indeed, the detection concentration range of the proposed electrode was widened from 0.1 to 50 μM, compared with that of 1-50 μM without irradiation. Also, the LOD and sensitivity values were calculated to be approximately 0.06 μM and 0.4623 μA μM-1, which is better than that of 0.3 μM and 0.095 μA μM-1 without irradiation.
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam.
| | - Ong Van Hoang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; University of Transport Technology, Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam
| | - Tien Van Manh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Vu Thi Kim Oanh
- Graduate University of Science and Technology (GUST) and Institute of Physics (IOP), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Vu Dinh Lam
- Graduate University of Science and Technology (GUST) and Institute of Physics (IOP), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam.
| |
Collapse
|
35
|
Chiticaru EA, Damian CM, Pilan L, Ioniță M. Label-Free DNA Biosensor Based on Reduced Graphene Oxide and Gold Nanoparticles. BIOSENSORS 2023; 13:797. [PMID: 37622883 PMCID: PMC10452912 DOI: 10.3390/bios13080797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Currently available DNA detection techniques frequently require compromises between simplicity, speed, accuracy, and cost. Here, we propose a simple, label-free, and cost-effective DNA detection platform developed at screen-printed carbon electrodes (SPCEs) modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs). The preparation of the detection platform involved a two-step electrochemical procedure based on GO reduction onto SPCEs followed by the electrochemical reduction of HAuCl4 to facilitate the post-grafting reaction with AuNPs. The final sensor was fabricated by the simple physical adsorption of a single-stranded DNA (ssDNA) probe onto a AuNPs-RGO/SPCE electrode. Each preparation step was confirmed by morphological and structural characterization using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy, respectively. Furthermore, the electrochemical properties of the modified electrodes have been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that the introduction of AuNPs onto RGO/SPCEs led to an enhancement in surface conductivity, a characteristic that favored an increased sensitivity in detection. The detection process relied on the change in the electrochemical signal induced by the binding of target DNA to the bioreceptor and was particularly monitored by the change in the charge transfer resistance of a [Fe(CN)6]4-/3- redox couple added in the test solution.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| | - Celina Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| |
Collapse
|
36
|
Zhao Y, Geng X, Zhou X, Xu L, Li S, Li Z, Guo Y, Li C. A novel high-stability bioelectrochemical sensor based on sol-gel immobilization of lactate dehydrogenase and AuNPs-rGO signal enhancement for serum pyruvate detection. Anal Chim Acta 2023; 1265:341335. [PMID: 37230575 DOI: 10.1016/j.aca.2023.341335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Pyruvate participates in diverse metabolic pathways in the body and is normally present in human blood at 40-120 μM, with concentrations outside this range associated with various diseases. Therefore, accurate and stable blood pyruvate level tests are necessary for effective disease detection. However, traditional analytical techniques require complicated instrumentation and are time consuming and expensive, prompting researchers to develop improved methods based on biosensors and bioassays. Here, we designed a highly stable bioelectrochemical pyruvate sensor affixed to a glassy carbon electrode (GCE). To maximize biosensor stability, 0.1 U of lactate dehydrogenase was affixed to the GCE using a sol-gel process, resulting in generation of Gel/LDH/GCE. Next, 2.0 mg/mL AuNPs-rGO was added to enhance current signal strength, resulting in generation of the bioelectrochemical sensor Gel/AuNPs-rGO/LDH/GCE. AuNPs-rGO synthesized in advance was verified as correct using transmission electron microscopy and UV-Vis, Fourier-transform infrared and X-ray photoelectron spectroscopy. Pyruvate detection conducted via differential pulse voltammetry in phosphate buffer (pH 7.4, 100 mM) at 37 °C for 1-4500 μM pyruvate provided detection sensitivity as high as 254.54 μA/mM/cm2. The reproducibility, regenerability and storage stability were analyzed with the relative standard deviation of 5 bioeletrochemical sensors detection was 4.60% and biosensor accuracy after 9 cycles was 92%, with accuracy remaining at 86% after 7 days. In the presence of D-glucose, citric acid, dopamine, uric acid and ascorbic acid, the Gel/AuNPs-rGO/LDH/GCE sensor exhibited excellent stability, high anti-interference ability and better performance than conventional spectroscopic methods for detection of pyruvate in artificial serum.
Collapse
Affiliation(s)
- Yanping Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Xu Geng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Xiaoling Zhou
- Gerontology Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, PR China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Shuai Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, PR China.
| | - Chen Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
37
|
Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:742. [PMID: 37504140 PMCID: PMC10377038 DOI: 10.3390/bios13070742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care. Available diagnostic techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are mainly used to validate AD diagnosis. However, these methods are expensive, yield results that are difficult to interpret, and have common side effects such as headaches, nausea, and vomiting. Therefore, researchers have focused on developing cost-effective, portable, and point-of-care alternative diagnostic devices to detect specific biomarkers in cerebrospinal fluid (CSF) and other biofluids. In this review, we summarized the recent progress in developing electrochemical immunosensors for detecting AD biomarkers (Aβ and p-tau protein) and their subtypes (AβO, Aβ(1-40), Aβ(1-42), t-tau, cleaved-tau (c-tau), p-tau181, p-tau231, p-tau381, and p-tau441). We also evaluated the key characteristics and electrochemical performance of developed immunosensing platforms, including signal interfaces, nanomaterials or other signal amplifiers, biofunctionalization methods, and even primary electrochemical sensing performances (i.e., sensitivity, linear detection range, the limit of detection (LOD), and clinical application).
Collapse
Affiliation(s)
- Abhinav Sharma
- Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Xu T, Yang L, Zhang X, Lu G, Bai Z. A highly sensitive electrochemical sensor by growing Ag nanoparticles on the surface of PPy@PEDOT:PSS film for detecting sodium hydroxymethanesulfinate molecules. Food Chem X 2023; 18:100701. [PMID: 37397227 PMCID: PMC10314181 DOI: 10.1016/j.fochx.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 07/04/2023] Open
Abstract
A high-sensitivity electrochemical sensor was fabricated via in situ growth of Ag nanoparticles (AgNPs) on the surface of a polypyrrole@poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PPy@PEDOT:PSS) film for detecting sodium hydroxymethanesulfinate (SHF) molecules in milk and rice flour samples. The sensor fabrication process involved randomly decorating Ag seed points on the porous PPy@PEDOT:PSS film via a chemical reduction process using a AgNO3 solution. Next, AgNPs were anchored on the PPy@PEDOT:PSS film surface using an electrochemical deposition method to prepare a sensor electrode. Under optimal conditions, the sensor exhibits a good linear relation within a range of 1-130 ng/mL for real milk and rice flour samples and its limit-of-detection values were up to 0.58 and 0.29 ng/mL, respectively. Additionally, Raman spectroscopy was used to identify the byproducts of the chemical reaction, such as formaldehyde. This AgNP/PPy@PEDOT:PSS film-based electrochemical sensor offers a simple and rapid method for detecting SHF molecules in food products.
Collapse
Affiliation(s)
- Tianwen Xu
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Li Yang
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Xin Zhang
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Guo Lu
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Zhongchen Bai
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
39
|
Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, Kanashenko SL, Moshkovskii SA, Kuzikov AV. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta 2023; 257:124341. [PMID: 36821964 DOI: 10.1016/j.talanta.2023.124341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label. The peptides were immobilized on SPE by formation of chemical bonds between mercapto groups of the N-terminal cysteine residues and AuNPs. After the incubation with trypsin, time-dependent cleavage of the immobilized peptides was observed by decline in tyrosine electrochemical oxidation signal. The kinetic parameters of trypsin, such as the catalytic constant (kcat), the Michaelis constant (KM) and the catalytic efficiency (kcat/KM), toward the CGGGRYR peptide were determined as 0.33 ± 0.01 min-1, 198 ± 24 nM and 0.0016 min-1 nM-1, respectively. Using the developed biosensor, we demonstrated the possibility of analysis of trypsin specificity toward the peptides with amino acid residues disrupting proteolysis. Further, we designed the peptides with proline or glutamic acid residues after the cleavage site (CGGRPYR and CGGREYR), and trypsin had reduced activity toward both of them according to the existing knowledge of the enzyme specificity. The developed biosensor system allows one to perform a comparative analysis of the protease steady-state kinetic parameters and specificity toward model peptides with different amino acid sequences.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Rami A Masamrekh
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Ivan A Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia
| | | | - Irina Y Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia
| | - Sergey L Kanashenko
- Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Sergei A Moshkovskii
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia.
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia.
| |
Collapse
|
40
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide-Carbon Nanotubes Composites for the Determination of 17-β Estradiol. BIOSENSORS 2023; 13:bios13040491. [PMID: 37185565 PMCID: PMC10136424 DOI: 10.3390/bios13040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.
Collapse
Affiliation(s)
- Auwal M Musa
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
| | - Janice Kiely
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Richard Luxton
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Kevin C Honeychurch
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
41
|
Gu Y, Guo W, Bao J, Li Y, Lu L. Au-modified PtCu nanodendrites as a highly stable and active electrocatalyst. Chem Commun (Camb) 2023; 59:3582-3585. [PMID: 36883349 DOI: 10.1039/d3cc00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Direct galvanic replacement of surface Cu with Au3+ in PtCu3 nanodendrites is applied to synthesize an Au-modified PtCu3 nanodendrite catalyst (PtCu3-Au), which shows both superior stability and excellent activity for the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The PtCu3-Au catalyst only lost 7% of its MOR activity and its ORR half-wave potential decreased 8 mV after 10 000 potential cycles.
Collapse
Affiliation(s)
- Yuelin Gu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Weiyi Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Jingqi Bao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Yunxia Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
42
|
Bressi V, Chiarotto I, Ferlazzo A, Celesti C, Michenzi C, Len T, Iannazzo D, Neri G, Espro C. Voltammetric Sensor Based on Waste‐Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene. ChemElectroChem 2023. [DOI: 10.1002/celc.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Viviana Bressi
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Angelo Ferlazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Consuelo Celesti
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Clinical and Experimental Medicine University of Messina Via Consolare Valeria 98125 Messina Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Thomas Len
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Daniela Iannazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Giovanni Neri
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Claudia Espro
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| |
Collapse
|
43
|
Mosley RJ, Rucci B, Byrne ME. Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. J Mater Chem B 2023; 11:2078-2094. [PMID: 36806872 DOI: 10.1039/d2tb02325c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Research of nanoscale nucleic acid carriers has garnered attention in recent years due to their distinctive and controllable properties. However, current knowledge is limited in how we can efficiently utilize these systems for clinical applications. Several researchers have pioneered new and innovative nanocarrier drug delivery systems, but understanding physiochemical properties and behavior in vivo is vital to implementing them as clinical drug delivery platforms. In this review, we outline the most significant innovations in the synthesis, physical properties, and utilization of nucleic acid nanocarriers in the past 5 years, addressing the crucial properties which improve nanocarrier characteristics, delivery, and drug release. The challenges of controlling the transport of nucleic acid nanocarriers and therapeutic release for biological applications are outlined. Barriers which inhibit effective transport into tissue are discussed with emphasis on the modifications needed to overcome such obstacles. The novel strategies discussed in this work summarize the pivotal features of modern nucleic nanocarriers and postulate where future developments could revolutionize the translation of these tools into a clinical setting.
Collapse
Affiliation(s)
- Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Brendan Rucci
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA. .,Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
44
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
45
|
The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
46
|
Ghadirinataj M, Hassaninejad-Darzi SK, Emadi H. An electrochemical nanosensor for simultaneous quantification of acetaminophen and acyclovir by ND@Dy2O3-IL/CPE. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
47
|
Electrochemical immunosensor based on AuNPs/ERGO@CNT nanocomposites by one-step electrochemical co-reduction for sensitive detection of P-glycoprotein in serum. Biosens Bioelectron 2023; 222:115001. [PMID: 36516634 DOI: 10.1016/j.bios.2022.115001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
P-glycoprotein (P-gp), a transmembrane glycoprotein widely expressed on the surface of various cells, is highly associated with multidrug resistance (MDR) that heralds the malignant progress of disease after drug treatment. Notably, there have been reported that serum P-gp is a potential marker for assessing the progression of disease resistance. Currently, there are few methods for point-of-care serum P-gp detection. In this study, we proposed a gold nanoparticles/electrochemically reduced graphene oxide@carbon nanotube (AuNPs/ERGO@CNT) modified immunosensor based on a one-step electrochemical co-reduction method. The limit of detection (LOD) of our constructed electrochemical immunosensor for P-gp detection reached 0.13 ng/mL, and the detection results in serum were consistent with ELISA. The developed immunosensor is expected to provide a scientific basis for the clinical application of serum P-gp monitoring and integrated medicine.
Collapse
|
48
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin, Srivastava S, Minkina T, Igwegbe CA, Singh M, Kumar A. Emerging application of nanotechnology for mankind. EMERGENT MATERIALS 2023; 6:439-452. [PMID: 36743193 PMCID: PMC9888745 DOI: 10.1007/s42247-023-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Collapse
Affiliation(s)
- Rahul Kanaoujiya
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Shruti Kumari Saroj
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Alimuddin
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, 500032, Hyderabad, Telangana India
| | - Shekhar Srivastava
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamadi Azikiwe University, P. M. B., 5025 Awka, Nigeria
| | - Mukta Singh
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Aditya Kumar
- Department of Physics, School of Science, IFTM University Moradabad, 244102 Moradabad, India
| |
Collapse
|
50
|
Zhang L, Wang L, He S, Zhu C, Gong Z, Zhang Y, Wang J, Yu L, Gao K, Kang X, Song Y, Lu G, Yu HD. High-Performance Organic Electrochemical Transistor Based on Photo-annealed Plasmonic Gold Nanoparticle-Doped PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3224-3234. [PMID: 36622049 DOI: 10.1021/acsami.2c19867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs), particularly the ones based on PEDOT:PSS, are excellent candidates for chemical and biological sensing because of their unique advantages. Improving the sensitivity and stability of OECTs is crucially important for practical applications. Herein, the transconductance of OECT is improved by 8-fold to 14.9 mS by doping the PEDOT:PSS channel with plasmonic gold nanoparticles (AuNPs) using a solution-based process followed by photo annealing. In addition, the OECT also possesses high flexibility and cyclic stability. It is revealed that the doping of AuNPs increases the conductivity of PEDOT:PSS and the photo annealing improves the crystallinity of the PEDOT:PSS channel and the interaction between AuNPs and PEDOT:PSS. These changes lead to the increase in transconductance and cyclic stability. The prepared OECTs are also demonstrated to be effective in sensitive detection of glucose within a wide concentration range of 10 nM-1 mM. Our OECTs based on photo-annealed plasmonic AuNP-doped PEDOT:PSS may find great applications in chemical and biological sensing, and this strategy may be extended to prepare many other high-performance OECT-based devices.
Collapse
Affiliation(s)
- Linrong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Li Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Shunhao He
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yulong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Junjie Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Liuyingzi Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Kun Gao
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Hai-Dong Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|